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ABSTRACT 

There are various meta-heuristics exist in literature nowadays. However, not all meta­
heuristics were originally d~veloped to operate in discrete search space. Two examples 
of meta-heuristics are Particle swarm optimization (PSO) and gravitational search 
algorithm (GSA), which are based on the social behavior of bird flocks and the Newton's 
law of gravity and the law of motion, respectively. In order to solve discrete combinatorial 
optimization problems (COPs) using meta-heuristics, modification or enhancement is 
needed. In the context of the modification, a variety of discretization approaches have 
been proposed. Inspired by the design of a sequential circuit of digital system, a new 
discretization approach that leads to the establishment of a complete model of multi-state 
has been proposed. Based on the multi-state model, a multi-state search space is 
successfully built using the following two features; a current state and a radius. The multi­
state model is then implemented in PSO and GSA. As a consequence, multi-state particle 
swarm optimization (MSPSO) and multi-state gravitational search algorithm (MSGSA) 
are developed. In the MSPSO and the MSGSA, the radius is represented by new velocity 
value. The extended version of the multi-state model is then formulated by introducing 
an embedded rule that ensures the updated solutions to be formed by unrepeated states. 
As a consequence, multi-state particle swarm optimization with an embedded rule 
(MSPSOER) and multi-state gravitational search algorithm with an embedded rule 
(MSGSAER) are developed. These four algorithms can be used to solve discrete 
combinatorial optimization problems (COPs). To evaluate the performances of the 

I 

proposed algorithms, several experiments using eighteen sets of selected benchmarks 
instances of Travelling salesman problem (TSP) and a case study of assembly sequence 
planning (ASP) problem are conducted. The experimental results showed the newly 
introduced multi-state PSO GSA are promising compared to binary particle swarm 
optimization (BPSO) and binary gravitational search algorithm (BGSA) for the TSP and 
consistently outperformed simulated annealing (SA), genetic algorithm (GA), and BPSO 
for the ASP in finding optimal solutions. 



ABSTRAK 

Pada masa kini, terdapat pelbagai meta-heuristik yang wujud dalam kajian. Namun 
begitu, pada asalnya bukan. semua meta-heuristik telah dibangunkan untuk beroperasi 
dalam ruang carian diskret. Dua contoh meta-heuristik ialah pengoptimuman kerumunan 
zarah (PSO) dan algoritma carian graviti (GSA) yang mana masing-masing berasaskan 
tingkah laku sosial kawanan burung dan hukum gr.aviti Newton dan hukum gerakan. 
Dalam usaha untuk menyelesaikan masalah-masalah pengoptimumam kombinatorik 
diskret menggunakan meta-heuristik, proses pengubahsuaian atau penambahan 
diperlukan. Dalam konteks pengubahsuai, pelbagai pendekatan pendiskretan telah 
dicadangkan. Dengan berinspirasikan reka bentuk litar berjujukan dalam sistem digital, 
satu pendekatan baharu pendiskretan yang membawa kepada penubuhan satu model 
lengkap berbilang keadaan telah dicadangkan. Berdasarkan model berbilang keadaan itu, 
ruang carian berbilang keadaan dibina dengan jayanya menggunakan kedua-dua ciri-ciri 
berikut; satu keadaan semasa dan satu jejari. Kemudian, model berbilang keadaan ini 
diimplementasikan dalam PSO dan GSA. Lalu, pengoptimuman sekawan zarah berbilang 
keadaan (MSPSO) dan algoritma carian graviti berbilang keadaan (MSGSA) dihasilkan. 
Kemudian, satu versi model tambahan berbilang keadaan diformulasikan dengan 
memperkenalkan satu peraturan terbenam yang memastikan solusi-solusi yang telah 
dikemaskini itu dibina oleh keadaan-keadaan yang tidak berulang. Lalu, MSPSOER dan 
MSGSAER dihasilkan. Keempat-empat algoritma ini boleh digunakan untuk 
menyelesaikan masalah-masalah pengoptimumam djskret. Untuk menilai prestasi 
algoritma-algoritma yang dicadangkan, beberapa eksperimen yang menggunakan lapan 
belas set contoh penanda aras yang terpilih bagi TSP dan satu kajian kes bagi ASP 
dijalankan. Keputusan eksperimen menunjukkan algoritma-algoritma berasaskan 
pelbagai keadaan yang baru diperkenalkan ini mempunyai potensi yang baik jika 
dibandingkan kepada BPSO dan BGSA untuk TSP dan secara konsistennya mengatasi 
SA, GA, dan BPSO untuk ASP dalam menemui solusi-solusi yang optimal. 
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CHAPTERl 

INTRODUCTION 

1.1 Background 

Combinatorial or discrete optimization is well-known in various areas such as 

computer science, computational intelligence, electronic commerce, assembly of products, 

and applied mathematics. All the problems that exisi in this field, when abstracted 

mathematically have a commonality of discreteness (Du & Pardalos, 2005). Typically, the 

goal of a combinatorial optimization algorithm is to identify a solution that minimizes or 

maximizes a given objective function among a discrete set of feasible solutions satisfying 

certain conditions. For instance, one can find an answer for a question as "what is the 

minimal total length for visiting each vertice exactly once for a particular instance of the 

Travelling salesman problem?" This kind of problem has commonly a set of input 

parameters. The nature of this problem is there is a set of vertices and a set of weighted 

edges that offer information of two connected vertices along with its cost. 

Generally, a combinatorial optimization problem can be represented using these 

three elements (Z, O.,f). The definition of the elements are: 

1. Z is the search space for a finite set of variables X = { x1, ... , Xn}. Discrete domain 

variables E1, .. . , En are commonly used to solve this type of problems. 

Concurrently, continuous domain variables are used in solving continuous 

optimization problem. There are problems that combine these two domain 

variables as well. 

2. n is a group of constraints that is included in variables. 



3. f: z~1R+ is the objective function that appoints a real value to each solution of Z. 

The goal of an optimization algorithm is to investigate a solution s E Z where f(z) ~f(z'), 

V z' EZ for the case of minimization of the objective function, orj(z) ?..f(z'), V zEZ for the 

case of maximization of the objective function. 

In the context of the combinatorial optimization problem, all possible feasible 

tasks are formulated as Z = {s = {(x1, q1), ... ,(xn, qn)}lqi EEi}. Since s satisfied all the 

constraints, the group that constitutes with the feasible tasks can be now defined as a 

potential solution. The most typical constraint is a value cannot be used more than once 

in representing each solution. For example, two or more variables may not have same 

value. These problems are usually NP-Hard (nondeterministic polynomial-time hard). In 

addition, numerous substantial combinatorial optimization problem showed that the 

problem are somewhat as the most complex problems in NP. Often, NP-Hard problem 

cannot be solved in polynomial time. The computational time increases exponentially 

with regard to the number of, inputs. In contrast, any1 problem that can be solved in 

polynomial time is in P class (polynomial time). 

Methods of solving combinatorial optimization problem can be categorized into 

these two categories; complete or approximate (Blum & Roli, 2003). Using complete 

algorithms, the finding of the best solution for each instance can be guaranteed in the 

certain limited time (Papadimitriou & Steiglitz, 1998 and Watkins, 1990). As mentioned 

earlier, there is no polynomial time algorithm exists for combinatorial optimization 

problems that are NP-hard (Garey & Johnson, 1979). The case can be critically bad 

because complete methods naturally consume a lot of time. As such, this characteristic 

causes the methods to be incapable when dealing with a great number of real-life 

applications. As a consequence, many researchers shift their direction to other methods 

associated with approximate algorithms to handle NP-hard combinatorial optimization 

problems. These algorithms arguably can reduce the cost of times. However, the drawback 

is the best solutions cannot be assured to be found (Blum & Roli, 2003 and Taibi, 2009). 

These approximate algorithms can be categorized into three subclasses; constructive, 

iterative improvement heuristics and meta-heuristics (Blum & Roli, 2003). The term 

heuristic is derived from the Greek words "heuriskein" that means "discover" or "find". 

Heuristics able to provide sufficient solution even on big size of problem instances. This 



means regardless of the size of the optimization problems, the algorithms still able to offer 

good solution and agreeable costs. "Meta" is also one of the Greek words that is translated 

as "in upper level". Meta-heuristics can be described as a higher level of general 

methodology that offers guidance with regard to the heuristic search to solve numerous 

optimization problems. However, meta-heuristics need significant problem specific 

adaptation to attain good performance (Sorensen & Glover, 2013). 

Constructive heuristics produces a solution faster than iterative improvement 

heuristics and meta-heuristics. However, the solution is worse compared with the iterative 

improvement heuristics and meta-heuristics in most cases (Taibi, 2009) and this subclass 

of heuristics applicable to solve just a particular problem. Iterative improvement heuristics 

is often very fast and able to provide solutions of inferior quality but this subclass of 

heuristics also applicable to solve just a particular problem. Meanwhile, meta-heuristics 

can solve almost all optimization problems (Blum & Roli, 2003 and Taibi, 2009). Some 

of those meta-heuristics are random Multi-start Local Search (MLS) (Papadimitriou & 

Steiglitz, 1998 and Reiter & Rice, 1966), Genetic Algorithms (GA) (Holland, 1962 and 

Wen et al., 2011), Simulated Annealing (SA) (Kalashnikov & Kostenko, 2008), Tabu 

Search (TS) (Porto & Ribeiro, 1994), Ant Colony Optimization (ACO) (Tumeo et al., 

2008), Artificial Immune System (Yu, 2008), Particle Swarm Optimization (Kennedy & 

Eberhart, 1995), Variable Neighbourhood Search (VNS) (Mladenovic & Hansen, 1997), 

and Gravitational Search Algorithm (Rashedi et al., 2009a). 

1.2 Problem Statement 

Discrete search space is commonly used in discrete combinatorial optimization 

problems. Sequencing and routing problems are two common problems that set their 

space in discrete. In these two problems, the certain arrangement of discrete components 

are needed to ultimately produce the best sequence or solution. To solve the discrete 

optimization problems, binary encoding optimization algorithms and continuous 

optimization algorithms were used. Binary encoding optimization algorithms were 

operated in binary search space. Several well-known binary encoding algorithms are 

Genetic Algorithm (Goldberg, 1989), Ant Colony Optimization (Dorigo et al., 1996), 

Mosquito Host-Seeking (Feng et al., 2013), Japanese Tree Frogs (Hernandez & Blum, 



2012), River Formation Dynamic (Basalo et al., 2007), and Intelligent Water Drop 

(Hosseini, 2009). As discrete optimization problem can be expressed in binary notation, 

many binary optimization algorithms were proposed based on the existing continuous 

optimization algorithms using activation functions. Those binary optimization algorithms 

include, but are not restricted to, Binary Particle Swarm Optimization (BPSO) (Kennedy 

& Eberhart, 1997), Binary Gravitational Search Aigorithm (BGSA) (Rashedi et al., 

2009b), and Binary Bat Algorithm (BBA) (Mirjalili et al., 2013). Meanwhile, there were 

continuous optimization algorithms that used such as a trigonometric function (Pampara, 

Franken, & Engelbrecht, 2005, Pampara et al., 2006), smallest position value (Tasgetiren, 

Evkli, Liang, & Gencyilmaz; Ucar & Tasgetiren, 2006; Yousif et al., 2011; and Verma & 

Kumar, 2012), modified position equation (Tasgetiren, Suganthan, & Pan, 2007 and Pan 

et al., 2008), nearest integer (Burnwal & Deb, 2012), random key (Baykasoglu, Ozbakir, 

& Tapkan, 2007; Lin et al., 2010; Chen et al., 2011; Xiangyang et al., 2011; Balasz et al., 

2012 and Fister et al., 2012), great value priority (Congying, Huanping, & Xinfeng, 2011), 

and set-based (Wei-Neng et al., 2010). 

The motivation of this research is to extend the previous work to solve some 

combinatorial optimization problems (COPs) in discrete space using an alternative 

representation based on the transition between two states; current and next state. In 

synchronous sequential logic of digital circuit, particularly in triggering the flip-flop, the 

transition between two states can be found where the information of the current or present 

state is used to determine the next state. It is worth pointing out that in the flip-flop, one 

or more candidate states that can be called multi-state are available to be selected as the 

next state. This shows that the behaviour of states are quite similar compared with 

positions in PSO and GSA, where these two algorithms have the feature of current and 

next position. This alternative representation differs from the previous works which 

employed real numbers and binary digits to represent their positions. Any optimization 

algorithms associated with the new representation should be able to follow the general 

proc.edure of the respective continuous optimization algorithms to search solutions. 



1.3 Objectives of Research 

This research operates by the guidance of the following objectives: 

1. To develop a new discretization approach ass~ciated with the multi-state model 

based on general principle of PSO and GSA called the multi-state PSO (MSPSO) 

and the multi-state GSA (MSGSA) that share same features; position and velocity. 

2. To extend and improve the developed algorithms through design modification or 

rule called the multi-state PSO with embedded rule (MSPSOER) and the multi­

state GSA with embedded rule (MSGSAER). 

3. To investigate the application of the multi-state optimization algorithms to solve 

two discrete COPs namely travelling salesman problem (TSP) and assembly 

sequence planning problem (ASP). 

1.4 Scope of the Study 

The scope of this work includes the following: 

1. This research focuses on the establishment of a new approach based on transition 

between two states that is used to allow continuous optimization algorithms to be 

operated in discrete space. 

2. This research proposes new variants of PSO arid GSA that employ the respective 

mechanism of state transition as next state generator of each solution. It is 

assumed to be more computationally efficient than Binary PSO (BPSO) as these 

algorithms avoids evolving a high-dimensional bit vector. PSO and GSA are 

chosen because these two algorithms are relatively the most popular optimization 

algorithms used to solve discrete COPs. 

3. In this research, the developed algorithms applications are extended to travelling 

salesman problem (TSP) and assembly sequence planning problem (ASP), which 

are two of discrete COPs. Since just these two problems are considered in this 

research, the developed algorithms are designed to solve problems with single 

objective only, but not multi-objective. 



4. The performance of the develop algorithms are heavily compared with Binary 

PSO (BPSO) and Binary GSA (BGSA). To design BPSO and BGSA, most 

researchers employ activation functions that allow PSO and GSA to be operated 

in binary space. This· approach is selected from the rest because it is a common 

approach used to solve discrete COPs. 

1.5 Significance of the Study 

The contributions of this thesis with regard to the discretization approach and 

performance measures for the developed algorithms namely the MSPSO, the MSPSOER, 

the MSGSA, and the MSGSAER are: 

1. A new mechanism based on transition between two states; current and next state 

is introduced. Each next state that constitutes in each dimension of a solution is 

selected according to its velocity. A velocity is c\efined as a radius that produces 

a circle, that is, each state exists in the circle can be selected as the next state. The 

circle covers many states according to the different number of dimension of each 

solution. In this research, the term multi-state is used to show that one or more 

candidate states are available to be selected as the next state. With regard to this 

mechanism, four algorithms have been successfully developed, namely the 

MSPSO, the MSPSOER, the MSGSA, and the MSGSAER to solve discrete 

COPs. 

2. A comprehensive overview of performance measures that currently used to 

measure the performan?e of the MSPSO, the MSPSOER, the MSGSA and the 

MSGSAER, compared with BPSO and BGSA to solve TSP, and BPSO, GA, and 

SA to solve ASP. 

1.6 Thesis Outlines 

This thesis consists of five chapters. Chapter 1 embarks with the presentation of 

research background, problem statement, objectives of research, scope, significance of 

the study, and organization of chapters. 



Chapter 2 starts with an explanation of the basic concepts of meta-heuristics, 

followed by a brief discussion of the type of optimization problems. Discrete COPs are 

then presented, including a discussion of the numerous published to the discretization 

approaches. This is followed by a description of the PSO, the GSA, the BPSO, and the 

BGSA. Two problem domains used in this research are then elaborated; TSP and ASP. 

Next, the research methodology that shows the overvi"ew of this research is presented. 

Chapter 3 explains the representation mechanism designed to allow the 

continuous PSO and the continuous GSA to be operated in discrete space. With regard to 

the representation, four algorithms have been proposed. The algorithms called the 

MSPSO, the MSPSOER, the MSGSA, and the MSGSAER are specifically developed to 

deal with discrete problems as in TSP and ASP. Next, the research methodology to show 

the overview of how this research is conducted is presented. 

In Chapter 4, optimization results of the proposed algorithms (i.e. the MSPSO, the 

MSPSOER, the MSGSA, and the MSGSAER) in solving TSP are compared with results 

produced by their binary variant (i.e. the BPSO and the BGSA). Following that, 

optimization results in solving ASP using the proposed algorithms are compared with the 

results presented in the literature. To analyse between the results produced by the 

algorithms, statistical analysis is then performed in order to see if there are significance 

differences between algorithms and tuning parameters. 

Chapter 5 discusses and concludes the contribution of the research findings to the 

knowledge. Finally, this chapter discusses the recommendations of the future direction of 

the research. 



CHAPTER2 

LITERATURE REVIEW 

2.1 Introduction 

This chapter provides a brief overview of optimization algorithms. This is 

followed by a brief discussion of the type of optimization problems. Discrete COPs are 

then discussed in details. Next explanation of a swarm;based algorithm and a physics 

based algorithm, which are PSO and GSA is offered respectively, followed by a brief 

description of two significant selected problem domains which are TSP and ASP. As 

aforementioned, these two problems fall into the category of discrete COPs. 

2.2 Optimization Algorithms 

During past decades, many optimization algorithms have been recorded to be 

provenly effective for a broad n~nge of discrete COPs arising in economic studies, applied 

mathematics, management studies, engineering, and science (Papadimitriou & Steiglitz, 

1998; Du & Pardalos, 2005 and Taibi, 2009). Various discrete COPs are known to be NP­

hard. To solve the discrete COPs, consumption of calculation time increases 

proportionally to bigger size of instance. (Papadimitriou & Steiglitz, 1998). In general, 

the discrete COPs may be solved by complete algorithms or·approximate algorithms. 

Complete algorithms obtain optimal solutions and guarantee their optimality. 

Furthermore, the complete algorithms are non-polynomial time algorithms (unless P = 

NP), by what the complete algorithms suffer with the time complexity that increase 

exponentially. A traditional type of complete algorithms namely dynamic programming 



(Bellman, 1952), branch & cut (Mitchell, 2002), branch & bound (Land & Doig, 1960) 

and branch & price algorithm (Barnhart et al., 1998) modelled for operation research, a 

heuristic determination of minimum cost paths (Hart, Nilsson, & Raphael, 1968) and 

constraint programming (Rossi, Beek, & Walsh, 2006) modelled to be used in algorithms 

that able to find acceptable solutions and assure their optimality for each size of discrete 

COPs instance in a limited run-time. Meanwhile, approximate algorithms generate 

reasonably good solutions in a reasonable time for use in practical, but there is no 

guarantee of finding a global optimal solution. A lot of approximate algorithms employ 

random feature to produce feasible solutions. Approximate algorithms also manage to 

obtain many candidate solution iteratively without hardly searching all candidate 

solutions. In other words, this approach allows the approximate algorithms to search 

many good solutions for bigger size of problem instances in a reasonable amount of time. 

Approximate algorithms generally can be grouped into three; constructive, 

iterative improvement heuristics and meta-heuristics (Balaprakash, Birattari, Stiltzle, & 

Dori go, 2010). The constructive heuristics present a great extent of appropriateness in 

discrete COPs. They are somewhat quicker than iterative improvement heuristics and 

meta-heuristics. The strategy is the constructive heuristics generate solutions initially 

from scratch by adding to an initially empty partial solution components, until a solution 

is complete. The primary shortcoming is extremely depicted in the solution capacity they 

produced. It seems that the capacity of the produced solution is below par compared to 

the iterative improvement heuristics and meta-heuristics in most cases (Taibi, 2009). 

Concerning this, it is advisable to use the constructive heuristics to produce initial 

solutions for other algorithms for solving discrete COPs, but not as a standalone 

algorithm. Previous studies recorded various constructing heuristics that include the 

Nearest Neighbour heuristic (Rosenkrantz, Stearns, & Lewis, 2009), Construct-Strike 

heuristic (Christofides, 1973), Path-Scanning heuristic (Golden, Dearmon, & Baker, 1983; 

Evans & Minieka, 1992), Augment-Merge heuristic (Golden & Wong, 1981; Golden et 

al., 1983), Ulusoy's Route-First Cluster-Second Method heuristic (Ulusoy, 1985), 

Parallel-Insert heuristic (Chapleau, Ferland, Lapalme, & Rousseau, 1984), Modified­

Construct-Strike heuristic (Pearn, 1989), Modified Path Scanning heuristic (Wohlk, 

2005), Double Outer Scan heuristic (Wohlk, 2005), Node Duplication heuristic (Wohlk, 

2005), Ellipse rule heuristic (Santos, Coutinho-Rodrigues, & Current, 2009), and 



Improved Tour Splitting heuristic (Prins, Labadi, & Reghioui, 2009) for solving discrete 

COPs. 

Contrary to constructive heuristics, iterative improvement heuristics that also 

referred to hill climbing procedures (in the case of maximization problems) embark from 
. 

an existing initial solution and make an effort to enhance their performance using a 

specific operation until a better neighbourhood solution is found, for example, a local 

search. The framework of neighbourhood is so vital in the efficiency of any iterative 

improvement heuristic. The selection of the neighbourhood framework follows the 

condition on the framework of a specific COPs. In other words, each COP possesses its 

own neighbourhood framework. The neighbourhood solution x' in each COP is generally 

procured by involving an interchange operation of some elements in a current solution. A 

function N: X ~2x for each solution x E Xis set, where Xis search space of solution that 

is also a set of neighbourhood solution N(x) c X. As discussed earlier, the fundamental 

of iterative heuristics put faith in the searching operation of all available neighbourhood 

solutions with regard to the current solution x. The searching operation ends when the 

best neighbourhood solution x' is successfully obtained. The characteristic of the best 

neighbourhood solution which normally called local optima is the solution that is better 

than the current solution x. This happens because the iterative improvement heuristics is 

only assured to be better than its neighbourhood. Examples of such iterative improvement 

heuristics are Neighbourhoods Pruning Technique (Bentley, 1992; Johnson & McGeoch, 

1997 and Congram et al., 2002), and Variable Neighbourhood Descent (Hansen & 

Mladenovic, 2001 and Hansen & Mladenovic, 2002). 

Meta-heuristics are typical algorithmic structures that are inspired by nature, 

biology, statistical mechanics, physics, and neuroscience, to name but a few. For 

example; PSO emulates the natural behaviour of the flocking of birds while searching for 

the food. To describe the meta-heuristics in a complete sentence, a definition taken from 

(Osman & Kelly, 1996) can be digested: 

"A meta-heuristic is an iterative generation process which guides a subordinate 

heuristic by combining intelligently different concepts for exploring and 

exploiting the search space, learning strategies are used to structure information 

in order to find efficiently near-optimal solution" 



Conceptually, a meta-heuristic refers to the high-level guidance strategy that 

drives other heuristics to find solutions beyond those that are typically produced in a 

search for local optimal solutions. The dynamic balance between the exploration and 

exploitation mechanism of tlie searching ability in predefined search space is a main 

character of meta-heuristics. The word of exploration can be defined as the capacity of an 

algorithm to search the solutions in the predefined search space, while the term of 

exploitation can be defined as the capacity of an algorithm to exploit the assembled search 

observation (Blum& Roli, 2003). Meta-heuristics mainly include SA (Kalashnikov & 

Kostenko, 2008), GA (Goldberg, 1989), PSO (Kennedy & Eberhart, 1995), Bee Colony 

Algorithm (BCO) (Karaboga, 2005), and TS (Porto & Ribeiro, 1994). 

Generally, meta-heuristics do not possess any particular standard to halt the 

searching operation of optimization algorithms. On the other hand, the constructive 

heuristics just ends the searching operation when a full solution is generated. Meanwhile, 

the iterative improvement heuristics ends the searching operation when a local optimum 

is successfully found. 

2.3 Type of Optimization Problems 

An optimization problem can be mathematically described in various manners, 

relying on the fundamental application. Such function, f A-Y is normally described 

throughout a domain A which is popularly recognized as the search space, and with range, 

Y, that informs all associating relations throughout Y based on the optimization given. 

The field of optimization can be some_what divided with regard to the form of the 

objective function, the nature of the search space, and the nature of the problem. An easy 

class is provided and summarized in Figure 2.1. Various well-being and significant fields, 

with reference to the form of the objective function are: 

1. Linear optimization (linear programming): Conditions in which the objective 

function and constraints are linear are investigated. 
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2. Nonlinear optimization (nonlinear programming): Conditions in which at least 

one nonlinear function is incorporated in the optimization problem are 

investigated. 

3. Linear optimization (linear programming): Conditions in which the objective 

function and constraints are linear are investigated. 

4. Nonlinear optimization (nonlinear programming): Conditions in which at least 

one nonlinear function is incorporated in the optimization problem are 

investigated. 

5. Quadratic optimization (quadratic programming): It minimizes quadratic 

objective functions and linear constraints. 

6. Convex optimization: Problems associated with convex objective functions and 

convex feasible sets are investigated. 

7. Stochastic optimization: It concerns to minimization m the existence of 

randomness, in which presented in two ways; variables and parameters of 



problems are probabilistically selected, and noise produced from the evaluation 

of function, with regard to the distributions statistically. 

There is a large number of wide-ranging works on the previously specified optimization 

problems. Several of the most extensively-utilized resources are (Luenberger, 1989; Torn 

& Zilinskas, 1989; Horst & Pardalos, 1995; Polak, 1997; Nocedal& Wright, 1999; 

Zhigljavsky &Zhilinskas, 2002 and Horst & Tuy, 2003). 

Normally, optimization problems are designed with an objective function that 

stays unchanged over time. In real-world, various engineering problems are designed one 

or a set of static or time-varying objective functions that require to be concurrently 

optimized. Effect of the scenario is the emergence of the coming significant optimization 

fields (Chiang, 1992; Deb, 2001; Branke, 2002 and Ehrgott & Gandibleux, 2002): 

1. Dynamic optimization: This type of optimization field concerns on the 

minimization of time-varying objective functions: The first objective is to find the 

position of the global optimizer subsequently the global optimizer moves in the 

search space. The second objective is to contribute robust solutions. If an 

improvement in a small change occurred in the objective function, solutions are 

produced in inexpensive costs of times. 

2. Multi-objective optimization (multiple criteria optimization): Two or more 

objective functions of problems are required to be minimized or maximized at the 

same time. When dealing with this type of problems, the optimality of solutions 

is redefined as global minima of variant objective functions are hardly ever 

accomplished at the similar minimizers. 

A diversity of optimizations can be also constructed based on the nature of 

problem variables and the search space as well (Floudas, 1995 and Boros & Hammer, 

2003): 

I. Continuous optimization: All variables used in a particular objective function 

expect in the form of real values. 



2. Discrete optimization: In these problems, an assumption should be made where 

all variables used in a particular objective function are in discrete. Integer 

variables that are also discrete are belong to integer optimization. 

3. Mixed integer optimization: Two types of variables, namely integer and real 

variables occur in the representation of objective function. 

There is an overabundance of methods that designed to easily solve the problems 

in majority of the aforesaid categories. Nonetheless, most of these methods are 

constructed using solid mathematical presumptions that do not fit in many applications. 

For instance, there are many efficient deterministic algorithms are designed for handling 

nonlinear optimization problems; but at the same time the algorithms need to hold some 

features namely convexity or differentiability of the objective function. Unfortunately, 

these features are not met in various significant applications. In addition, there is objective 

function of some problems which is not even analytically established, with its values 

being obtained through complex computer software or assessments yielding from 

observation equipment. 

2.4 Discrete Combinatorial Optimization Problems 

Various optimization problems are designated in a continuous space. To cope with 

these problems, meta-heuristics are represented in continuous encoding. Examples of the 

continuous meta-heuristics are SA (Kirkpatrick et al., 1983), Tabu Se~rch (Glover, 1986), 

Guided Local Search (GLS) (Voudouris & Tsang, 1999 and Voudouris et al., 2010), 

Greedy Randomized Adaptive §earch Procedure (GRASP) (Feo & Resende, 1995), 

Variable Neighbourhood Search (Mladenovic & Hansen, 1997), Particle Swarm 

Optimization (PSO) (Kennedy & Eberhart, 1995), Gravitational Search Algorithm (GSA) 

(Rashedi, Nezamabadi-pour, & Saryazdi, 2009a), Differential Evolution (DE) 

(Fleetwood, 1999), Bee Colony Optimization (BCO) (Karaboga, 2005), Cuckoo Search 

(CS) (Yang & Deb, 2009), Bat Algorithm (BA) (Yang, 2013), Harmony Search (HS) 

(Yang, 2009), Bacterial Evolutionary Algorithm (BEA) (Nawa & Furuhashi, 1999), Fish 

Swarm Optimization (FSO) (Li, Shao, & Qian, 2002), and Firefly Algorithm (FA) (Yang, 

2008). 



Although the continuous meta-heuristics are continuous by nature, some of these 

algorithms are adapted to deal with discrete domain problems. In the continuous domain, 

the elements have the property of varying smoothly, while the elements of a discrete 

domain (i.e. integers or binafy digits) tolerate only distinct and separated values. The 

discrete domain is distinguished by handling countable sets, either finite or infinite. Two 

examples of discrete domain problems are binary and combinatorial applications. These 

two examples involve problems that need the ordering or arranging of discrete elements, 

such as scheduling and routing problems. 

There are some of algorithms that are created specifically to handle discrete 

problems using the binary codification, namely Genetic Algorithm (GA) (Goldberg, 

1989), Ant Colony Optimization (ACO) (Dorigo, Maniezzo, & Colorni, 1996), Mosquito 

Host-Seeking Algorithm (Feng, Lau, & Yu, 2013), the Calling Behaviour of Japanese 

Tree Frogs Algorithm (Hernandez & Blum, 2012), the River Formation Dynamics 

Algorithm (Basalo, Laguna, & Rubio Diez, 2007), and the Intelligent Water Drops 

Algorithm (Hosseini, 2009). Swarm algorithms that use the binary codification are 

adapted to discrete domain since its beginning (i.e., initial swarm). Other than the binary­

encoded algorithms, a variety of the discretization approaches are used to adjust the 

continuous formulated algorithms to discrete optimization problems (Krause, Cordeiro, 

Parpinelli, & Lopes, 2013). The methods that consist of the binary-encoded algorithms 

and the continuous algorithms that make use of various discretization approaches to solve 

discrete COPs are portrayed in Figure 2.2. These discretization approaches namely 

activation function, smallest position value, modified position equation, random-key, 

great value priority, nearest integer, set-based, and trigonometric function are then shown 

in Figure 2.3. 

2.41 Discretization Approaches 

Discretization approaches offer a significant aid to transform continuous space to 

discrete space. There are a few discretization approaches, and the primary are presented in 

this sub-section, namely activation function, smallest position value, modified position 

equation, nearest integer, great value priority, angle modulated, random-key, and set­

based. 



l 
Binary encoding algorithms 

• Genetic Algorithm (GA) (Goldberg, 1989) 
• Ant Colony Algorithm (ACO) (Dorigo et al., 1996) 
• Mosquito Host-Seeking (MHS) (Feng et al., 2013) 
• Japanese Tree Frogs (JTF) (Hernandez and Blum, 2012) 
• River Formation Dynamic (RFD) (Basalo et al., 2007) 
• Intelligent Water Drop (IWD) Hosseini, 2009) 

Fif!Ure 2.2. Methods to solve discrete COPs. 

Methods to solve 
discrete COPs 

I 

1 
Continuous algorithms 

• Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1997) 
• Bee Colony Optimization (BCO) (Karaboga, 2005) 
• Bat Algorithm (BA) (Yang, 2013) 
• Cuckoo Search (CS) (Yang and Deb, 2009) 
• Differential Evolution (DE) Fleetwood, 1999) 
• Gravitational Search Algorithm (GSA) (Rashedi et al., 2009a) 
• Harmony Search (HS) (Yang, 2009) 
• Simulated Annealing (SA) (Kirkpatrick et al., 1983) 
• Bacterial Evolutionary Algorithm (BEA) (Nawa and Furuhashi, 1999) 
• Fish Swarm Optimization (FSO) (Li et al., 2002) 
• Firefly Algorithm (FA) Yang, 2008) 

Discretization approaches 

5. Activation function 1. Great value priority 
6. Smallest position 2. Nearest integer 
7. Modified position equation 3. Set-based 
8. Random-key 4. Trigonometric function 



Discretization 
approaches 

I 

i 
Activation function Smallest position value Great value priority 

I~ 1--ti> Congying et al., 2011 • Tasgetirenet al., 2004 • 
S-shape • Ucar & Tasgetiren, 2006 

• Yousif et al., 2005 
• Kennedy & Eberhart, • Banati & Bajaj, 2011 • Verma & Kumar, 2012 • Trigonometric function 

1997; '. Palit et al., 2011 
~ • Benatchba et al., 2005 • Falcon et al., 2011 • Pampara et al., 2005 

• Hembecker et al .• 2007 • Gherboudj et al., 2012 • Pamparaet al., 2006 
• Banerjee et al., 2008 • Nakamura et al., 2012 Modified position 
• Deep & Bansal, 2008; • Shen et al., 2012 equation Random-key • Wong et al, 2008 • Davidovic et al., 2012 ~ 

• Pulikanti & Singh, 2009 • Tasgetirenetal., 2007 
Baykasoglu et al., 2007 • 

• Wan & Nolle, 2009 • Pan et al., 2008 • • Chen et al., 2011 
• Banhamsal"Ull et al., 2010 ~ • Halasz et al., 2012 

Nearest integer 
I+- • Fister et al., 2012 

• Lin et al., 2010 

V-shape • Wei & Hanning, 2007 
Xiangyang et al., 2011 • 

• Rashedi et al. 2009b 

• Papa et al., 2011 Set-based 
• Mirjalili et al., 2013 ~ 

• Wei Neng et al., 2010 

Fimre 2.3. Previous studies for different discretization aooroaches. 



1. Activation function: The activation function is needed to change a continuous 

space value into a binary one. This discretization approach is very common (Banati 

& Bajaj, 2011 and Palit et al., 2011) and the transformation is assigned to each 

dimension of the sofotion vector. As a consequence, each element is formed by 

binary digit. For instance, activation function that is used in the PSO algorithm 

(Kennedy and Eberhart, 1997) define the probability of changing position vector's 

element from "O"and "1" and vice versa. The activation function forces particles 

to move in a binary space. Two common functions used are S-shape function and 

V-shape function. There are several optimization algorithms that uses the S-shape 

function, such as (Kenneddy & Eberhart, 1997; Benatchba et al., 2005; Hembecker 

et al., 2007; Banerjee et al., 2008; Deep & Bansal, 2008; Wong et al., 2008; 

Pulikanti & Singh, 2009; Wan& Nolle, 2009; Banharnsakun et al., 2010; Banati & 

Bajaj, 2011; Palit et al., 2011; Falcon et al., 2011; Nakamura et al., 2012; Shen et 

al., 2012; Davidovic et al., 2012 and Gherboudj, Layeb, & Chikhi, 2012). On the 

other hand, some optimization algorithms use the V-shape function, namely 

(Rashedi, Nezamabadi-pour, & Sayyazdi, 2009b;; Papa et al., 2011; Mirjalili et al., 

2013). 

2. Smallest position value: The smallest position value approach plots the positions 

of the solution vector by putting the index of the smallest valued component as 

the first element on a permutated solution, the second smallest as the second, and 

so on. As a result, an integer vector solution is successfully created by indexing 

the position of all the particles (Tasgetiren, Evkli, Liang, & Gencyilmaz, 2004; 

Ucar & Tasgetiren, 2006; Yousif et al., 2011 and Verma & Kumar, 2012). 

3. Modified position equation: Up-to-date, the modified position equation approach 

are solely used in the PSO algorithm (Tasgetiren, Suganthan, & Pan, 2007 and 

Pan et al., 2008). This method generates a uniform random number in the range 

[O, 1] and, if the value is smaller than inertia weight, the mutation operator is then 

applied to produce a perturbed permutation of the particle; otherwise current 

permutation is preserved. 

4. Random-key: The random-key encoding approach is used to transform a position 

to an integer or combinatorial space from a continuous space. To interpret the 

position, the points are inspected in ascending order for each dimension. Those 

algorithms that are employed this method are (Baykasoglu, Ozbakir, & Tapkan, 



2007; Lin et al., 2010; Chen et al., 2011; Xiangyang et al., 2011; Balasz et al., 

2012 and Fister et al., 2012). 

5. Great value priority: The great value priority scheme is used to transform a 

continuous space into a binary one (Congying, Huanping, & Xinfeng, 2011). The 

position of the solution vector with the biggest element is firstly chosen. This 

position is put on the first position of a new vector called as permutation vector. 

The position of the second biggest element of the solution vector is then chosen 

and set in the next position of permutation vector. This process is repeated 

consecutively for all dimensions of the solution vector and, once the permutation 

vector is completed, the first and the second dimension of the permutation vector 

is then compared. If the value of the first dimension of the permutation vector is 

bigger than the value of the second dimension, the solution vector is set to 1, 

otherwise the solution vector is set to 0. This process is repeated to the second and 

the third dimension, the third and the fourth dimension, and so on. 

6. Nearest integer: This approach converts a real value to the nearest integer either 

by rounding or trimming up or down (Burnwal & Deb, 2012). 

7. Set based:.A set-based PSO (S-PSO) approach is invented to spread the capability 

of PSO to handle various optimization problems in space featuring discrete (Wei­

Neng et al., 2010) without using real-value and binary notation. With regard to the 

concept of sets and the possibility theory, S-PSO possesses two unique attributes. 

A set-based representation scheme is firstly modelled to distinguish the discrete 

search space as a universal set of components. Next, each possible solution in S­

PSO correlates to a crisp subset out of the universal set: In the S-PSO, each 

component of a velocity is appointed with a possibility. The operators and 

procedures that defined· on crisp sets and sets with possibilities are employed to 

modify associated arithmetic operators used in the formulation of velocity and 

position as recorded in the canonical PSO. The attributes facilitate S-PSO to 

comply with the framework of the canonical PSO to find solutions in a predefined 

discrete space. 

8. Trigonometric function: The trigonometric function is firstly introduced by 

Pampara, Franken, and Engelbrecht (2005) called angle modulated PSO. In this 

scheme, the PSO algorithm is used to find the optimal coefficients of a 

trigonometric bit generating function using four coefficients, namely a, b, c, and 

d which use to control the form of the function. Coefficient a controls the 



horizontal shift of the whole function. Meanwhile, coefficient b affects the 

frequency of the sin wave and controls the amplitude of the cos wave as well. 

Coefficient c and d affects the frequency of the cos wave and controls the vertical 

shift of the whole tunction respectively. To generate binary solutions, the 

generating function goes through sampling process at particular intervals in which 
. 

the length of the required binary solution is the value of last interval. One more 

algorithm that employs this scheme is angle modulated differential evolution (DE) 

(Pampara, Engelbrecht, & Franken, 2006). 

2.5 Particle Swarm Optimization (PSO) 

2.5.1 PSO Background 

Particle Swarm Optimization (PSO) is a population-based stochastic algorithms 
I 

used to search solutions that are optimal (or near optimal) for optimization problems. Such 

algorithm that easily used (a few lines of code is just necesssary to write the code of this 

algorithm) can be awarded as a remarkable, virtuous and fast algorithm for different 

optimization problems. 

Particle swarm optimization (PSO) algorithm is an optimization algorithm 

proposed by Kennedy and Eberhart (1995). It imitate~ swarms behavior as shown by a 

flock of bird and a swarm of fishes to search an optimal solution subjected to an objective 

function. This original PSO is predominantly utilized to discover solutions for continuous 

optimization problems. 

2.5.2 Original PSO Algorithm 

In the original PSO algorithm, an optimal or good enough solution is found by 

simulating social behaviour of bird flocking. The PSO algorithm consists of a group of 

individuals named particles which encode the possible solutions to the optimization 

problem using their positions. The group can attain the solution effectively by using the 

common information of the group and the information owned by the particle itself, which 



each particle share its current position to neighbouring particles. Using this information, 

each particle compares its current position with the best position found by its neighbours 

so far. 

Optimization encompasses both minimization and maximization problems. Any 

maximization problem can be converted into a minimization problem by taking the 

negative of the objective function, and vice versa. Figure 2.4 portrays the pseudocode of 

the PSO algorithm. Consider the following optimization problem: there are /-particles 

flying around in a D-dimensional search space, where their position, s;(d) (i = 1,2, ... ,J; d 

= 1,2, ... ,D), represent the possible solutions and d represents the dimension number. First, 

all particles are randomly positioned in the search space, and then designated with 

velocity vlk,d) = 0, where k represents the iteration number. Next, the objective fitness 

F;(k), for each particle is evaluated by calculating the objective functions with respect to 

S;(k). Each particle's best position is pbesti(k) then initialized to its current position. The 

global best among the all pbest/k) is called gbest(k), is chosen as the swarm's best 
1 

position. For minimization problem, gbest(k) is given as in Eq. (2.1 ). Meanwhile, for 

maximization problem, gbest((k) is given as in Eq. (2.2). In these two equations, Sis the 

swarm of particles. Subsequently, the algorithm run until the stopping criteria is met, 

either a predefined acceptable amount of error is reached or the maximum number of 

iteration is used up. 

gbest = {pbesti E Slf(pbest) = minf(Vpbesti E SJ} (2.1) 

1: procedure PSO 
2: Initialize particles with random positions and velocities. 
3: Set particles' pbest to their current positions. 
4: Calculate particles' fitness and set gbest. 
5: for T generations do 
6: Update particles' velocities. 
7: Update particles' positions. 
8: Recalculate particles' fitness. 
9: Update particles' pbest and gbest. 
10: end for 
11 :end procedure PSO 

Figure 2.4. PSO algorithm. 



gbest = {pbesti E S[f(pbestJ = maxf(Vpbesti Es)} (2.2) 

Each iteration updat~s each particle's velocity and position using Eq. (2.3) and 

Eq. (2.4), respectively, where c1 and c2 are the cognitive and social coefficients, 

respectively. ri and r1 are random number uniformly distributed between 0 and I, and m is 

called inertia weight, which used to control the impact of the previous history of velocities 

on the current velocity of each particle. After updating the velocity and position, Fi(k) for 

each particle is calculated again. pbest;(k) is then updated by a more optimal, obtained 

either from the new position of the ith particle or pbest.(k). The gbest((k) is also updated 
I 

by the most optimal pbesti(k) of all the particles, as denoted in Eq. (2.1) and Eq. (2.2). 

Finally, the best solution of the problem represented by gbest((k) is yielded when the 

stopping condition is met. 

v,{k+ I ,d) == wvi(k,d) + c1 r1 (pbest)(k,d) - si(k,d) 

+ c2r2(gbest(k,d) - si(k,d) 

2.5.3 Binary Particle Swarm Optimization (BPSO) Algorithm 

(2.3) 

(2.4) 

The original version of PSO algorithm is designed for search spaces of real valued 

vectors. A version of PSO algorithm for binary encoding is presented (Kennedy & 
' 

Eberhart, 1997) to solve many optimization problems that are set in binary discrete space. 

The BPSO algorithm preserves the fundamental concept of PSO algorithm except that 

each particle in a swarm consists of binary string representing a particle's position vector. 
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Figure 2. 5. Process of updating position in the BPSO algorithm. 

This algorithm uses the concept of velocity as a probability that a bit flips to one or zero. 

The velocity equation remains unchanged, except Eq. (2.4) is redefined to: 

{

1 if r3 :5 H(v,(k+l,d)), where H(v,(k+l,d)) = ~(k+JdJ 
1+ e- I 0 

s(k+ 1,d) = 

0 otherwise 

(2.5) 

where r3 is a random number uniformly distributed between 0 and 1, and H( v;(k+ l ,d) is 

a sigmoid function for transforming the velocity to be a probability value constrained to 

the interval [0.0, 1.0] that indicates the probability of the corresponding element of 

solution assuming the value 1. As a consequence, the particle's position now consists of 

the solution component, either 1 or 0, as shown in Figure 2.5. 

2.6 Gravitational Search Algorithm (GSA) 

2.6.1 GSA Background 

In year 2009, a stochastic population-based metaheuristic, called Gravitational 

Search Algorithm (GSA) has been introduced (Rashedi, Nezamabadi-pour, & Saryazdi, 

2009a) based on Newton's law of universal gravitation. This law indicates that all objects 

attract each other using a gravitational force. The first characteristic of the gravitational 



force between two objects is it directly proportional to the product of their masses. Heavier 

objects will attract each other with a bigger gravitational force.The second characteristic 

of the gravitational force is it inversely proportional to the distance between the two 

objects. The original version bf GSA was originally modelled to deal with problems in 

space featuring real valued vectors. 

2.6.2 Original GSA 

Figure 2.6 portrays the pseudocode of the GSA. The GSA starts with a set of 

agents, which are randomly positioned in the search space. Let a system with I agents 

(masses), the position of agents that represent possible solutions to the problem can be 

defined as sld) (i = 1,2, ... ,J; d = 1,2, ... ,D), where s;(d) is the position ofi1h agent in the 

cl11 dimension. All agents are then assigned with random velocity V;(k,d), where k 

represents the iteration number. Next, the objective fitness F;(k) for each agent is evaluated 

by calculating the objective function with respect to S;(k,d), where F;(k) represent the 

fitness value of the agent i at k. The gravitational constant G(k) is then updated based on 

Eq. (2.6). The gravitational constant is a decreasing function of time where it is set to G0 

at the beginning and is exponentially decreased towards zero at the last iteration to control 

the search accuracy. 

1: procedure GSA 
2: Initialize agents with random positions and velocities. 
3: Set agents to their current positions. 
4: Calculate agents' fitness and set best agent and worst agent 
5: for K generations do 
6: Update the G, best agent and worst agent. 
7: Evaluate mass. 
8: Evaluate force of mass. 
9: Evaluate acceleration of mass. 
10: Update agents' velocities. 
11: Update agents' positions. 
12: Recalculate agents' fitness. 
13: Update the G, best agent and worst agent. 
14: end for 
11 :end procedure GSA 

Figure 2.6. GSA. 



G(k) = G0e -14< (2.6) 

where K is the maximum number of iteration, G0 and f3 are constant value. 

Next, best(k) and worst(k) are calculated. For minimization problem, the definition 

of best (k) and worst (k) are given as in Eq. (2.7) and Eq. (2.8). 

best(k) = minJE{l, ... ,J}F;(k) (2.7) 

worst(k) = maxE{l, ... ,J}F;(k) (2.8) 

For a maximization problem, the definition of best(k) and worst(k) are changed to: 

best(k) = maxJE{l, ... ,J}F;(k) (2.9) 

worst(k) = minJE{l, ... ,J}F;(k) (2.10) 

The gravitational and inertial mass are then updated using following equations: 

k Fi(k)-worst(k) 
m;( ) = best(k)-worst(k) (2.11) 

(2.12) 



M;ik) is the inertial mass of ;th agent. The acceleration a. related to mass i ink and the cfh 

dimension is calculated as follows: 

. (k) - Fi( k,d) 
a, - Mu(k) (2.13) 

The total force F;(k,d) and the force acting on mass i from mass j F;j(k,d) are calculated 

as follows: 

F;(k,d) = L.}=l,J:l:l ran~· F;j(k,d) (2.14) 

Maj(k) 
F;j(k,d) = G(k) (k) ((s/k,d- s;(k,d)) 

Ry +c: 
(2.15) 

where M aJ is the active gravitational mass related to agent j, c: is a small constant, Ru is 

the Euclidean distance between agent i and j, and ran~· is a random number uniformly 

distributed [O, 1]. Subsequently, the algorithm run until the stopping criteria is met, either 

a predefined acceptable amount of error is reached or the maximum number of iteration 

is used up. 

v;(k+ l ,d) = randi x v;(k,d) + a;(k) (2.16) 

S;(k+ 1,d) = S;(k,d) + V;(k+ 1,d) (2.17) 

Each iteration updates each agent's velocity and position using Eq. (2.16) and Eq. 

(2.17), respectively, where rand; is random number uniformly distributed [O, 1]. After 

updating the velocity and position, F1(k) for each agent is calculated again. Consider a 

minimization problem, the best of the population is then updated by a more minimal, 

obtained either from the new position of the ;th agent or the current best. The worst of the 

Population is also updated by a more maximal, obtained either from the new position of 



the ;th particle or the current worst. Consider a maximization problem, the best of the 

population is then updated by a more maximal, obtained either from the new position of 

the ;th agent or the current best. The worst of the population is also updated by a more 

minimal, obtained either from the new position of the ;th particle or the current worst. 

Finally, the best solution of the problem represented by the best is yielded when the 

stopping condition is met. 

2.6.3 Binary Gravitational Search Algorithm (BGSA) 

The original version of GSA was designed for search spaces of real valued 

vectors. A version of GSA for binary encoding was presented (Rashedi et al., 2009b) to 

solve many optimization problems that are set in binary discrete space. The BGSA 

preserves the fundamental concept of the GSA except that each agent of a swarm consists 

of binary string representing an agent's position vector. The BGSA updates each agent's 

mass velocity using Eq. (2.16) and then updates each agent's position to be either 1 or 0 

with a given probability based on Eq. (2.18), as for small lv;(d)I, the probability of changing 

of an agent's position must be near zero and for a large lv;(d)I, the probability of changing 

of an agent's position movement must be high. In addition, Ru in the BGSA is the 

Hamming distance between two agents i and j. All agents are then moved according to 

Eq. (2.19) after H(v;(k+ l,d)) has been calculated using Eq. (2.18). 

H(v;(k+ 1,d)) == ltanhl(v;(k,d)) 

s;(k+ l ,d) ==complement s;(k,d) if rand< H(v;(k+ l ,d)) 

else s;(k+ 1,d) == s;(k,d) 

(2.18) 

(2.19) 

where rand is a random number uniformly distributed between 0 and 1, and H(v;(k+ 1,d)) 

is a logistic function for transforming the velocity to be a probability value constrained to 

the interval [0.0, 1.0], indicating the probability of the corresponding element of solution 
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Figure 2. 7. Process of updating position in the BGSA. 
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assuming the value 1. As a consequence, the agent's position si(k+ 1,d) now consists of 

the solution component, either 1 or 0, as shown in Figure 2.7. 

2. 7 Domain Problems 

This section describes two problem domains that used in this study; TSP and ASP. 

Concerning this, the following sub-section discusses the fundamental information of each 

problem domain. 

2.7.1 TSP 

TSP is a common type of routing problem, which is one of the most popular 

problem in the context of COPs. Jhe TSP can be defined using three features; an agent, a 

goal, and a constraint. A salesman (agent) starts his travel from a city to the other city and 

then to other consecutive cities to find the shortest path (goal) with a cost associated 

between each pair of city. The salesman can go through each city just once (constraint) 

(Lawler, Lenstra, Rinnooy, & Shmoys, 1985). Because the basic of the TSP is easy to 

learn, many researchers dedicated their works to design algorithms to solve this problem 

until now. These algorithms can be categorized into two categories of algorithms; 

complete and approximation algorithms. Many discoveries were recorded for solving the 

TSP which is proportional with many years spent. The maturity of the TSP is very helpful 



in designing new algorithms to solve other COPs in the fields of economic studies, 

managament studies, applied mathematic, engineering, and science. 

The history of the TSP began in year 1800s with a creation of a puzzle game called 

Hamilton's Location Game by William Hamilton and Thomas Kinkman. The goal in 
. 

solving the puzzle is to identify the shortest Hamiltonian cycle. The circle was built using 

a number of pair wise points that was finite associated with predefined distances. 

Hamiltonian cycle is actually a route in an undirected graph. Each point can just be visited 

once and the ending point should be similar with the starting point. The Hamiltonian cycle 

problem was then spreaded into the form of an optimization problem. Starting from this 

point, many researchers especially mathematicians extremely focused studying this 

problem. In year 1930, Karl Menger and his fellows introduced the Messenger Problem, 

that latter on called by the name of "Travelling Salesman Problem (TSP)" by Hassler 

Whitney from Princeton University in year 1934. The TSP was proven as a NP-hard 

problem by Richard M. Karp in year 1972, referring to the complexity of the TSP which 

it is difficult to obtain an optimal route. This discovery indicated that there were no exact 

algorithms that can solve the TSP benchmark instances in polynomial time. 

The TSP can be also represented by a completed weighted graph G= (V, E), where 

V is a set of vertices representing citis, while E is a set of edges or arcs that are weighted 

by values. Each edge (I, J) EA is designated with a distance value or length between two 

cities i and j where i and j EV. The symmetrical feature makes the distance from i to j is 

equal to the distance from j to i. Using information of each pair of cities, the minimal 

length of Hamiltonian cycle in the graph can be now found. An example of the TSP 

directed graph is provided in Figure 2.8. The figure shows two plots. The plot at the left 

hand side presents the graph representation of a TSP problem. In the graph, a group of 

cities namely A, B, C, D, G, and H, are connected by undirected weighted edges namely 

E1, E2, £3 .. . , E14. Meanwhile, the plot at the right hand side portrays one of many possible 

cities route of the problem presented in the left hand side plot. The possible route 

represents a path of the Hamiltonian cycle that involves edges fa, £4, Es, E6, E6 and £14. 



a) Complete graph of TSP b) TSP cities tour 

Figure 2.8. Example of the TSP graph. 

Some of the TSP benchmark instances are represented in Euclidean plane. Such 

benchmark instances include Eil51 and Berlin52. Let considering each two cities 

connected in Eil51 and Berlin52 benchmark instances, the first city and second city are 

defined by two points (u1, q1) and (u2, q1), respectively in the Euclidean plane. Euclidean 

distance (euc_dist) between the two connected cities is fo:t;mulated as in Eq. (2.20). 

(2.20) 

Meanwhile, some of the TSP benchmark instances should be calculated using 

geographical distance (geog_dist). Such benchmark instances includes Burmal4, 

Ulysses16, Ulysses22, and Bays29. Consider two connected cities of geographical TSP 

benchmark instances. The first and city second city are firstly defined by two points (u1, 

q1) and (u2, q1). The coordinate of the two cities are then converted to latitude and 

longitude format, so that the new representation of the two cities are (lat1, long1) and (lat2, 

long2). These conversions can be done using Eq. (2.21), Eq. (2.22), Eq. (2.23), and Eq. 

(2.24). 

(2.21) 



(floor( u2) + 5 ( u2 -floor) ( u2)) /3 
lat2 = 7r--------------

180 

(/zoor(q 1)+5(q
1 
-floor)( qJ )13 

long! = 7r 180 

(2.22) 

(2.23) 

(2.24) 

The geographical distance (geog_ dist) between the two connected cities is then 

denoted as in Eq. (2.25), where floor changes a value to be the largest integer smaller than 

the value, the value ofradian is 6378.3888, acos is the inverse of the cosine function, the 

value of 7r is 3.141592, g1 is cos (long1 -long2), g2 is cos (lat1 -lat2) and g3 is cos (lat1 + 

lat2). 

geog dist 
- e;,e1 

(2.25) 

2.7.2 ASP 

The costs of assembly processes are determined by assembly plans. ASP, which 

is an important part of assembly process planning, plays an essential role in the 

manufacturing industry. Given a product-assembly model, the ASP determines the 

sequence of component installation to shorten assembly time or save assembly costs. The 

ASP is regarded as a large-scale, highly constrained combinatorial optimization problem 

because it is nearly impossible to generate and evaluate all assembly sequences to obtain 

the optimal sequence, either with human interaction or through computer programs. 

Historically, the typical combinatorial explosion problem requires experienced 

assembly technicians to determine assembly plans. This manual assembly planning 



approach thus requires significant time investments and does not allow quantitative 

analysis of assembly costs before production begins. Thus, many studies in the last two 

decades have focused on geometric reasoning capabilities and full automatism to locate 

more efficient algorithms for automated ASP. The approaches used for assembly 

sequence planning can be categorized into four groups, which are: 

1. Graph-based representation. In this representation, the data source originates 

from the user or a CAD system. Using this approach, many details of the assembly 

analysis can be determined. Mello and Sanderson (1990) and Zhang, (1989) 

proposed graph-based representation methods based on AND/OR and directed 

graph. Lee and Shin (1990), Moore et al. (2001) and Zha (2000) proposed graph­

based representation methods based on PETRI nets. 

2. Lingual representation. This representation uses a special language to represent 

subassemblies, their parts and the relations between them. A few approaches 

include but are not restricted to PADL, AUTOPASS and GDP (Mello & 

Sanderson, 1990). 

3. An ordered list representation. This type of representation can be categorized 

as an ordered list of task representations, binary vectors, partitions of the set of 

parts and connections. Garrod (1989) represented each assembly sequence in the 

form of a set of list. 

4. Meta-heuristics based representation. Meta-heuristic approaches include but 

are not restricted to the rule-based method (Chakrabarty & Wolter, 1997), heuristic 

search (Hong & Cho, 1995), neural networks (Chen, Tai, Deng, & Hsieh, 2008 

and Hsin-Hao et al., 2000), genetic algorithms (Bonneville, Perrard, & Henrioud, 

1995; Choi et al., 2008; Lit et al., 201 O; Lu et al., 2006; Marian et al., 2003; Tseng 

et al., 2009 and Zhou et al., 2010), SA (Milner, Graves, & Whitney, 1994 and 

Motavalli & Islam, 1997), ACO (Wang, Liu, Mao, & Fei, 2004), memetic 

algorithms (Gao, Qian, Li, & Wang, 2009), PSO (Guo, Li, Mileham, & Owen, 

2009; Mukred et al., 2012 and Tseng et al., 2011) and hybrid methods (Hui, Yuan, 

& Kai-fu, 2008 and Li et al., 2013). 

The implementation of meta-heuristics in solving discrete optimization problems, 

particularly in the ASP problem, lead to significant reductions in computation times, 

Which in turn sacrifices the guarantee of finding exact optimal solutions (Blum and Roli, 



2003; Taibi, 2009). However, these approaches typically obtain acceptable performance 

at acceptable costs in a large number of possible assembly sequences; thus, these 

approaches have a capacity to find good solutions to large-sized problems. 

The primary objective of the ASP is to generate a feasible assembly sequence in 

which it will take less time to assemble, thereby reducing assembly costs. The most 

important factor in reducing assembly time and costs include setup time, which includes 

transfer time, the number of tool changes, and proper fixture selection. 

In this study, assumptions for the ASP include; 

1. The setup time and actual assembly time for each part and component are given. 

2. The transfer time between workstations is included in the setup time. 

3. The downtime of machines and workstations is negligible. 

The total assembly time calculated from a machine \o assembly many components 

to be a homogenous final product is the combination of the setup time and the actual 

assembly time. It is assumed that regardless of the assembly sequence, the actual 

assembly time is constant, and a proper tool and setup for each component to be 

assembled is required. These two items depend on the geometry of the component itself 

and the components assembled up to that point. The setup time for a component can be 

predicted using Eq. (2.26) where (a) is the component to be assembled; Pao is the setup 

time with product (a) being the first component; Pab is the contribution to the setup time 

due to the presence of part (b) when entering part (a); and qab =I if component (b) has 

already been assembled and qab =O otherwise for a= 1, 2, ... , c. where c is the number of 

components in the assembly sequence planning. 

c 

Timesetup(a) =Pao + 6~1Pabqab (2.26) 

The total assembly time is the summation of the setup time and the actual 

assembly time. Hence, the objective function for minimizing the assembly time is 

described by Eq. (2.27) where Aa is the assembly time for component a. The calculation 
0 hime is in time units. 



Min Time Assembly = ~ (nme Setup (a) + Aa ) 
b=I 

(2.27) 

To obtain feasible assembly sequences, all of the assembly sequences produced 

must comply with all precedence constraints. One o( the constraints of the assembly 

design is the precedence relationships between the components. In this study, the 

assembly of a product with four components is represented in a directed graph, as shown 

in Figure 2.9. In general, the determined input data required by the assembly process is 

readily extracted either from CAD or a disassembly analysis. 

A precedence matrix (PM) is used to show the relationships between the 

components in the assembly using precedence constraints. These relationships include 

the nature of the connection (i.e., free or assembled components) and the relative 

assembly precedence between two components. For this purpose, Table 2.1 can be built 

according to the precedence constraints between components a and b. If component a 
I 

must be assembled after component b, PM(Pa,Pb)=l; otherwise PM(Pa,Pb)=(l), where 

(Pa,Pb) is a pair of components with geometric information in which Pa must be 

assembled without interfering with Pb. 

Figure 2.9. Example of a precedence diagram. 



Table 2.1 
Precedence Matrix (PM) based on Figure 2.9. 

Component a 
5 
b 
1 
1 
1 

2 
0 
0 
0 
1 

Component b 
3 
0 
0 
0 
1 

4 
0 
0 
0 
0 

To decide which pair is feasible, precedence constraints for a product should be 

described using a PM. Assuming that If! is the set of components that have been assembled 

before component a, and the union of the PM is a feasible assembly sequence FAS(Pa,Pb) 

with constraints, then: 

(2.28) 

Eq. (2.28) explains that component a can be assembled 'if FAS (Pa, Pb) is an empty set 

because all components that must be assembled before component a have been 

assembled. As an example, component 4 in Figure 2.8 can only be assembled if 

component 5, 2, and 3 have already been assembled. An assembly sequence 5-2-3-4 is 

thus feasible. It is shown that component 5 must be the first component to be assembled 

because P5 is an empty set for all Pb . Next, either component 2 or 3 can be selected as 

the second component to be assembled because if F AS(P2 , Pb)= (Pb. = 5). If component 

2 is chosen, the component that must be assembled before component 2 can only be 

component 5. Component 3 can.then be selected as the third component to be assembled 

because if F AS(P3 , Pb)= (Pb = 5), the component that must be assembled before 

component 3 has already been assembled (i.e., component 5). Finally, component 4 can 

be selected as the fourth component to be assembled because if F AS(P4 , Pb)= (Pb = 3), 

the components that must be assembled before component 4 have already been assembled 

(i.e., components 5, 2, and 3). 



2.8 Summary 

This chapter provides the previous and related studies for this research. Firstly, it 

covers a brief overview of optimization algorithms and the type of optimization problems. 

Methods to solve discrete COPs and discretization approaches of continuous optimization 

algorithms are then discussed in details. Next, an explanation and description of the 

fundamental concepts and operations for the original PSO, the original GSA and the 

binary version of PSO and GSA called the BPSO and the BGSA are offered. With regard 

to the literature review given in this chapter, it demonstrates that many previous studies 

have been proposed to solve discrete COPs that is naturally discrete either using the 

binary codification (i.e. Goldberg, 1989), integer codification (Tasgetiren, Evkli, Liang, 

& Gencyilmaz, 2004), or real-to-binary (Kennedy & Eberhart, 1997) or real-to-integer 

transformation (Wei & Hanning, 2007). There could be other approaches that search all 

possible solutions for solving discrete COPs in other type of search space rather than real­

valued and binary search spaces, as provided by (Wei-Neng et al., 2010), where S-PSO 

makes use of set-based search space for searching all possible solutions. 



CHAPTER3 

DESIGN OF MULTI-STATE MODEL AND ITS APPLICATION ON PSO AND 

GSA 

3.1 Introduction 

This chapter focuses on the design of a new discretization approach that should 
1 

be able to solve discrete COPs as the other aforementioned discretization approaches. 

Inspired by the design of a sequential circuit of digital system, a new discretization 

approach, based on transition between two states, generates next state for each current 

state of each solution, leading to a complete model of multi-state. The multi-state model 

is then implemented in PSO and GSA. As a consequence, the MSPSO and the MSGSA 

are developed. The extended version of the multi-state model is then formulated by 

introducing an embedded rule that forces the updated solutions to be formed by 

unrepeated states. As a consequence, the MSPSOER and the MSGSAER are developed. 

The chapter starts by discussing the origin of multi-state model and then employed the 

fundamental description of multi-state model into the PSO and GSA later on. A few 

modifications required to operate this multi-state model is presented, which includes the 

operation of updating velocity, the operation of updating position and the operation of 

converting solution with repeated states to be non-repeated states. 

This chapter is organized as follows: Section 3.2 provides the origin of the multi­

state model. Section 3.3 discusses the multi-state model. Section 3.4 and Section 3.5 

presents the implementation of multi-state model on PSO and GSA respectively. Section 
3.6 offers the explanation of multi-state model with an additional rule called embedded 

rule. Section 3.7 and Section 3.8 provides the implementation of multi-state model with 



the embedded rule on PSO and GSA respectively. Section 3.9 and Section 3.10 offers the 

proposed approach based on the MSPSO, the MSPSOER, the MSGSA, and the 

MSGSAER for solving TSP and the ASP. Section 3.11 presents the research methodology 

to show the overview of ho~ this research is conducted. Finally, Section 3.12 presents 

the summary of this chapter. 

3.2 Origin of Multi-State Concept 

Digital systems represent information using only two possible values; one or zero. 

This binary system is sufficient to use in electronic circuit, where values are characterized 

either by the absence or presence of an electrical current flow. For instance, pulse code 

modulation (PCM) which is a method used to convert an analog signal into a digital signal 

is represented in binary numbers using high and low voltages value. There are two 

primary classes of logic circuits for digital system; combinational circuits and sequential 

circuits. 

A combinatorial circuit performs an operation that can computes a Boolean 

function of its inputs. Two characteristics of this type of circuit is memoryless by 

definition and its outputs depend only on current input values. On the other hand, a 

sequential circuit (also called Finite State Machine) is an extension of combinatorial 

circuit with additional memory elements, called delays that is used to store the present 

state of the circuit. Its outputs depend on both circuit ~tate and current inputs (Doyen et 

al., 2010). Figure 3.1 provides block diagram of sequential circuit. 

Inputs ; -, 
Combinational 

Outputs 

circuit 
L ~. Memory -

elements 

Figure 3.1. Block diagram of sequential circuit. 

Source Mano and Ciletti 2012 



A synchronous sequential circuit uses signals that change the storage elements at 

only discrete instants of time. Synchronization is carried out by a timing device named a 

clock generator, which offers a clock signal that have the shape of a periodic train of clock 

pulses. Clocked sequential circuits are sequential circuits that employ clock pulses to 

control storage elements. Figure 3.2 presents block diagram of clocked sequential circuit. 

Flip-flops are the storage elements (memory) employed in clocked sequential 

circuits. A flip-flop is a binary storage device that able to store information with one bit, 

either O or 1. A sequential circuit may employ more than one flip-flop to store many bits. 

The concept of multi-state is drawn from one of flip-flops called JK flip-flop. Figure 3.3 

and 3.4 offer the graphic symbol of JK flip-flop and its state diagram. With regard to state 

diagram presented in Figure 3.4, the term "O"and "1" can be replaced with state A and B. 

Inputs - - Outputs 
Combinational 

circuit - -
Flip-flops 

Clock pulses I 

Figure 3.2. Block diagram of clocked sequential circuit. 

Source Mano and Ciletti 2012 

J 

[>Clk 

K --

Figure 3.3. Graphic symbol of JK flip-flop. 

Source Mano and Ciletti 2012 



The changes and state transitions (1, 2, 3, and 4) that show present and next state can be 

seen in Figure 3.5. 

State transition 1 and 3 indicate that next state for state A and B remain as their 

previous state. Meanwhile, for state transition 2 and 4, next state for state A and B change 

from state A to state B, and state B to state A, respectively. This condition applies to a 

problem with just two possible outputs (state A and stat B). In order to relate relationship 

between more than two states or called multi-state, state diagram in Figure 3.5 can be 

converted to Figure 3.6. 

Figure 3.6 shares same attribute with Figure 3.5. The difference between these 

two figures is the number of possible states involved in relating one state to another. It is 

worth mentioning that state transition 1, 3, 5, and 8 produce next state that similar with 

their present state, while other state transitions produce next state which is different 

compared to their present state. 

A search space is the set of all possible solutions for any given optimization 

problem. Each solution is generally represented either in real-value (Kennedy & Eberhart, 

1995) or binary (Goldberg, 1989). In the context of discrete COPs, the application of 

continuous optimization algorithms require the transformation of a 

Figure 3.4. State diagram of JK flip-flop. 

2 

1 3 

4 

Figure 3.5. State diagram of two states. 
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5 8 

FigIJre 3.6. State diagram of multi-state. 

continuous search space (real-valued search space) to a discrete one by discretization of 

the continuous decision variables. This mean real-valued Qptimization algorithms cannot 

be directly used to solve discrete COPs. Meanwhile, the binary search space consists of 

discrete points within in the coding range. By setting the number of bits and the coding 

range, the search space can be restricted. However, binary-based optimization algorithms 

require many bits, compared to continuous optimization algorithms that employ real-to­

integer transformation to represent each solution. For instance, binary-based algorithms 

require 56 bits to represent each solution of Burma 14 benchmark instance of TSP, while 

continuous optimization algorithms that employ real-to-integer transformation only 

requires 14 bits. Other than these two aforementioned search spaces, a search space called 

set-based has been developed by_ (Wei-Neng et al., 2010) to search all possible solutions 

for solving discrete COPs. 

To mapping all possible solutions produced by employing the mechanism of state 

transition as shown Figure 3.6, multi-state search space is introduced, as provided in 

Figure 3.7. In this research, the term multi-state is used to show that one or more candidate 

states are available to be selected as the next state.The multi-state search space provides 

information of current state, candidate states, and possible next states in each dimension. 

Such way is applied to other dimensions as well. For instance, by considering State A in 

Figure 3.6 as current state for a particular dimension, Figure 3.7 presents all candidate 
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Figure 3. 7. Example of a multi-state search space. 

• 

next states (State A, State B, State C, and State D), the area that covers possible next 

states (search space), and the possible next states (State A, State C, and State D. In Figure 

3.7, the black small circles represent states and the circle. represents an area that covers 

State A, State C, and State D, respectively. This representation is elaborated in Section 

3.3 for more details. 

3.3 Design of Multi-State Model 

In this section, the proposed multi-state model .is discussed. This model is built 

using the mechanism of state transition between two states. This optimization algorithms 

that employ this model called multi-state based algorithms. In the multi-state model, each 

solution's vector or dimension in the multi-state-based algorithm is represented as a 

collective of states; neither continuous nor discrete value. 

The multi-state model can be elaborated using information of cities' location of 

Burma14 benchmark instance of TSP as depicted in Figure 3.8. This benchmark instance 

of TSP is chosen because it has just 14 cities; so it is easier to be illustrated. All 14 cities 

or vertices that extracted from Burmal4 benchmark instance are represented as a 

collective of states. 



2 

Figu,re 3.8. Burma14 benchmark instance of TSP. 

Figure 3.9 presents the collective of states in the form of small black circle. With 

regard to this figure, the multi-state search space of e~ch dimension is built using two 

features; a current state and a radius. Each current state of a 14-dimensional vector 

solution which is basically represented by each 14 small black circle, is plotted based on 

its location. Each current state of the 14-dimensional vector solution is then appointed as 

the centre of the multi-state search space. Subsequently, the length of the line from the 

centre of each current state called radius is determined. A circle can be eventually built 

when these two features; a current state and a radius are known. The process of producing 

the circle is applied on each 14-dimensional vector solution. 
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Figure 3.9. Multi-state search space of a dimension for B~rmal4 benchmark instance of 

TSP. 

It seems that the small black circles can be found inside and outside of each circle. 

Each small black circle is basically a state. Each small black circle inside of the circle is 

called inner state (IS), while each black circle outside of the circle is outer state (OS). The 

IS can be defined as a state in which the cost value (i.e. distance, time or etc.) from a 

current state to a particular state is same or smaller than the length of line (radius). 

Otherwise; the state is OS. A small black circle is then selected randomly among the IS. 

The selected small black circle is now called the next state. 

Figure 3 .10 offers an explanation on the process of updating current state of each 

dimension for a solution to next state in the multi-state search space. For instance, a 

current 5- dimensional vector solution {x5,x3,x2,x1,x4} is used. In updating current state 

to next state for each dimension, radius from the current state for each dimension is firstly 

determined. As a consequence, all ISs are now identified. A state is then randomly 

selected among all ISs for each dimension. The selected state is the current state for each 

dimension. Let's say the selected states for dimension 1, 2, 3, 4, and 5 are x2,X4,X3,X2, and 

Xi, respectively. Thus, the updated solution (next solution) is x2,x4,x3,x2,x1. 



One characteristic of multi-state model is, there might be one or more repeated 

states in an updated solution. Figure 3.10 shows that there is a repeated state in the 

updated solution which is x2 ~n 1st and 4th dimension of the updated solution. It is in such 

case as in TSP necessarily to have no repeated states in each solution. Figure 3.11 portrays 

1st dimension 5th dimension 

I 
~ r'-1 

X5 X3 X2 X1 I X4 

1 1 ! 
Determining radius of each 

dimension 

Selecting a state among all ISs 
for each dimension 

I } A current solution 

Process of updating 
current state to next state 

Figure 3.10. Process of updating current state of each dimension for a solution to next 

state in the multi-state search space . 

• X3 • 

(a)l st dimension (b) 4th dimension 

Figure 3.11. The identical state chosen, x2 in (a) and (b). 



the repetitive issue and its cause for 1st and 4th dimension of a particular solution. It is 

clearly seen that state x2 has been randomly selected among IS to be the next state. 

Because states are discrete, it is worth to note that multi-state model can only be used to 

solve discrete COPs, but not continuous COPs. 

To explain the exploration .and exploration of the multi-state model, the 

characteristic of radius of the multi-state model for a dimension of a solution for a 

particular iteration are presented in Figure 3.12, Figure 3.13, and Figure 3.14. Similar 

characteristic are applied to each dimension of each solution. At the first iteration, the 

radius is set big as presented in Figure 3.12. Starting from the first iteration, the coverage 

of exploration of the multi-state search space is the biggest. As the iteration increases, the 

radius becomes smaller, as illustrated in Figure 3.13. As the iteration ends, the radius 

.. 
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XJ,~8 
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Figure 3.12. The characteristic of radius update of multi-state m_odel at f1h iteration . 

Radius 
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Figure 3.13. The characteristic of radius update of multi-state model at t++th iteration. 
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Figure 3.14. The characteristic of radius update of multi-state model at near the end of 

maximum iteration. 

becomes smaller than the previous generated radius as presented in Figure 3 .14. This means the 

coverage of exploration of the multi-state search space is reduced per iteration. At the end of 

iteration, the radius becomes smaller than previous iterations and the algorithms that use the multi­

state model converge. The characteristic of radius in the multi-state model reduces the number of 

candidate states as iteration increases and hence, a good balance between exploration and 

exploitation can be achieved. 

3.4 The Proposed Multi-State Particle Swarm Optimization (MSPSO) 

In this section, the proposed MSPSO algorithm is explained. As aforementioned, 

the multi-state search space of each dimension is built using two features; a current state 

and a radius. In the MSPSO algorithm, the radius is represented by new velocity value. 

The proposed MSPSO practices similar general principle of the original PSO with a few 

modifications in term of exploitation of particle's velocity and a mechanism of state 

transition. 

The main difference between the MSPSO and the PSO is the way on updating 

each particle's velocity and position based on state, while most of steps required in the 

MSPSO are identical with the PSO. In the implementation of the multi-state based 

representation, numerical calculation to find difference in the cognitive component of 

velocity calculation which is between pbest;(k,d) and s;(k,d) does not allow. This 

condition also occurs in the part of finding difference in the social component of velocity 

calculation which is between gbest(k,d) and s;(k,d). 



In the PSO and the BPSO algorithms, a particle has three movement components; 

the inertia, cognitive, and social component as shown in Eq. (2.2). The effect of the first, 

second, and third component are the particle bias to follow in its own way, to go back to 

its best previous position, and to go towards the global best particle, respectively. In 

implementing the multi-state representation, the velocity should be defined as the 

summation of previous velocity, cost of difference function with the effect of cognitive 

factor between each particle's best position and current particle's position, and cost of 

difference function with the effect of social factor between global best particle and current 

particle's position. By way of explanation, the velocity is in the form of cost function, i.e 

distance in TSP (Cirasella et al., 2001; Dori go et al., 1996; Voudouris and Tsang, 1999). 

Defining the velocity operator in this manner causes the change of behaviour of velocity, 

which are the new form of velocity has no magnitude and probability calculation as the 

PSO algorithm and the BPSO algorithm, respectively. To make such an updating velocity 

formulation valid, a function called cost(.) is introduced to replace the direct subtraction 

operation incorporated in Eq. (2.2) into Eq. (3.1) as follows. 

vi(k+ 1,d) = wvi(k,d) + c1 r1 cost(pbest)(k,d), si(k,d) 

+ c2r2cost(gbest(k,d), s;(k,d) 

(3.1) 

Then, a next position which is in the form of state s;(k+ I ,d) is selected randomly among 

the IS using Eq. (3.2). Given a set ofj IS members ~(k,d) = (1;
1 
(k,d), ... ,Ii/k,d)). 

(3.2) 
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Figure 3.15. The procedure of producing unrepeated states of each solution. 

As mentioned in Figure 3.10, there might be one or more repeated states in an 

updated solution. In order to overcome the repetitive issue, an additional procedure 1s 

added after updating velocity and position, so the solution with unrepeated states is 

evolved from the solution with repeated states. To elaborate this procedure, this procedure 

18 presented in Figure 3 .15. 



Initially, a wlution of a particle is read. Also, a blank solution of n dimensions is 

created and an archive is initialized. The archive is then sorted in natural order. The 

solution that has been read is then checked, whether the solution has repeated states or 

not. If the solution has no repeated states, the process is stopped. Otherwise, a solution 

with unrepeated states must be generated from the solution with repeated states. To 

generate the solution with unrepeated states, the current dimension d of the solution with 

repeated states is then checked whether it has exceeded the maximum number of 

dimension n or not. If the maximum number of dimension is not exceeded, the state in 

the current dimension d of the solution with repeated states is read. Otherwise, the process 

is stopped. If the state in the current dimension d of the solution with repeated states is 

read, the state is checked whether the state still exists in the archive. If the state still exists 

in the archive, the state is put in the current dimension d of the solution with unrepeated 

states. Otherwise, a state is randomly chosen from the archive at first and the state is then 

put in the current dimension d of the solution with unrepeated states. Next, the state 

chosen is removed from the archive. Finally, a solution with unrepeated states is produced 

when all dimensions in the solution with repeated states has been checked. It is worth 

mentioning that this procedure is applied to the solution of each particle. 

For instance, the process illustrated in Figure 3.15 can be elaborated by Table 3.1. 

In this table, each dimension of solution is checked, whether the state in the dimension 

has been used or not. For instance, at the 4th dimension, the current state is x2. The next 

state can be either state x1 or state xs. State x2, state X4, and state x3 cannot be selected to 

be the next state because these three states have been selected iri previous dimensions. 

Table 3.1 
The Explanation of the Procedure Conducted in Figure 3.15 
Dimension Current All states that can be Selected 

state 
(next 
state) 

1 
2 
3 
4 
5 

state of chosen as a potential 
each next state of each 

dimension dimension 

X2 {x1, X2, XJ, X4, Xs} X2 
X4 {x1,XJ,X4,Xs} X4 

XJ {x1, XJ, Xs} XJ 
X2 {x1, Xs} Xs 

X1 {x1} X1 

A solution with unrepeated states = { x2, X4, x3, xs, x1} 

All unused 
states 

{x1, XJ, X4, Xs} 
{x1, XJ, Xs} 

{x1, xs} 
{x1} 



1: procedure MSPSO 
2: Initialize particles solution to feasible and velocities set to zero. 
3: Set the particles' pbests to their current positions. 
4: Calculate the particles' fitness and set gbest. 
5: for T generations do 
6: Update the particles' velocities. 
7: Update the particles' positions. 
8: Evolve infeasible solutions to feasible solutions 
8: Recalculate the particles' fitness. 
9: Update the particles' pbest and gbest. 

10: end for 
11 :end procedure 

Figure 3.16. The general principle of the MSPSO. 

As consequence, this procedure will successfully evolve a solution with repeated states 

to be a solution with unrepeated states. The pseudo code of the general principle of 

MSPSO is then presented in Figure 3.16. 

3.5 The Proposed Multi-State Gravitational Search Algorithm (MSGSA) 

In this section, the proposed MSGSA is explained. As aforementioned, the multi­

state search space of each dimension is built using two features; a current state and a 

radius. In the proposed MSGSA, the radius is represented by new velocity value. The 

proposed MSGSA practices similar general principle of the original GSA. There are some 

modifications have been executed on the proposed MS.GSA in the state transition and the 

force formulation. 

The MSGSA implements same procedure as in the MSPSO in updating each 

agent's position by exploiting agent's velocity. The formulation of updating each agent's 

position in the form of state and velocity still similar as in the GSA. In addition, most of 

steps required in the MSGSA are identical with the GSA. Then, a next position in the 

form of state si(k+ l ,d) is selected randomly among the IS using Eq. (3.3). Given a set of 

i IS members ~(k,d) = (1;
1 
(k,d),. .. ,li/k,d)). 

s/k+ l,d) = random(/;1 (k,d),. .. J~(k,d)) (3.3) 



The force formulation of the GSA as revealed in Eq. (2.15) in Chapter II shows 

the subtraction operation. between two agents' positions, sj(k,d) and slk,d), is executed 

to calculate the difference of vector value in a particular dimension and time, resulting a 

numerical value. In the MSGSA, each agent's position is represented as a state. Since a 

state is not associated to any value, the subtraction operation cannot be used to find the 

difference between two states. Eq. (3.4) is derived to accommodate the calculation of 

force, Fij(k,d) in the MSGSA. A cost function, cost(.), is introduced and incorporated in 

the force formulation. The cost (i.e. distance in the TSP) between two positions is a 

positive number given by cost((sj (k,d), si(k,d)). In this force formulation, Rij(k) is the 

difference of fitness between agent i and agent}. 

Maj(k) 
Fi/k,d) = G(k) (k) cost((sj (k,d), si(k,d)) 

Rg +t: 
(3.4) 

Similarly as in the MSPSO, there might be one or more repeated states m an 

updated solution. To solve this problem, the solution with repeated states must be evolved 

to be the solution with unrepeated states. The details of this procedure can be seen in 

Section 3.3 in this chapter. The pseudo code of the general principle of the MSGSA is 

then presented in Figure 3 .17. 

1: procedure MSGSA 
2: Initialize agents with random positions and velocities. 
3: Set the agents to their current positions. 
4: Calculate the agents' fitness and set G, the best agent and the worst agent 
5: for T generations do 
6: Evaluate the mass. 
7: Evaluate the force of the mass. 
8: Evaluate the acceleration of the mass. 
9: Update the agents' velocities. 

10: Update the agents' positions. 
11: Convert feasible solutions from infeasible solutions. 
12: Recalculate the agents' fitness. 
13: Update the G, the best agent and the worst agent. 
14: end for 
15: end procedure 

Figure 3.17. The general principle of the MS GSA. 



3.6 The Multi-State Model with an Embedded Rule 

In this section, the concept of multi-state model with an embedded rule is 

discussed. The concept is fundamentally introduced to solve the repetitive issue occurred 

in the MSPSO and the MSGSA. The embedded rule ~re implemented in the MSPSO and 

the MSGSA by designing such procedure to directly produce a solution with unrepeated 

states from a solution with repeated states. The embedded rule is; each state can only 

occur once in each solution. The introduction of the embedded rule in the multi-state 

model efficiently removes the limitation of the MSPSO and the MSGSA in which all 

solutions generated with unrepeated states. 

With regard to the characteristic of the multi-state model with the embedded rule, 

it seems possible that the implementation of embedded rule will produces two different 

cases. Figure 3.18 presents the first case that can occur in updating position which 

position of each dimension in the form of state. This m~ans each solution consists a state 

in its each dimensional vector. In Figure 3.18, (a) state x2 is the next state for the pt 

dimension, (b) state x, is the next state for the 2nd dimension, ( c) state X3 is the next state 

for the yct dimension, (d) state xs is the next state for the 4th dimension and (e) state X4 is 

the next state for 5th dimension. In the first case, the next state of each dimension of the 

solution is selected just from ISs. To obtain the next state, the process is explained as 

follows. 

Figure 3.18 (a) shows five states, namely state x1, statex2, state XJ, state X4, and state 

xs. The current solution is {x5,x3,x2,x1,x4}. The process starts by updating the current state 

of the 1st dimension of the c~rent solution, which is state xs using the velocity value 

obtained from derivation ofEq. (3.1). Due to the existence of the ISs, a state is randomly 

chosen from the ISs and then updated in the 1st dimension of the updated solution. The 

state placed in the 1st dimension of the updated solution is state x2. The state x2 is then 

removed from the search space; state x2 is excluded for the next selection. 
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Figure 3.18. The first case occurred in updating state of each dimension in the 

MSPSOER and the MSGSAER. 
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Figure 3.18 (b) shows the current state of the 2nd dimension of the current solution, 

state x3 using the velocity value obtained from derivation of Eq. (3 .1 ). Due to the existence 

of the ISs, a state is randomly chosen from the ISs and then updated in the 2nd dimension 

of the updated solution. The ·state placed in the 2nd dimension of the updated solution is 

state x1. The state x1 is then removed from the search space; state x1 is excluded for the 

next selection. 

Figure 3.18 (c) shows the current state of the 3rd dimension of the current solution, 

state x2 using the velocity value obtained from derivation of Eq. (3 .1 ). Due to the existence 

of the ISs, a state is randomly chosen from the ISs and then updated in the 3rd dimension 

of the updated solution. The state placed in the 3rd dimension of the updated solution is 

state x3. The state X3 is then removed from the search space; state x3 is excluded for the 

next selection. 

Figure 3.18 (d) shows the current state of the 4th dimension of the current solution, 

statex1 using the velocity value obtained from derivation bfEq. (3.1). Due to the existence 

of the ISs, a state is randomly chosen from the ISs and then updated in the 4th dimension 

of the updated solution. The state placed in the 4th dimension. of the updated solution is 

state x5. The state x5 is then removed from the search space; state xs is excluded for the 

next selection. 

Figure 3.18 (e) shows the current state of the 5th dimension of the current solution, 

state X4 using the velocity value obtained from derivation of Eq. (3.1). Due to the existence 

of the ISs, a state is randomly chosen from the ISs and then updated in the 5th dimension 

of the updated solution. The state placed in the 5th dimension of the updated solution is 

state X4. The state X4 is then removed from the search space; state X4 is excluded for the 

next selection. The procedure portrayed in Figure 3 .18 eventually produces an updated 

solution {x2,x1,x3,x5,x4 } which is a solution with unrepeated states. 

Meanwhile, Figure 3 .19 presents the second case can occur in updating state of 

each dimension with the implementation of the embedded rule. In this case, next state of 

each dimension of the solution is selected either from the ISs or the unselected states. In 

!Figure 3.19, (a) state x1 is the next state for the 1st dimension, (b) state X3 is the next state 

for the 2nd dimension, ( c) state xs is the next state for the 3rd dimension, ( d) state x2 is the 
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Figure 3.19. The second case occurred in updating state of each dimension in the 

MSPSOER and the MSGSAER. 

next state for the 4th dimension and ( e) state X4 is the next state for 5th dimension. In the 

second case, the next state of each dimension of the solution is selected either from the 

ISs or the unselected states. To obtain the next state, the process is explained as follows. 



Figure 3.19 (a) shows five states, namely state x1, state x2, state X3, state X4, and state 

x 5• The current solution is {xs,X4,X2,x1,x3 }. The process starts by updating the current state 

of the 1st dimension of the current solution, which is state xs using the velocity value 

obtained from derivation of Et}. (3.1). Due to the existence of the ISs, a state is.randomly 

chosen from the ISs and then updated in the 1st dimension of the updated solution. The 

state placed in the 1st dimension of the updated solution is state x1. The state x1 is then 

removed from the search space; state x1 is excluded for the next selection. 

Figure 3 .19 (b) shows the current state of the 2nd dimension of the current solution, 

state x4 using the velocity value obtained from derivation of Eq. (3.1 ). Due to the non­

existence of the ISs, a state is randomly chosen from the unselected states and then 

updated in the 2nd dimension of the updated solution. The state placed in the 2nd dimension 

of the updated solution is state X3. The state x3 is then removed from the search space; 

state x3 is excluded for the next selection. 

Figure 3.19 (c) shows the current state of the 3rd dimension of the current solution, 

state x2 using the velocity value obtained from derivation of Eq. (3.1). Due to the non­

existence of the ISs, a state is randomly chosen from the unselected states and then 

updated in the 3rd dimension of the updated solution. The state placed in the 3rd dimension 

of the updated solution is state xs. The state xs is then removed from the search space; 

state xs is excluded for the next selection. 

Figure 3 .19 ( d) shows the current state of the 4th dimension of the current solution, 

state x1 using the velocity value obtained from derivation of Eq. (3.1 ). Due to the existence 

of the ISs, a state is randomly chosen from the ISs and then updated in the 4th dimension 

of the updated solution. The state placed in the 4th dimension of the updated solution is 

state x2. The state x2 is then removed from the search space; state x2 is excluded for the 

next selection. 

Figure 3.19 (e) shows the current state of the 5th dimension of the current solution, 

state x3 using the velocity value obtained from derivation of Eq. (3.1). Due to the non­

;xistence of the ISs, a state is randomly chosen from the unselected states and then 

;dated in the 5th dimension of the updated solution. The state placed in the 5th dimension 

•·
1 the Updated solution is state x4 . The state x4 is then removed from the search space; 



state X4 is excluded for the next selection. The procedure offerred in Figure 3.19 

eventually produces an updated solution {x1, X3, xs, x2, X4} which is a solution with 

unrepeated states. The implementation of the embedded rule in the MSPSOER and 

MSGSAER efficiently elimin~te the step of evolving a solution with repeated states to a 

solution with unrepeated states because each solution yielded is originally without 

repeated states. This means the procedure of producing unrepeated states of each solution 

provided in Figure 3.15 is now can be omitted. 

3.7 The Proposed Multi-State Particle Swarm Optimization with an Embedded 

Rule (MSPSOER) 

In this section, the proposed MSPSOER is explained. The proposed MSPSOER 

fundamentally improves the proposed MSPSO, so the repeated states are not generated in 

a solution. Generally, the improved proposed algorithm practices similar principle of the 

proposed MSPSO except in the mechanism of state transition between two states. 

3.7.1 Embedded Rule in the MSGSAER 

In the MSPSO algorithm, once the new velocity is updated, the process of 

updating current state to next state of each dimension's solution is executed. As 

aforementioned in Section 3.2, the current state, the new velocity value, the ISs, the outer 

states (OSs) are the elements occur in the multi-state search space. Information of all the 

ISs and the OSs should be known before applying the embedded rule. Beside, all selected 

states (SSs) that are appointed as the next state in a solution must be taken into account. 

The origin of the SS could come either from one of the ISs or OSs. A set of h SSs can be 

derived as T;(k,d) = ( T;
1 
(k,d),. .. ,T;h(k,d) ). All the SS should be identified because this 

type of state is invalid to be selected as the next state. 

For the ISs and OSs, let us consider a set of j IS f;(k,d) = ( 1;1 (k,d),. .. ,l;ik,d)) and 

:~z set of I OS Oi(k,d) = ( Oi, (k,d),. . .,Oi
1
(k,d) ). Based on the current state and the new 

telocity value of each dimension, a next state of each dimension can be selected using 



Eq. (3.5) where(/) is empty set. We observe that each solution with unrepeated states are 

successfully generated using the formulation in Eq. (3.5) in which the information of the 

JSs, OSs and SSs are taken into account. The algorithmic details of the process of updating 

each current state into a next state in the MSPSOER is presented in Figure 3.20. 

slk+ l,d) = 

random( (I;(k,d) - (I;(k,d) n T;(k,d)))) 

if ( (I;(k,d) - (I;(k,d) n T;(k,d))) )-t (f) 

random( ( O;(k,d) - ( O;(k,d) n T;(k,d)))) 

if ( (I;(k,d) - ( I;(k,d) n T;(k,d)))) = (f) 

(3.5) 

To sum up, the next state is randomly chosen from the remaining ISs after all the SSs are 

removed from the ISs. If remaining members of the ISs do not exist, the next state is then 

randomly chosen from the OSs. This process is basically applied to each dimension of 

each solution. This process ends when all dimensions ~fall solutions have been updated. 

1: input: I is the number of agents, D is the maximum dimensions, 
Si(k,d)(i=l,2, .. . ,I; d=l,2, ... ,D) is current position of each agent and 
Vi(k+ l,d)(i=l,2, .. . ,I; d=l,2, ... ,Dis current velocity of each agent. 

2: agent= 1; 
3: repeat 
4: Initialize the SSs. 
5: dimension = 1; 
6: 
7: 

8: 
7: 
9: 
9: 
10: 
11 : 
12: 
13: 
14: 

_!5: 

repeat 
Generate a circle subjected to current state and new velocity value to 
determine the ISs and the OSs. 
Exclude the SSs from the members of the ISs. 
if any of the ISs still occurs as the subject of selection then 

Randomly choose one of the ISs to be next state. 
Randomly choose one of the OSs to be next state. 
Register the selected next state to be one of the SSs. 
dimension ++; 

until dimension == D; 
agent++; 

until agent == I; 
output: Solutions with unrepeated states generated. 

Figure 3.20. The process of updating current state to be next state in the MSPSOER. 



1: procedure MSPSOER 
2: Initialize particles solution and velocities set to zero. 
3: Set the particles' pbests to their current positions. 
4: Calculate the particles' fitness and set gbest. 
5: for T generations do. 
6: Update the particles' velocities. 
7: Update the particles' positions. 
8: Recalculate the particles' fitness. 
9: Update the particles' pbest and gbest. 

10: end for 
11 :end procedure 

Figure 3.21. The general principle of the MSPSOER. 

The proposed MSPSOER is depicted in Figure 3.21. The main difference between 

the proposed MSPSO and the proposed MSPSOER is that the proposed MSPSO has a 

probability having repeated states in a solution. In the case of the proposed MSPSOER, 

this issue is not occur as there is a procedure based on an embedded rule guarantees that 

any generation of solution free from unrepeated states. 

3.8 The Proposed Multi-State Gravitational Search Algorithm with an Embedded 

Rule (MSGSAER) 

In this section, the proposed MSGSAER is explained. The proposed MSGSAER 

fundamentally improves the proposed MS GSA in term of producing the unrepeated states 

in each solution. The improved proposed algorithm typi'cally practice·s similar principle of 

the proposed MSGSA except in the mechanism of state transition between two states. 

3.8.1 Embedded Rule in the MSGSAER 

Based on the proposed MSPSOER, the proposed MSGSAER is designed in a 

similar way, in which this algorithm also employs the similar embedded rule. As already 

discussed in Section 3. 7 .1 the embedded rule eliminates the need of evolving solutions 

With repeated states into solutions with unrepeated states. When the velocity is updated 

and the new velocity value is obtained, the process of updating current state to next state 

·of each dimension's solution is performed. To operate the embedded rule in the multi-



state search space, some of elements should be identified, namely current state, new 

velocity value, the ISs, the OSs as described in Section 3.2. 

For the ISs and the OSs, let's consider a set of j IS f;(k,d) = (1;1 (k,d), ... ,liik,d)) 

and a set of l OS Oi(k,d) = ( Oi
1 
(k,d), ... ,Oi

1
(k,d) ). A set of h SSs can be then derived as 

T;(k,d) = ( 1j
1 
(k,d), ... ,Tih(k,d) ). All the SSs should be identified because this type of state 

is invalid to be selected as the next state. Based on the current state and the new velocity 

value of each dimension, a next state of each dimension can be selected using Eq. (3.6) 

where (/)is empty set. Eq. (3.6) operates in similar way as derived in Eq. (3.5). The 

observation of the solutions yielded can be made as Eq. (3.6) successfully generates 

unrepeated states in all solutions. 

S;(k+ 1,d) = 

random( (1i(k,d) - (Ilk,d) n Ti(k,d)))) 

if ( (1i(k,d) - (I;(k,d) n Ti(k,d)))) i-
1

<J) 

random( ( Oi(k,d) - ( Oi(k,d) n Ti(k,d)))) 

if ( (1i(k,d) - (Ii(k,d) n Ti(k,d)))) = (f) 

(3.6) 



The algorithmic details of the process of updating each current state into a next 

state in the MSGSAER is explained in Figure 3.22. Meanwhile, the proposed MSGSAER 

is offered in Figure 3.23. The proposed MSGSAER has no chance having any repeated 

states in the generated solutions, affected by the implementation of the embedded rule, as 

discussed in Section 3. 7 .1. 

I: input: I is the number of agents, D is the maximum dimensions, 
Si(k,d)(i=I,2, ... ,I; d=I ,2, .. . ,D) is current position of each agent and 
Vi(k+ l,d)(i=l,2, .. .,I; d=I,2, ... ,Dis current velocity of each agent. 

2: agent= 1; 
3: repeat 
4: Initialize the SSs. 
5: dimension = 1; 
6: repeat 
7: Generate a circle subjected to current state and new velocity value to 

determine the ISs and the OSs 
8: Exclude the SSs from the ISs. 
7: if any of the ISs still occurs as the subject of selection then 
9: Randomly choose one of the ISs to be next state. 
9: Randomly choose one of the OSs to be next state. 
10: Register the selected next state to be one of the SSs. 
11: dimension ++; 
12: until dimension== D; 
13: agent ++; 
14: until agent== I; 
15: output: Solutions with unrepeated states generated. 

Figure 3.22. The process of updating current state to be next state in the MSGSAER. 

1: procedure MSGSAER 
2: Initialize agents with random positions and velocities. 
3: Set the agents to their current positions. 
4: Calculate the agents' fitness and set G, the best agent and the worst agent 
5: for T generations do 
6: Evaluate the mass. 
7: Evaluate the force of the mass. 
8: Evaluate the acceleration of the mass. 
9: Update the agents' velocities. 

10: Update the agents' positions. 
11: Recalculate the agents' fitness. 
12: Update the G, the best agent and the worst agent. 
13: end for 

J4: end procedure 

Figure 3.23. The general principle of the MSGSAER. 



3.9 Applying the MSPSO, the MSGSA, the MSPSOER, and the MSGSAER to the 

TSP 

This section presents the proposed approaches based on the MSPSO, the 

MSPSOER, the MSGSA, and the MSGSAER applie~ to the TSP. Figure 3.24 shows the 

outline of the proposed approaches based on the MSPSO which includes initialization 

(parameters and the initialization of solutions), the evaluation of particles' fitness, the 

pbest of the population update, the gbest of the population update, the particles' velocities 

and positions update, and the evolvement of the infeasible particles solution to be feasible. 

Similar to the original PSO, the MSPSO starts with an initialization operation that 

is necessary to configure the parameters and an initial solutions of the algorithm (see 

Chapter II). During the initialization, the initial solutions for the population are randomly 

generated. Prior to this, the generated initial solutions for the population are subjected to 

a validity check to ensure the initial solutions are valid and feasible. 

1: procedure MSPSO for solving the TSP 
2: Initialize particles' solution and initialize velocities to zero. 
3: Build a distance matrix. 
4: Set the particles' pbests to their current positions. 
5: Calculate the particles' fitness and set gbest. 
6: for T generations do 
7: Update the particles' velocities. 
8: Update the particles' positions. 
9: Evolve the solution of particles with ~epeated states to the solution 

with repeated states 
10: Recalculate the particles' fitness. 
11: Update the particles' pbest and gbest. 
12: end for 
13:end procedure 

Figure 3.24. Outline of the proposed approach based on the MSPSO for solving the 
TSP. 



In the TSP, the validity check is operated to ensure no city is repeated in each 

solution. The vector representation corresponding to the cities of a particle or an agent is 

represented in Figure 3.25; in this case, the sequence of the solution is 2-3-5-4-1. The 

length of a string depends on· the total number of cities used in the calculating the tour 

distance. A distance matrix is then built in order to be used to calculate the fitness of each 

particle represented by a TSP sequence. For example; the distance matrix for Burma14 

benchmark instance is depicted in Figure 3.26. 

Figure 3.26 shows a distance matrix with size 14 x 14. The number of rows and 

columns are identical to the size of Burma14 benchmark instance of the TSP. The 

calculation of the fitness of each particle starts with calculating the distance between the 

first two cities in an initial solution (i.e. the first city is 2 and the second city is 3). For 

instance, the distance between city 2 (row 2) and city 3 (column 3) is 422 KM. This 

calculation is executed for other pairs of two cities and then all the distances are sum to 

obtain an ultimate distance in which all cities are visited such that no city is visited more 

than once and the salesman returns to the initial visited city at the end of the tour, that is 

2 3 5 4 1 

Figure 3.25. Example of a TSP sequence represented by a particle or an agent. 

column 3 

0 153 510 706 966 581 455 70 160 372 157 567 342 398 

row2} 153 0 422 664 997 598 507 197 311 479 310 581 417 376 
510 422 0 289 744 390 437 491 645 880 618 374 455 211 
706 664 289 0 491 265 410 664 804 1070 768 259 499 310 
966 997 744 491 0 400 514 902 990 1261 947 418 635 636 
581 598 390 265 400 0 168 522 634 910 593 19 284 239 
455 507 437 410 514 168 0 389 482 757 439 163 124 232 

70 197 491 664 902 522 389 0 154 406 133 508 273 355 
160 311 645 804 990 634 482 154 0 276 43 623 358 498 
372 479 880 1070 1261 910 757 406 276 0 318 898 633 761 
157 310 618 768 947 593 439 133 43 318 0 582 315 464 
567 581 374 259 418 19 163 508 623 898 582 0 275 221 
342 417 455 499 635 284 124 273 358 633 315 275 0 247 
398 376 211 310 636 239 232 355 498 761 464 221 247 0 

Figure 3.26. Distance matrix ofBurma14 benchmark instance of the TSP. 



the fitness of the particle. This calculation is applied to each particle. With regard to the 

fitness of the particles calculated, the pbest of each particle is then set to its position. The 

best of the pbest that is the gbest is then set. 

Each iteration updates each particle's velocity and position. After updating the 

velocity and position, the solution of each particle with repeated states is evolved to the 

solution with unrepeated states. This operation is previously illustrated in Figure 3 .15. 

The fitness of each particle is then calculated again. The pbest of each particle is then 

updated by a more optimal, obtained either from the new position of the particle of the 

pbest. The gbest is then updated by the most optimal pbest of all the particles. The 

optimum solution of the TSP represented by the gbest is yielded when the stopping 

condition is finally met. After the stopping condition is met, the performance of the 

proposed approach based on the MSPSO can be investigated. 

Figure 3.27 provides the outline of the proposed approaches based on the 

MSPSOER that is designed mostly identical to the MSPSO except the evolvem~nt of the 

solution with repeated states to the solution with unrepeated states does not require to be 

conducted. This is because by using the MSPSOER, all elements or states in any solution 

occurs just once. 

1: procedure MSPSOER for solving the TSP 
2: Initialize particles solution and initialize velocities set to zero. 
3: Build a distance matrix. 
4: Set the particles' pbests to their current positions. 
4: Calculate the particles' fitness and set gbest. 
5: for T generations do 
6: Update the particles' velocities. 
7: Update the particles' positions. 
8: Recalculate the particles' fitness. 
9: Update the particles' pbest and gbest. 

10: end for 
11 :end procedure 

Figure 3.27. Outline of the proposed approach based on the MSPSOER for solving the 
TSP. 



Figure 3 .28 presents the general architecture of the proposed approach based on 

the MSGSA, which includes initialization (parameters and the initialization of solutions), 

the evaluation of the agents' fitness, the G, the best agent and the worst agent update, the 

evaluation of the mass, the force of the mass, and the acceleration of the mass, the agents' 

velocities and positions update, and the conversion of the solution of agents with repeated 

states to the solution with unrepeated states. 

Similar to the original GSA, the MSGSA starts with an initialization operation 

that is necessary for configuring the parameters and an initial solutions of the algorithm 

(see Chapter II). During the initialization, the initial solutions for the population are 

randomly generated. Prior to this, the generated initial solutions for the population are 

subjected to a validity check to ensure the initial solutions are valid and feasible. In the 

TSP, the validity check is operated to ensure no city is repeated in each solution. The 

1: procedure MSGSA 
2: Initialize agents with random positions and velocities. 
3: Build a distance matrix. 
4: Set the agents to their current positions. 
5: Calculate the agents' fitness and set G, the best agent and the worst agent 
6: for T generations do 
7: Evaluate the mass. 
8: Evaluate the force of the mass. 
9: Evaluate the acceleration of the mass. 
10: Update the agents' velocities. 
11: Update the agents' positions. 
12: Convert the solution agents with repeated states to the solution 

with repeated states 
13: Recalculate the agents' fitness. 
14: Update the G, the best agent and the worst agent. 
15: end for 
15: end procedure 

Figure 3.28. Outline of the proposed approach based on the MS GSA for solving the 
TSP. 

2 3 5 4 

Figure 3.29. Example of a TSP sequence represented by an agent. 



vector representation corresponding to the cities of an agent is represented in Figure 3.29; 

in this case, the sequence of the solution is 2-3-5-4-1. The length of a string depends on 

the total number of cities used in the calculating the tour distance. 

The proposed approach based on the MSGSAER is provided in Figure 3.30. 

Similarly, as presented in the MSPSOER, the MSGSAER needs a distance matrix to 

calculate the fitness of each agent represented by a TSP sequence (please refer Figure 

3.25). With regard to the fitness of the agents calculated, the best agent and the worst 

agent is then set. The gravitational constant G is also initialized. The mass, the force of 

the mass, and the acceleration for each agent is then calculated. Next, the velocity and 

position for each agent is updated. The updated solution of each agent is then evolved to 

the solution with unrepeated states. Prior to this, the operation is portrayed in Figure 3.15. 

The optimum solution is then selected from the feasible solutions by evaluating the fitness 

of each agent. The best of the population is the solution that has the sequence that is more 

optimal up until the stopping condition is met. After the stopping condition is met, the 

performance of the proposed approach based on the MSGSAER can be investigated. 

Similarly as in the MSPSOER, the MSGSAER does not require the step that converts the 

feasible solutions from the infeasible solutions. 

1: procedure MSGSAER 
2: Initialize agents with random positions and velocities. 
3: Build a distance matrix. 
4: Set agents to their current positions. 
5: Calculate agents' fitness and set best agent and worst agent 
6: for T generations do 
7: Update the G, best agent and worst agent. 
8: Evaluate mass. ' 
9: Evaluate force of mass. 
10: Evaluate acceleration of mass. 
11: Update agents' velocities. 
12: Update agents' positions. 
13: Recalculate agents' fitness. 
14: Update the G, best agent and worst agent. 
15: end for 
15: end procedure 

FTigure 3.30. Outline of the proposed approach based on the MSGSAER for solving the 
cSP. 



3.10 Applying the MSPSO, the MSGSA, the MSPSOER, and the MSGSAER to the 

ASP 

This section presents the proposed approaches based on the MSPSO, the 

MSPSOER, the MSGSA, and the MSGSAER applied_to the ASP. Figure 3.31 shows the 

outline of the proposed approach based on the MSPSO which includes initialization 

sequence. The vector representation corresponding to the assembly components of a 

particle is represented in Figure 3.32; in this case, the sequence of the solution is 2-3-1-

5-4. The length of a string depends on the total number of components used in the 

assembly process. 

1: procedure MSPSO for solving the ASP 
2: Initialize particles' solution to feasible and initialize velocities to zero. 
3: Load PM, coefficient table, and actual assembly time. 
4: Set the particles' pbests to their current positions. 
5: Calculate the particles' fitness and set gbes~. 
6: for T generations do 
7: Update the particles' velocities. 
8: Update the particles' positions. 
9: Evolve the updated assembly sequence of each particle to feasible 

assembly sequence. 
10: Recalculate the particles' fitness. 
11: Update the particles' pbest and gbest. 
12: end for 
13:end procedure 

Figure 3.31. Outline of the proposed approach based on the MSPSO for solving the 
ASP. 

2 3 5 4 

Figure 3.32. Example of an assembly sequence represented by a particle. 



Components that are free to be assembled 

Figure 3.33. Assembly precedence diagram for the case study. 

Source Choi, Lee, & Cho 2008 

Figure 3.33 shows the assembly precedence diagram of a hypothetical product 

with nineteen components for the case study (Choi, Lee, & Cho, 2008). In this diagram, 

the components that are free to be assembled are the components that can be placed 

regardless of any part of a sequence.The precedence diagram can be translated into a PM 

as displayed in Table 3.2. 

Occasionally, some respective assembly components cannot be integrated into a 

feasible assembly sequence. The determination of the assembly components that do not 

correspond to a feasible assembly sequence is achieved by satisfying all PM constraints 

between the components in the assembly, which are determined earlier, either from CAD 

or a disassembly analysis (Gao, Qian, Li, & Wang, 2009). 



Table 3.2 
Precedence Matrix (PM) for the Case Study. 

Component to be Componenti 
assembled 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

2 

3 

4 

5 

6 

7 1 

g 1 

9 1 

10 l 

11 

12 

13 

14 1 

15 

16 

17 1 . 1 l 

18 

19 1 

Source: Choi et al. (1997) 



Table 3.3 
Coefficient of Various Components in the Assembly 

Component to be 
assembled 1 2 3 4 s 6 

10 

1.5 10 

2 

2 

10 

3.4 0 

1.2 

9.8 

0.5 

0 

2.3 

1 

1.5 

0 

1.2 

9.8 

0.6 

2.3 

2 

2 

4.5 0 

1.4 2.3 

0 0 

3 4.5 

4.5 2.3 

2 

0 2 

2.3 0 

2 3.4 

2 

4.5 0 

3 4 

0.5 3.4 

3 

2 

0 

10 

3 

4 

2 

4 

4.5 

10 

5 

2 

5 

0 

7.9 

1.2 3.6 10 

o.s 1.9 1 

0 0 1.8 

2.3 4.6 9.8 

0 2.3 0 

3 4 5 

2 2 2 

0 4 5 

0 4.5 0 

3 0 7.9 

1.2 3.6 0 

5 0 5 

1.2 3 2 

Componenti 
7 8 9 10 11 12 

6 

2 

0 

4 

7 

2 

4 

0 

0 

8 9 3.2 4.3 

2 2 0 3.1 

2.3 4.3 9.8 2.4 

8.9 

8 

1.2 

3.4 4 0 
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The coefficient table of the assembly is outlined in Table 3.3. A coefficient table 

represented in a matrix is then used to calculate the fitness of each particle represented by 

a feasible assembly sequence. With regard to the fitness of each particle calculated, the 

pbest of each particle is then set to its position. The best of the pbest that is the gbest is 

then set. In this study, the actual assembly time is set to 5 time unit. 

To confirm the production of a feasible assembly sequence of each particle, the 

updated assembly sequence of each particle produced by the updating position process is 

evolved to a feasible assembly sequence. To assemble the components of the product in 

a valid manner, only the feasible assembly sequences should be used. The feasibility of 

the sequences can be determined by referring to the PM. Based on the PM, the algorithm 

that can evolve the updated assembly sequence of each particle to feasible assembly 

sequence is developed, as shown in the previous Figure 3.34. 

Archiving has become an important part of the algorithm because it stores 

components that were not used during this feasibility evblution period of the updated 

assembly sequence of each particle. The maximum archive size is a fixed value according 

to how many components should be assembled. This algorithm removes each component 

in the archive with the selected feasible component based on the PM. 



Report the 
feasible 
solutions 

Strut 

The first paiticle/agent 

Read the ClUTent paiticle/agent 

Load the PM and archive 

The first dimension of the cun-ent pa1ticle/ agent 

Read the cmTent dimension of the 
current pa1ticle/agent 

Checked dimension feasible? 

Next pa1ticle/age11t 

Randomly choose any feasible component 
based 011 the PM 

Maintain the checked component in the 
cmTent dimension 

Swap position between the component of 
the checked dimension and the selected 

feasible component 

Remove the selected feasible component from archive 

e».'1 dimension Update the PM and archive 

Figure 3.34. Process of evolving the updated assembly sequence of each particle or 
agent to be feasible. 
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Figure 3.35. Swap position between two components in a sequence. 

In this algorithm, the position of each sequence is swapped randomly between an 

infeasible component and a feasible component. For instance, the updated assembly 

sequence and the swap position between two components are shown in Figure 3.35. The 

swapping process ends when each component occurs in an assembly sequence in which 

the sequence is now feasible. 

The evaluation of fitness of each particle is performed to improve the objective 

value. Hence, for each iteration, each particle represented by a feasible assembly sequence 

is evaluated. The pbest of each particle is then updated by a higher objective value, 

obtained either from the new position of the particle of the pbest. The gbest is then 

updated by the pbest with the highest objective value. The optimum solution of the ASP 

represented by the gbest is yielded when the stopping condition is finally met. After the 

stopping condition is met, the performance of the proposed approach based on the 

MSPSO can be investigated. 

To evaluate the fitness for each agent, the total· assembly time should be found. 

The total assembly time is the combination of the setup time and the actual assembly time. 

It is assumed that regardless of the assembly sequence, the actual assembly time is 

constant, and a proper tool and setup for each component to be assembled is required. 

These two items depend on the geometry of the component itself and the components 

assembled up to that point. The setup time for a component can be predicted using Eq. 

(2.26) as described in Section 2. 7 .2. The total assembly time is the summation of the setup 

time and the actual assembly time. Because the objective in this work to minimize 

assembly costs and time, the fitness function for minimizing the assembly time should be 

calculated by Eq. (2.27) as provided in Section 2.7.2. 



Figure 3.36 provides the outline of the proposed approaches based on the 

MSPSOER that is designed mostly identical to the MSPSO except the evolvement of the 

infeasible solutions to feasible solutions does not require to be conducted. This is because 

by using the MSPSOER, all Solutions obtained are valid and feasible. Meanwhile, Figure 

3.37 presents the general architecture of the proposed approach based on the MSGSA, 

which includes initialization (parameters and initial population), the evaluation of fitness 

1: procedure MSPSOER for solving the ASP 
2: Initialize particles' solution to feasible and initialize velocities to zero. 
3: Load PM, coefficient table, and actual assembly time. 
4: Set the'particles' pbests to their current positions. 
5: Calculate the particles' fitness and set gbest. 
6: for T generations do 
7: Update the particles' velocities. 
8: Update the particles' positions. 
9: Recalculate the particles' fitness. 

10: Update the particles' pbest and gbest. 
11: end for 
12:end procedure 

Figure 3.36. Outline of the proposed approach based on the MSPSOER for solving the 
ASP. 

1: procedure MS<?SA for solving the ASP 
2: Initialize particles' solution to feasible and initialize velocities to zero. 
3: Load PM, coefficient table, and actual assembly time. 
4: Set the agents to their current positions. 
5: Calculate the agents' fitness and set G, the best agent and the worst agent. 
6: for T generations do 
7: Evaluate the mass. 
8: Evaluate the force of the mass. 
9: Evaluate the acceleration of the mass. 

10: Update the agents' velocities. 
11: Update the agents' positions. 
12: Convert the updated assembly sequence of each agent to feasible 

assembly sequence. 
13: Recalculate the agents' fitness. 
14: Update the G, the best agent and the worst agent. 
15: end for 
16: end procedure 

Figure 3.37. Outline of the proposed approach based on the MSGSA for solving the 
ASP. 



of each agent, the G, the best agent and the worst agent update, the mass, the force of the 

mass, the acceleration of the mass, the update of the agents' velocities and positions, and 

the evolvement of the updated assembly sequence of each agent to feasible assembly 

sequence. 

Similar to the original GSA, the MSGSA starts with an initialization operation 

that is necessary for configuring the parameters and the initial population (see Chapter 

II). During the initialization, the initial population is randomly generated. Prior to this, 

the generated initial population are subjected to a validity check using the PM described 

in Section 2.7 .2 to ensure the initial population is valid and feasible. Each agent is 

represented by a sequence. The vector representation corresponding to the assembly 

components of an agent is represented in Figure 3.38; in this case, the sequence of the 

solution is 2-3-1-5-4. The length of a string depends on the total number of components 

used in the assembly process. 

Because the similar assembly of a hypothetical product with nineteen components 

is considered, (Choi, Lee, & Cho, 2008), the PM and the assembly coefficient table, as 

presented in Table 3.2 and Table 3.3 are referred. The PM table is referred in order to 

ensure feasibility of the sequences, so that the components of the product can be 

assembled in a valid manner. Based on the PM, the algorithm that can evolve the updated 

assembly sequence of each agent to feasible assembly sequence is developed, as shown 

in the previous Figure 3.34. 

The assembly coefficient table as presented in previous Table 3 .3 is used to 

calculate the fitness of each agent represented by a feasible assembly sequence. With 

regard to the fitness of each agent calculated, the best agent and the worst agent is then 

set. In this study, the actual assembly time is set to 5 time unit. The gravitational constant 

G is also initialized. The mass, the force of the mass, and the acceleration for each agent 

2 3 5 4 

Figure 3.38. Example of an assembly sequence represented by an agent. 



is then calculated. Next, the velocity and position for each agent is updated. The updated 

assembly sequence of each agent produced by the updating position process is then 

evolved to a feasible assembly sequence. 

Archiving has become an important part of the algorithm because it stores 

components that were not used during this feasibility evolution period of the updated 

assembly sequence of each agent. The maximum archive size is a fixed value according 

to how many components should be assembled. This algorithm removes each component 

in the archive with the selected feasible component based on the PM. In this algorithm, 

the position of each sequence is swapped randomly between an infeasible component and 

a feasible component. The swapping process ends when each component occurs in an 

assembly sequence in which the sequence is now feasible. 

The evaluation of fitness of each agent is performed to improve the objective 

value. Hence, for each iteration, each agent represented by a feasible assembly sequence 

is evaluated. The agent with the highest objective value for current iteration is then 

compared with the agent with the highest objective value for previous iterations. If the 

agent with the highest objective value for the current iteration is better than the agent with 

the highest objective value for previous iterations, the agent with the highest objective 

value for the current iteration is updated to be the agent with the highest objective value 

for all iterations. The optimum solution of the ASP represented by the best agent is 

yielded when the stopping condition is finally met. After the stopping condition is met, 

the performance of the proposed approach based on th~ MSGSA cari be investigated. To 

evaluate the fitness for each agent, the total assembly time should be found. The total 

assembly time is the combination of the setup time and the actual assembly time. It is 

assumed that regardless of the assembly sequence, the actual assembly time is constant, 

and a proper tool and setup for each component to be assembled is required. These two 

items depend on the geometry of the component itself and the components assembled up 

to that point. The setup time for a component can be predicted using Eq. (2.26) as 

described in Section 2.7.2. The total assembly time is the summation of the setup time 

and the actual assembly time. Because the objective in this work to minimize assembly 

costs and time, the fitness function for minimizing the assembly time should be calculated 

\Ising Eq. (2.27) as provided in Section 2.7.2. 



1: procedure MSGSAER for solving the ASP 
2: Initialize particles' solution to feasible and initialize velocities to zero. 
3: Load PM, coefficient table, and actual assembly time. 
4: Set the agents to their current positions. 
5: Calculate the agerlts' fitness and set G, the best agent and the worst agent. 
6: for T generations do 
7: Evaluate the mass. 
8: Evaluate the force of the mass. 
9: Evaluate the acceleration of the mass. 

10: Update the agents' velocities. 
11: Update the agents' positions. 
12: Recalculate the agents' fitness. 
13: Update the G, the best agent and the worst agent. 
14: end for 
15: end procedure 

Figure 3.39. Outline of the proposed approach based on the MSGSAER for solving the 
ASP. 

Figure 3.39 provides the outline of the proposed approaches based on the 

MSGSAER that is designed mostly identical to the MSGS,A except the evolvement of the 

infeasible solutions to feasible solutions does not require to be conducted. This is because 

by using the MSGSAER, all solutions obtained are valid and feasible. 

3.11 The Evaluation 

This thesis records evaluation by comparing between the algorithms with regard 

to the quality of solutions. The comparison is carried out in order to observe the average 

or minimum cost of solution. A statistical (descriptive test) is then executed to calculate 

the minimum, maximum, mean, and standard deviation of the algorithms. Firstly, a 

statistical test (Wilcoxon's Signed Rank Test) substitute for the t-test is executed for 

paired-sample data in doing inferences concerning the value of the median of the 

population of differences. Secondly, a statistical test (f riedman) is then performed for 

more than two sample data in order to test ifthere is a significant difference between the 

tested algorithms or the parameters used that yield the quality of solutions. A post-hoc 

procedure (Holm) is eventually conducted to find which pairs of algorithms of parameters 

that have the significant difference. 



3.11.1 Accuracy Test: the Descriptive Test 

One of critical aspect of this research is to acquire a significant interpretation of 

the experimental results, so the performance for a certain algorithm can be ultimately 

clarified. With regard to this matter, descriptive tes! is selected to describe the main 

feature of the results quantitatively. Inferential or inductive statistics employ the sample 

of data to get information about the population on the ground of the probability theory 

(Upton & Cook, 2002). Meanwhile, the descriptive test emphasizes in observing the big 

picture of the sample of data. The significant variable used in descriptive test is the mean 

or average; to determine the pivotal propensity of data (Mann, 2007). The median, mean, 

and mode are the measurement of the pivotal propensity, while the minimum, the 

maximum variable, and the standard deviation are the measurement of variability. 

This study uses the mean values to determine the average performance of the 

algorithm, which represent the quality of solution. The performance of the algorithms 

based on the quality of solutions are then compared and analysed. 

3.11.2 Significant Test: the Statistical Wilcoxon's Signed-Rank Test, Friedman Test 

and Holm Procedure 

In this research, using descriptor test solely to value the results is insufficient to 

justify the assumption or hypothesis stated. So, significant testing is used to impose 

statistical significance of differences between the performances of the algorithms or 

parameters setting. The commonly used paired test, i.e., the parametric t-test and its 

nonparametric alternative Wilcoxon's Signed Rank tests, are sufficient when comparing 

paired samples. However, these two tests are not sufficient when employing multiple 

comparisons due to the so-called multiplicity effect (Salzberg, 1997). Thus, one of the 

rank-based nonparametric called Friedman test (Friedman, 1937) is recommended to be 

used followed by proper post-hoc procedures for identifying pairs of algorithms or 

parameters which differ significantly. 



The, most popular statistical tests used to determine significant differences 

between two algorithms are the t-test and the Wilcoxon's Signed-Rank test (Wilcoxon, 

1945). These two tests are parametric that require the necessary conditions for a safe 

usage of parametric testS should be carried out; independence, normality, 

heteroscedasticity (Sheskin, 2011 and Zar, 2009). Hence, the nonparametric Wilcoxon 

matched pairs test, in which less powerful that t-test should be conducted. However, when 

the best one of a set of several algorithms should be found out, the pairwise comparisons 

are not suitable because the losing control over the so-called familywise error rate 

subjected to an accumulated error yielded from the combination of pairwise comparisons. 

Thus, sufficient tests and post-hoc procedures should be employed to multiple 

comparisons to compare between a control algorithm and other algorithms (1 x N 

comparisons) or to perform all possible pairwise comparisons (N x N comparisons). 

In our investigation,· nonparametric Wilcoxon's Signed-Rank test (Wilcoxon, 

1945) and Friedman test (Friedman, 1937) are performed. In performing Wilcoxon's 

Signed-Rank test, normally, the population would have 'a median, symmetrical, and be 

continuous. The differences between the variates are listed and ranked; the largest is 

assigned as the highest rank. If the case of ties occur, each should be appointed to a shared 

rank. 

The test statistic for the Wilcoxon Signed Rank Test is W, defined as the smallest 

of W+ and W- which are the sums of the positive and negative ranks, respectively. The 

level of significance and is set and sample size is set. The critical value for two-sided test 

is found in statistical table and the decision rule is as follows: Reject the null hypothesis 

if W:Sl. If the null hypothesis is rejected, a justification can be made that the two samples 

are significantly different. The test statistic can be obtained using Eq. (3.7). 

W =min(W+,W-) (3.7) 

where min is a minimum function which is used to find the smaller value between W+ 

and W-. 



On the other hand, Friedman test ranks the algorithms or parameters from the best 

performing one to the poorest one. In other words, for the ranking of the algorithms, the 

best performing algorithm is states as the rank of 1, the second best received the second 

rank, etc.; in the case of ties a~erage ranks are assigned. Let r/ be the rank ofthefh ofk 

algorithms for the ;th of n data sets. The Friedman te~t compares the average or mean 

ranks of algorithms, using R 1 = 1 I n"f.i r/ . The null hypothesis state that all the 

algorithms perform evenly and therefore their ranks R 1 should be equal. Based on this 

hypothesis the Friedman statistic is given as in Eq. (3 .8) where i2 F distributed with k-1 

degrees of freedom. 

2 _ 12n [R 2 _ k(k+l)
2

] 

XF-k(k+I) j 4 
(3.8) 

In order to determine whether to accept or reject the null hypothesis, it is essential 

to have a critical value i2 a. The critical value i2 a depends on significance level a. Table 

3.4 that represents the table for the chi-square distribution can only be used after knowing 

Table 3.4 
Chi-Square Table 

D.f. Chi-square 
x2

.oo5 x2
.025 x2

.o5 x2
.9o x295 x2.975 x299 x2995 

0.0004 0.0010 0.0039 2.706 3.8410· 5.0240 6.6350 7.8790 
0.0100 0.0506 0.1030 4.6050 5.9910 7.3780 9.2100 10.5970 
0.0717 0.2160 0.0352 6.2510 7.8150 9.3480 11.3450 12.8380 
0.2070 0.4840 0.7110 7.7790 9.4880 11.1430 13.2770 14.8600 
0.4120 0.8310 1.1450 9.2360 11.0700 12.8320 15.0860 16.7500 
0.6760 1.2370 1.6350 10.6450 12.5920 14.4490 16.8120 18.5480 
0.9890 1.6900 2.1670 12.0170 14.0670 16.0130 18.4750 20.2780 
1.3440 2.1800 2.7330 13.3620 15.5070 17.5350 20.0900 21.9550 
1.7350 2.7000 3.3250 14.6840 16.9190 19.0230 21.6660 23.5890 
2.1560 3.2470 3.9400 15.9870 18.3070 20.4830 23.2090 25.1880 
2.6030 3.8160 4.5750 17.2750 19.6750 21.9200 24.7250 26.7570 
3.0740 4.4040 5.2260 18.5490 21.0260 23.3360 26.2170 28.3000 
3.5650 5.0090 5.8920 19.8120 22.3620 24.7360 27.6880 29.8190 
4.0750 5.6290 6.5710 21.0640 23.6850 26.1190 29.1410 31.3190 
4.6010 6.2620 7.2610 22.3070 24.9960 27.4880 30.5780 32.8010 
5.1420 6.9080 7.9620 23.5420 26.2960 28.8450 32.0000 34.2670 

Note: D.f. =degree of freedom 
Source: Rothman (2012) 



the significance level a. The correct critical value i2 a should be selected from Table 3 .4 

by knowing which row and column to be used. The column is determined by the 

significance level a. The row is determined by k - 1 degree of freedom. The intersection 

of the column and row produces the critical value i2 a. For example, if the degree of 

freedom is 5, the k- 1 degree of freedom should be 4 and the critical value i2 95 is 9 .488. 

For any selected significance level a, the null hypothesis can be rejected if the computed 

value KF is greater than critical value i2 a for chi-square distribution having k- 1 degrees 

of freedom. 

The Friedman test can only detect the presence of differences over the whole 

multiple comparison. If the null hypothesis of similarity of rankings is rejected by the 

Friedman test, post-hoc procedures can be then conducted to find the particular pairs of 

algorithms which has a significant difference. In this research, Holm procedure is 

employed (Holm, 1979), which checks sequentially the ordering of hypotheses based on 

p-values from the lowest to the highest. All hypotheses for which P-value is less than the 

significance level a divided by the number of algorlthms minus the number of a 

successive step are rejected. All hypotheses that have greater P-values are supported. A 

brief of Holm procedure and the formula for computation of the adjusted P-value (APV) 

is given in Table 3.5. In this study, a multiple comparison (N x N comparison) in which 

all possible pairwise comparisons need to be computed is carried out. 

Table 3.5 
Post-Hoc Procedure (Holm) for N x N Comparison. 

Procedure Description 
Holm Step-down method, it 

Source: Holm (1979) 

rejects H1 to H;-1 if i is the 
smallest integer such that 
pi> al(k(k- 1)/2- i + 1) 

The notation used in Table 3.5 is outlined as follows: 

APV; 
min{v;l }, where v = 

max{(k(k- 1)/2-j + l)pj: 1 
< "< '} -1 _ l 

• indexes i and j are used in comparison or hypothesis in the family of hypotheses . 

Index i is subjected to the hypothesis where APV 1s being determined and index} 

refers to another hypothesis. 



• pj is the P-value that calculated for the /h hypothesis. P-value can be found using 

the table of two tails of Z as shown in Table 3.6. 

• k is the number of predictors that being compared. 

Table 3.6 
Two Tails ofZ. 

Tenths Hundredths 
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.9203 0.9124 0.9045 0.8966 0.8887 0.8808 0.8729 0.8650 0.8572 0.8493 
0.1 0.8415 0.8337 0.8259 0.8181 0.8103 0.8026 0.7949 0.7872 0.7795 0.7718 
0.2 0.7642 0.7566 0.7490 0.7414 0.7339 0.7263 0.7189 0.7114 0.7040 0.6965 
0.3 0.6892 0.6818 0.6745 0.6672 0.6599 0.6527 0.6455 0.6384 0.6312 0.6241 
0.4 0.6171 0.6101 0.6031 0.5961 0.5892 0.5823 0.5755 0.5687 0.5619 0.5552 
0.5 0.5485 0.5419 0.5353 0.5287 0.5222 0.5157 0.5093 0.5029 0.4965 0.4902 
0.6 0.4839 0.4777 0.4715 0.4654 0.4593 0.4533 0.4473 0.4413 0.4354 0.4295 
0.7 0.4237 0.4179 0.4122 0.4065 0.4009 0.3953 0.3898 0.3843 0.3789 0.3735 
0.8 0.3681 0.3628 0.3576 0.3524 0.3472 0.3421 0.3371 0.3321 0.3271 0.3222 
0.9 0.3173 0.3125 0.3077 0.3030 . 0.2983 0.2937 0.2891 0.2846 0.2801 0.2757 
1.0 0.2713 0.2670 0.2627 0.2585 0.2543 0.2501 0.2461 0.2420 0.2380 0.2341 
1.1 0.2301 0.2263 0.2225 0.2187 0.2150 0.2113 0.2077 0.2041 0.2006 0.1971 
1.2 0.1936 0.1902 0.1868 0.1835 0.1803 0.1770 0.1738 0.1707 0.1676 0.1645 
1.3 0.1615 0.1585 0.1556 0.1527 0.1499 0.1471 0.1443 0.1416 0.1389 0.1362 
1.4 0.1336 0.1310 0.1285 0.1260 0.1236 0.1211 0.1188 0.1164 0.1141 0.1118 
1.5 0.1096 0.1074 0.1052 0.1031 0.1010 O.o989 10.0969 0.0949 0.0930 0.0910 
1.6 0.0891 0.0873 0.0854 0.0836 0.0819 0.0801 0.0784 0.0767 O.Q751 0.0735 
1.7 0.0719 0.0703 0.0688 0.0673 0.0658 0.0643 0.0629 0.0615 0.0601 0.0588 
1.8 0.0574 0.0561 0.0549 0.0536 0.0524 0.0512 0.0500 0.0488 0.0477 0.0466 
1.9 0.0455 0.0444 0.0434 0.0424 0.0414 0.0404 0.0394 0.0385 0.0375 0.0366 
2.0 0.0357 0.0349 0.0340 0.0332 0.0324 0.0316 0.0308 0.0300 0.0293 0.0285 
2.1 0.0278 0.0271 0.0264 0.0258 0.0251 0.0245 0.0238 0.0232 0.0226 0.0220 
2.2 0.0215 0.0209 0.0203 0.0198 0.0193 0.0188 0.0183 0.0178 0.0173 0.0169 
2.3 0.0164 0.0160 0.0155 0.0151 0.0147 0.0143 0.0139 0.0135 0.0131 0.0128 
2.4 0.0124 0.0121 0.0117 0.0114 O.oI 11 0.0108 0.0105 0.0102 0.0099 0.0096 
2.5 0.0093 0.0091 0.0088 0.0085 0.0083 0.0081 0.0078 0.0076 0.0074 0.0072 
2.6 0.0069 0.0067 0.0065 0.0063 0.0061 0.0060 0.0058 0.0056 0.0054 0.0053 
2.7 0.0051 0.0050 0.0048 0.0047 0.0045 0.0044 0.0042 0.0041 0.0040 0.0039 
2.8 0.0037 0.0036 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 
2.9 0.0027 0.0026 0.0025 0.0025 0.0024 0.0023· 0.0022 0.0021 0.0021 0.0020 
3.0 0.0019 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 
3.1 0.0014 0.0013 0.0013 0.0012 0.0012 0.0012 0.0011 O.OOll 0.0010 0.0010 
3.2 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 
3.3 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 0.0005 
3.4 0.0005 0.0005 0.0004 - 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003 
3.5 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 
3.6 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 
3.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Source: Gerstman (2006) 



3.12 Research Methodology 

The research methodology employed in this study is presented in Figure 3.40. The 

ultimate goal of presenting this figure is to offer a brief summary of the research flow in 

a scientific manner. The research methodology has .to be robust to optimize the time 

consumption in collecting and analysing data. The research process is a step by step 

process of developing a scientific investigation. These steps give the basic foundations of 

a systematic approach in a research. The steps conducted in this research are listed as 

follows: formulation of the research problem, identification of existing literature, 

identification of objectives and scope, design and propose a model, implementation of the 

model into the considered algorithms, enhancement of the proposed model, 

Formulation of the research problem 

Identification of existing litera~re 

Identification of objectives and scope 

Establishment of multi-state model 

Implementation of the multi-state model into 

the considered algorithms 

Enhancement of the multi-state model 

Implementation of the enhanced model into 

the considered algorithms 

Validation on TSP and ASP 

Identification of contributions, limitations 

and future direction 

Figure 3.40. Research methodology. 



implementation of the enhanced model into the considered algorithms, validation of the 

continuous optimization algorithms that adopted the multi-state model and the enhanced 

multi-state mode on the selected case studies, and identification of contributions, 

limitations and future direction. 

3.12.l Formulation of the Research Problem 

This is the most vital part of research because the problem decides not only the 

nature and quality of the investigation, but also the design, methods and procedures of the 

study. There are 3 steps that should be carried out to identify the research problem; the 

selection of a topic area, the selection of a general problem in that area, and the reduction 

of the general problem to some precise and well defined problem. In this research, 

optimization problem is selected as the topic area. In the context of optimization problem, 

one of general problems called discrete optimization problems is selected. Discrete COPs 

is then considered to be the precise and well defined problem among discrete optimization . 
problems. 

Other than binary-coded optimization algorithms, there are plenty of continuous 

optimization algorithms that use different discretization approaches to solve discrete 

COPs. These approaches operate either in real-valued, binary or set-based search space, 

but none in multi-state search space. Owing to this, the multi-state model is identified as 

a potential model to handle discrete COPs and at the sa!Ile time, it has an advantage over 

binary-based optimization algorithms in representing solutions with less computational 

complexity. 

3.12.2 Identification of Existing Literature 

Basically, background information is required to understand the research problem 

clearly. For this reason, the process of reviewing what others have done in a related area 

should be executed. In this research, the literature review is conducted by reading the 

conference papers and reviewed journal, book chapters and thesis. It begins by 

overviewing continuous optimization algorithms such as PSO and GSA that make use of 

different discretization approaches in solving discrete COPS in order to grasp the big 



picture of achievement of this area. PSO and GSA are reviewed because these two 

algorithms share a few similar features in their operation and also there has been intense 

interest in the use of these two algorithms to solve many optimization problems. After 

that, several discrete COPs are identified as the selected case studies. During this stage, 

the research activity is separated into two primary tasks, as follows. 

1. Literature survey. A substantial literature is devoted to identify the existing 

continuous optimization algorithms that make use of the developed discretization 

approaches to solve discrete COPs. It starts with specification of keyword such as 

"discrete optimization algorithms", "binary optimization algorithms'', "the 

improved optimization algorithms", and "the enhanced optimization algorithms". 

Based on the selected keywords, an extensive search of papers is performed. The 

electronic databases used for the search include Google Scholar and Scopus. The 

papers are then filtered to select only relevant papers based on information 

contained in the abstract, title and keywords. The selected papers are eventually 

fully studied and evaluated to obtain a clear picture in the research area. 

2. Identify the research gaps. The major contribution of this study that is to fill the 

research gap in identifying the new discretization approach adoption for discrete 

COPs has been done. 

3.12.3 Identification of Objectives and Scope 

The research objectives are determined based on the research problem. The 

objectives are defined with respect to research gaps noted from literature review, so the 

list of objectives are in alignment with current research trends and handle particular 

limitations of previous works. The research objectives serves as guidelines of the task list 

of things that need to be done. Meanwhile, the research scope refers to the boundaries 

which the study is operated. 



3.12.4 Establishment of Multi-State Model 

In this research, multi-state model is developed to provide a new kind of 

discretization approaches. The proposed model must be able to solve discrete COPS. The 

design of the multi-state is illustrated using Burma 14 l)enchmark instance of TSP. 

3.12.5 Implementation of the Multi-State Model into the Considered Algorithms 

In this stage, the multi-state model is embedded in the considered continuous 

optimization algorithms. Concerning this, a few modifications have been done on the 

formulation without violating the core of updating mechanism in the original algorithms. 

3.12.6 Enhancement of the Multi-State Model 

In this research, the enhancement of multi-state model with an embedded rule is 

developed to eliminate limitation of multi-state model in which the state of its solution 

can be repeated. The enhanced model must be able to solve discrete COPS. The design 

of the enhanced multi-state is illustrated using Burma 14 benchmark instance of TSP. 

3.12.7 Implementation of the Enhanced Model into the Considered Algorithms 

In this stage, the enhanced multi-state model with an embedded rule is adopted in 

the considered continuous optimization algorithms. Concerning this, a few modifications 

have been done on the formulation without violating the core of updating mechanism in 

the original algorithms. 

3.12.8 Validation on TSP and ASP 

Validation of the continuous optimization algorithms that adopted the multi-state 

!node! (MSPSO and MSGSA) and the enhanced multi-state mode (MSPSOER and 

MSGSAER) are conducted to evaluate the performance of these four algorithms using 



two selected test problems which are TSP and ASP. In this stage, two primary research 

tasks are planned. 

1. Validate on TSP. From literature, TSP has been identified as the first test 

problem. This problem covers small, medium, and large size of cities in order to 

analyse the performance of the MSPSO, the MSPSOER, the MSGSA, and the 

MSGSAER on different sizes of cities. For comparison purposes, the MSPSO and 

the MSPSOER are compared with the BPSO. Meanwhile, the MSGSA and 

MSGSAER are compared with the BGSA. 

2. Validate on ASP. From literature, ASP has been identified as the second test 

problem. ASP is selected because it shares similar characteristic with TSP but with 

an additional constraint which is the solutions should be generated according to 

its precedence matrix. For comparison purposes, the MSPSO, the MSPSOER, the 

MSGSA, and the MSGSAER are compared with the BPSO, GA, and SA. 

3.12.9 Identification of Contributions, Limitations and Future Direction 

As the final stage, the research contributions to knowledge are identified by 

reviewing the proposed research model and its outcomes in line with the research 

objectives. On the other hand, the research gaps are also figured out to ensure how the 

contributions have filled the gaps. Following that, the limitations of this research are 

identified with regard to the respect future direction for this research in order to overcome 

the limitations and at the same time enhance the research in this area. 

3.13 Summary 

This chapter demonstrates the origin of multi-state model that is inspired from a 

sequential circuit in digital system. There are two primary features in the multi-state 

model; a current state and a radius. By implementing this model on PSO and GSA, two 

discrete optimization algorithms have been proposed, which are the MSPSO and the 

MSGSA. These two algorithms have modified the way to update their velocity and 

Position. As aforementioned, the MSPSO and the MSGSA have a chance to produce 



solutions with repeated states. To solve the repetitive issue, the multi-state model is then 

extended by implementing an embedded rule which ensure that "each state can be chosen 

only once" in a solution. By implementing the extended multi-state model, the MSPSOER 

and the MSGSAER have bee'n developed. In these two developed algorithms, solutions 

with unrepeated states have been successfully generated. For validation purposes, the 

proposed approaches based on the MSPSO, the MSPSOER, the MSGSA, and the 

MSGSAER for solving the TSP and the ASP are then provided. Next, the chapter offers 

a description of the statistical tests to analyse either there are significant differences in 

term of performance between the algorithms in comparison. The chapter eventually 

elaborates the general process of this research step by step in research methodology. 



CHAPTER4 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

In this section, computation results of the proposed algorithms (i.e. the MSPSO, 

the MSPSOER, the MSGSA, and the MSGSAER) and their binary-based algorithm (i.e. 

' the BPSO and the BGSA) are presented. To evaluate the performance of these algorithms, 

several experiments were conducted on two categories of COPs; the TSP and the ASP. 

In investigating the performance of the algorithms for the TSP, eighteen sets of 

TSP benchmark instances taken from TSPLIB are used (Reinelt, 1991). The experiments 

are divided into two stages; the first stage is the experiment that uses small size of TSP 

benchmark instances and the second stage uses medium and big size of TSP benchmark 

instance. The primary objective of the second stage of the experiment is to determine the 

performance of the proposed algorithms with bigger size of TSP benchmark instances. 

On the other hand, an ASP consisting nineteen components is chosen as the case 

study (Motavalli & Islam, 1997; Choi et al., 2008 and Mukred et al., 2012). Each solution 

is in the form of a feasible assembly sequence. The optimum sequence is then selected 

from the feasible assembly sequences by evaluating the fitness of each solution. The best 

of the population is the sequence that is more optimal up until the stopping condition is 

met. After the stopping condition is met, the performance of the proposed approach using 

' the proposed approach based on the MSPSO, the proposed approach based on the 

MSPSOER, the proposed approach based on the MSGSA, and the proposed approach 

based on the MSGSAER can be investigated. To conclude the finding, the performance 



of the proposed approach using the MSPSO and the MSGSA are compared against some 

related approaches embedded with meta heuristics, such as SA (Motavalli & Islam, 1997), 

the GA (Choi, Lee, & Cho., 2008), and the BPSO (Mukred et al., 2012). Table 4.1 offers 

an explanation for the eighteen sets of TSP benchmark instances that considered in this 

study by name, size, number of cities, and optimal route length. 

The quality of results is measured based on the objective values of the best 

solutions found by each algorithm. For instance, if the number of independent run is 50, 

the quality ofresults is determined based on the fitness values of 50 solutions. The average 

(mean), minimum (min) and maximum (max) of fitness values of 50 solutions, and the 

standard deviation (SD) are recorded. The mean value is heavily used in the analysis of 

results that obtained after conducting experiments using the TSP benchmark instances to 

identify the consistency of each proposed algorithms. 

Table 4.1 
Characteristics o[_TSP Benchmark Instance. 

TSP instance Size Number of cities Optimal route length 

Burma14 Small 14 3323 

Ulysses16 Small 16 6859 
Ulysses22 Small 22 7013 
Bays29 Small 29 2020 
Eil51 Small 51 426 
Berlin52 Small 52 7542 
Eil76 Medium 76 538 
RdlOO Medium 100 7910 
EillOl Medium 101 629 
Bier127 Medium 127 118282 
Ch130 Medium 130 6110 
Ch150 Medium 150 6528 
Rd400 Big 400 15281 
Rat783 Big 783 8806 
Prl002 Big 1002 259045 
Rl1304 Big 1304 252948 
Rl1323 Big 1323 270199 

_Rl1889 Big 1889 316536 
Source: Reinelt ( 1991) 

Meanwhile, the min value is heavily used in the analysis of results that obtained by 

conducting experiments using the ASP case study to identify the minimum assembly time 

and its associated best parameter settings. 



4.2 The Performance of the MSPSO, the MSPSOER, and the BPSO for solving the 

TSP 

This section offers the comparisons of the performance between the MSPSO, the 

MSPSOER, and the BPSO for problems with small and bigger size of the TSP benchmark 

instance. The small and bigger size of the TSP benchmark instances are considered with 

the number of city ranged from 14 to 52 and 76 to 1889, respectively. Due to sensitivity 

of algorithmic parameters, c1, and c2, for the MSPSO, the MSPSOER and the BPSO were 

chosen according to previous reported values (Kennedy & Eberhart, 1995 and Blum & 

Roli, 2003) that suggested a fixed value of 2.0. With the conviction that a large OJ 

facilitates a global search while a small OJ facilitates a local search, OJlnitial and OJFinal 

are usually set to 0.9 to 0.4, respectively (Shi & Eberhart, 1998). This means that the OJ 

can be interpreted as the fluidity of the medium in which a particle moves, indicating that 

setting it to 0.9 makes particles move in a low viscosity medium and performs extensive 

exploration. Gradually reducing it to 0.4 makes the particle moves in a high viscosity 

medium and performs more exploitation. The number of iteration T for the small and 

bigger size of the TSP benchmark instances are set to 10000 and 1000, respectively. T for 

the bigger size of the TSP benchmark instances is set smaller in order to speed up the 

computation in obtaining results. The total number of runs is 50 for the both two size 

categories. 

In order to evaluate the performance of the algorithms in consideration, the 

indicators used are the quality of ~esults and speed of convergence, and the superiority of 

results on individual runs. With regard to the speed of convergence, each particle of each 

algorithm records the objective value of the best solution found in every iteration. 

Convergence patterns for each algorithm are then constructed using the best solution of 



Table 4.2 
Parameter Settings of the MSPSO, the MSPSOER, and the BPSO on the Small Size of 
the TSP Benchmark Instances. 

Parameter 
Algorithm 

MSPSO MSPSOER BPSO 
Number of run 50 50 50 

Number of iteration 10000 10000 10000 

Number of particle 30 30 30 

CJ and c2 2 2 2 

n and r2 [0,1] [0,1] [O, 1] 
w Initial 0.9 0.9 0.9 
w Final 0.4 0.4 0.4 

Table 4.3 
Parameter Settings of the MSPSO, the MSPSOER, and the BPSO on the Bigger Size of 
the TSP Benchmark Instances. 

Parameter 
Algorithm 

MSPSO MSPSOER BPSO 
Number of run 50 50 50 

Number of iteration 1000 1000 1000 

Number of particle 30 30 30 

CJ and c2 2 2 2 

n and r2 [0,1] [0,1] [0,1] 
w Initial 0.9 0.9 0.9 
w Final 0.4 0.4 0.4 

each algorithm. Table 4.2 and Table 4.3 list the parameters and their respective value for 

the small and bigger size of the TSP benchmark instances of the MSPSO, the MSPSOER, 

and the BPSO, respectively. 



4.2.1 The Performance of the MSPSO, the MSPSOER, and the BPSO for Small 

Size of the TSP Benchmark Instances 

A summary of the performance of the MSPSO, the MSPSOER, and the BPSO for 

small size of the TSP benchmark instances is given in.Table 4.4. The values reported are 

best, worst, average, and standard deviation of solutions over 50 independent runs. The 

MSPSOER yields smaller values for the minimum for Burma14, Ulysses16, and Berlin52 

benchmark instances compared to the MSPSO and the BPSO, thus verifying that the 

MSPSOER produces higher quality solutions. Similarly, the MSPSOER yields smaller 

values for the minimum compared to the MSPSO and the BPSO in finding the quality of 

the results ofUlysses22, Bays29, and Eil51 benchmark instances; the MSPSOER produces 

higher quality solutions than the MSPSO and the BPSO. 

Table 4.4 
Performance of the MSPSO, the MSPSOER, and the BPSO on the Small Size of the TSP 
Benchmark Instances. 

TSP instance Algorithm Min Mean Max SD 
Burma14 MSPSO 3411.00 3753.26 3955.00 144.00 

MSPSOER 3475.00 3712.66 4004.00 121.41 
BPSO 3527.00 3739.88 3829.00 101.69 

Ulysses16 MSPSO 7499.00 7913.66 8204.00 200.64 
MSPSOER 7011.00 7765.40 8087.00 210.28 

BPSO 7572.00 7828.26 8203.00 163.38 
Ulysses22 MSPSO 9603.00 9907.80 10297.00 234.09 

MSPSOER 9457.00 9677.00 9834.00 154.81 
BPSO 9565.00 10084.40 10499.00 367.60 

Bays29 MSPSO 3669.00 3950.02 4126.00 99.78 
MSPSOER 3646.00 3912.42 4107.00 110.99 

BPSO 3747.00 3952.52 4114.00 96.25 
Eil51 MSPSO 1184.00 1226.64 1266.00 20.85 

MSPSOER 1143.00 1219.22 1258.00 25.82 
BPSO 1218.00 1241.80 1264.00 16.38 

Berlin52 MSPSO 21261.00 22021.40 22606.00 352.81 
MSPSOER 19980.00 21686.10 22360.00 497.20 

BPSO 21124.00 21853.20 22393.00 364.29 
Note: Bold signifies the best mean result for each instance 



On the other hand, the best result found from these 50 independent runs of each 

algorithm for each TSP benchmark instance algorithm are selected and then portrayed in 

several convergence patterns. Gbest fitness or global best, which is the best fitness value 

among swarm particles is recorded in the convergence patterns of each iteration. Figure 

4.1 and Figure 4.2 present that the MSPSO converges slower for Burma14, Ulyssesl6, 

and Berlin52 benchmark instances. 

Convergence Pattern 
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Figure 4.1. Comparison of the convergence pattern of the MSPSO, the MSPSOER, and 
the BPSO for Burmal 4 benchmark instance. 
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Figure 4.2. Comparison of the convergence pattern of the MSPSO, the MSPSOER, and 
the BPSO for Ulysses16 benchmark instance. 



Figure 4.3 shows the BPSO converges slower for Ulysses22 benchmark instance. 

Meanwhile, Figure 4.4 illustrates that the MSPSOER converges slower for Bays29 and 

Ei151 benchmark instances. 
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Figure 4.3. Comparison of the convergence pattern of the MSPSO, the MSPSOER, and 
the BPSO for Ulysses22 benchmark instance. 
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Figure 4.4. Comparison of the convergence pattern of the MSPSO, the MSPSOER, and 
the BPSO for Bays29 benchmark instance. 
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Figure 4.5. Comparison of the convergence pattern of the MSPSO, the MSPSOER, and 
the BPSO for Eil51 benchmark instance. 
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Figure 4. 6. Comparison of the convergence pattern of the MSPSO, the MSPSOER, and 
the BPSO for Berlin52 benchmark instance. 

Figure 4.5 shows that the MSPSOER converges slower for Bays29 and Eil5 l benchmark 

instances. Figure 4.6 presents that the MSPSO converges slower for Burmal4, Ulyssesl6, 

and Berlin52 benchmark instances. 



Two comparisons between the individual runs for the MSPSO and the BPSO, and 

the MSPSOER and the BPSO are shown in Table 4.5 and 4.6. In these two tables, the 

number of times of the MSPSO and the MSPSOER perform better, similar, or worse than 

the BPSO are recorded. With regard to the individual runs conducted, it is observed that 

the MSPSO and the MSPSOER performs better than the BPSO in obtaining the best 

solution in each benchmark instance. 

The difference between the solutions obtained by these four algorithms is also 

analysed using boxplots, as shown in Figure 4.7. In this figure, each rectangle represents 

one of the six benchmark instances (ranging from (a) to (f)). Inside each rectangle, 

boxplots representing the distribution of the best solution value for the MSPSO, the 

MSPSOER, and the BPSO are drawn. In each boxplot, the minimum and maximum 

values are the lowest and highest lines, the upper and lower ends of the box are the upper 

Table 4.5 
Number of Times of the MSPSO Performs Better, Similar, or Worse compared to the 
BPSO. 

TSP instance 
MSPSO vs. BPSO 

Better Similar Worse 
Burma14 28 0 22 
Ulysses16 27 0 23 
Ulysses22 35 0 15 
Bays29 28 0 22 
Eil51 35 0 15 
Berlin52 27 0 23 

Table 4.6 
Number of Times of the MSPSOER Performs Better, Similar, or Worse compared to the 
BPSO. 

TSP instance MSPSO vs. BPSO 
Better Similar Worse 

Burma14 30 0 20 
Ulysses16 29 0 21 
Ulysses22 40 0 10 
Bays29 30 0 20 
Eil51 38 0 12 
Berlin52 28 0 22 



and lower quartiles, a line within the box shows the median, and the isolated points are 

the outliers of the distribution. 

Each boxplot offers the information about the quality and the performance of the 

MSPSO, the MSPSOER, and the BPSO. The size of the box represents how varies the 

results. A smaller box indicates a constant performance of the parameters. In some 

occasions, the results obtained by the three algorithms contain outliers. The outliers should 

not be casted from measurement because they are feasible solutions. The pure outliers are 

actually produced with an actual measurement from the experiments and without clerical 

errors. The unusual marks are generated by the stochastic behaviour of the algorithms. 

Because the TSP is a minimization problem, a boxplot that its lower line closes to the 

minimum value is covetable since the boxplot demonstrates better quality of the solutions. 

It can be observed from Figure 4.7 that the MSPSOER give good performance on the six 

sets of TSP benchmark instances; the MSPSOER is promising. 
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It seems that nonparametric test should be used to compare the algorithms because 

the solutions are not normally distributed. Wilcoxon's Signed-Rank test is performed to 

the MSPSO and the BPSO in order to investigate either the quality of results between 

these two algorithms are identical or not; the null hypothesis is that the quality of results 

of these two algorithms are identical. The mean value should be used in executing the 
. 

Wilcoxon's Signed-Rank test. As a consequence, rank information is provided as shown 

in Table 4.7. 

The level of significance is set at 5% (p < 0.05) and sample size is 6. The critical 

value for two-sided test is 1 and the decision rule is as follows: Reject the null hypothesis 

if the test statistic, W:Sl. With regard to the Wilcoxon's Signed Rank Test, the test statistic 

is W = 6, where w+" = [3 + 2 + 1] = 6 and W- = [6 + 4 + 5] = 15. Therefore, the null 

hypothesis cannot be rejected because 6 > 1. The result is statistically no significant at p 

< 0.05, where the performance of the MSPSO is similar to the BPSO. 

To investigate the performance of the MSPSO, the MSPSOER, and the BPSO, 

other nonparametric test is performed; the Friedman test with significance level 0.05 is 

performed using the experimental results from Table 4.4. This test is advisable for 

comparison that is more than two sets of algorithms (Dieterich, 2012). 

Table 4.7 
Wilcoxon 's Signed-Rank Test Table. 

TSP instance MSPSO BPSO Diff Rank 
Burma14 3753.26 3739.88 13.38 3 
Ulysses16 7913.66 7828.26 85.40 2 
Ulysses22 9907.80 10084.40 -176.60 6 
Bays29 3950.02 3952.52 -2.50 4 
Eil51 1226.64 1241.80 -15.16 5 
Berlin52 22021.40 21853.20 168.2 1 



The test begins with sorting the three algorithms based on their average performance, as 

presented in Table 4.8. The average rank is then utilized to measure the Friedman statistic 

value. The Friedman statistic value x2F is greater than the critical value x2a, (9.3468 > 

5.9910). Thus, significant differences exist between the algorithms. Because significant 

difference exists, a post hoc procedure called Holm procedure is then performed and the 
. 

three algorithms are compared to each other. This procedure can identify what are the 

pairs of the algorithms that have the significant difference. The result of the Holm 

procedure in Table 4.9 shows that there are significant differences exist between the 

performance of the MSPSO and the MSPSOER, and the MSPSOER and the BPSO 

because P <Holm. Summary of the Holm procedure on these three algorithms is provided 

in Table 4.10. 

Table 4.8 
Friedman Test based on Results Computed in Table 4.4. 

TSP Instance Item MSPSO MSPSOER 
Burma14 Friedman Rank 3 
Ulysses 16 Friedman Rank 3 
Ulysses22 Friedman Rank 2 
Bays29 Friedman Rank 2 
Eil51 Friedman Rank 2 
Berlin52 Friedman Rank 3 
Average Friedman rank 2.50 

Table 4.9 

1 
1 
1 
1 
1 
1 

1.00 

Holm Procedure based on Average Friedman Rank in Table 4.8. 
Algorithm P z 

MSPSO vs. MSPSOER 0.0093 2.5981 
MSPSOER vs. BPSO 0.0093 2.5981 
MSPSO vs. BPSO , 1.0000 0.0000 

Table 4.10 

BPSO 
2 
2 
3 
3 
3 
2 

2.50 

Holm 
0.0167 
0.0250 
0.0500 

Performance of the MSPSO, the MSPSOER, and the BPSO Measurement using Friedman 
Test/or Small Size of the TSP Benchmark Instances. 

Summary Performance 
1 MSPSOER > MSPSO 
2 MSPSOER > BPSO 
3 MSPSO = BPSO 

Note: ">" means better than and "="means similar 



4.2.2 The Performance of the MSPSO, the MSPSOER, and the BPSO for Bigger 

Size of the TSP Benchmark Instances 

The best, worst, average, and standard deviation of solutions recorded for each 

algorithm on medium size of the TSP benchmark instance is shown in Table 4.11. 

Table 4.11 
Performance of the MSPSO, the MSPSOER, and the BPSO on the Medium Size of the 
TSP Benchmark Instance. 

TSP instance Algorithm Min Mean Max SD 
Eil76 MSPSO 1953.00 2030.68 2089.00 27.90 

MSPSOER 1890.00 2025.20 2111.00 58.27 
BPSO 1907.00 2036.86 2092.00 36.22 

RdlOO MSPSO 43217.00 45565.84 47038.00 1102.53 
MSPSOER 44398.00 45802.72 47239.00 818.47 

BPSO 43060.00 45849.82 47147.00 802.57 
EillOl MSPSO 2715 2822.60 2878.00 38.65 

MSPSOER 2124 2753.62 2920.00 243.05 
BPSO 2687 2834.80 2936.00 53.46 

Bier127 MSPSO 437345.00 529237.5'8 550213.00 31720.33 
MSPSOER 393989.00 524965.40 551755.00 49116.56 

BPSO 486034.00 534565.08 550759.00 12835.19 
Ch130 MSPSO 37042.00 38862.52 39767.00 533.25 

MSPSOER 38216.00 39197.12 40460.00 549.64 
BPSO 37638.00 39113.46 40098.00 467.77 

Ch150 MSPSO 44637.00 45973.06 46904.00 505.66 
MSPSOER 43973.00 45928.84 47349.00 910.80 

BPSO 44732.00 46159.44 47103.00 539.80 
Note: Bold signifies the best mean result for each instance 



Table 4.12 
Performance of the MSPSO, the MSPSOER, and the BPSO on the Big Size of the TSP 
Benchmark Instance. 

TSP 
Algorithm Min Mean Max SD instance 

Rd400 MSPSO 188763.00 192819.56 195336.00 1860.90 
MSPSOER 190669.00 192952.82 194679.00 1281.22 

BPSO 187569.00 192940.06 195418.00 1496.72 
Rat783 MSPSO 72134.00 114856.78 168076.00 42277.63 

MSPSOER 72134.00 109569.34 168422.00 40881.85 
BPSO 71639.00 110450.06 127634.00 23239.69 

Pr1002 MSPSO 349403.00 2733522.90 6111659.00 2611368.15 
MSPSOER 349403.00 2031444.24 6105917.00 2419601.40 

BPSO 349403.00 2687373.84 4222032.00 1838944.82 
Rll304 MSPSO 3231694.00 7216410.76 8950765.00 2386503.85 

MSPSOER 3231694.00 5167684.32 8958771.00 1747172.41 
BPSO 3231694.00 5765121.82 5963679.00 377814.96 

R11323 MSPSO 3088190.00 7361480.44 9353923.00 2422943.71 
MSPSOER 3088190.00 5555627.94 9341337.00 2207204.58 

BPSO 3088190.00 5612973.50 6014060.00 652337.70 
Rl1889 MSPSO 6601280.00 7344841.26 14207858.00 1710603.51 

MSPSOER 6601280.00 7070631.30 10262037.00 802824.10 
BPSO 6601280.00 8877423.561 12073899.00 2608097.78 

Note: Bold signifies the best mean result for each instance 

Meanwhile, the best, worst, average, and standard deviation of solutions recorded 

for each algorithm on big size of the TSP benchmark instance is shown in Table 4.12. 

Wilcoxon's Signed-Rank test is initially performed to the MSPSO and the BPSO that use 

medium and big size of the TSP benchmark instance in order to investigate either the 

quality of results between these two algorithms are identical or not; the null hypothesis is 

that the quality of results of these two algorithms are id_entical. 



Table 4.13 
Wilcoxon 's Signed-Rank Test Table. 

TSP Instance MSPSO BPSO Diff Rank 

Eil76 2030.68 2036.86 -6.18 5 
RdlOO 45565.84 45849.82 -283.98 10 
EillOl 2822.60 2834.80 -12.2 6 
Bier127 529237.58 534565.08 -5327.5 11 
Chl30 38862.52 39113.46 -250.94 9 
Chl50 45973.06 46159.44 -186.38 8 
Rd400 192819.56 192940.06 -120.5 7 
Rat783 114856.78 110450.06 4406.72 4 
Pr1002 2733522.90 2687373.84 46149.06 3 
Rl1304 7216410.76 5765121.82 1451288.94 2 
Rl1323 7361480.44 5612973.50 1748506.94 1 
Rl1889 7344841.26 8877423.56 -1532582.30 12 

Table 4.13 provides rank information that is used to execute Wilcoxon's Signed­

Rank test. The level of significance is set at 5% (p < 0.05) and sample size is 12. The 

critical value for two-sided test is 14 and the decision rule is as follows: Reject the null 

hypothesis if the test statistic, W:Sl4. With regard to tlie Wilcoxon's Signed Rank Test, 

the test statistic is W= 10, where W- = [4 + 3 + 2 + 1] = 10 and W = [5 + 10 + 6 + 11 + 

9 + 8 + 7 + 12] = 68. Therefore, the null hypothesis can be rejected because 10 < 14. The 

result is statistically significant at p < 0.05, where the MSPSO performs better than the 

BPSO. 



To study the performance of the MSPSO, the MSPSOER, and the BPSO, the 

Friedman test with significance level 0.05 is performed using the experimental results 

from Table 4.11 and Table 4.12. The test begins with sorting the three algorithms based 

on their average performance, as presented in Table 4.14. The average rank is then utilized 

to measure the Friedman statistic value. It seems that the Friedman statistic value IF is 
greater than the critical value I a, (7 .1664 > 5 .9910). Thus, significant differences exist 

between the algorithms. 

Holm procedure is then performed, and the three algorithms are compared to each 

other. The result of the Holm procedure in Table 4.15 presents that there is significant 

difference exists between the performance of the MSPSOER and the BPSO. Meanwhile, 

there are no significant differences exist between the MSPSO and the MSPSOER, and 

the MSPSO and the BPSO because P < Holm. 

Table 4.14 
Friedman Test based on Results Computed in Table 4.11 and Table 4.12. 

TSP instance Item MSPSO MSPSOER BPSO 
Eil76 Friedman Rank 2 1 3 
RdlOO Friedman Rank 1 2 3 
EillOl Friedman Rank 2 1 3 
Bierl27 Friedman Rank 2 1 3 
Chl30 Friedman Rank 1 3 2 
Chl50 Friedman Rank 2 I 3 
Rd400 Friedman Rank 1 3 2 
Rat783 Friedman Rank 3 1 2 
Pr1002 Friedman Rank 3 1 2 
Rl1304 Friedman Rank 3 I 2 
RI 1323 Friedman Rank 3 1 2 
Rll 889 Friedman Rank 2 1 3 
Average Friedman rank 2.08 1.42 2.50 

Table 4.15 
Holm Procedure based on Average Friedman Rank in Table 4.14. 

Algorithm P z 
MSPSOER vs. BPSO 0.0080 2.6536 
MSPSO vs. MSPSOER 0.1025 1.6330 
MSPSO vs. BPSO 0.3074 1.0206 

Holm 
0.0167 
0.0250 
0.0500 



Table 4.16 
Performance of the MSPSO, the MSPSOER, and the BPSO Measurement using Friedman 
Test for Bigger Size of the TSP Benchmark Instances. 

Summary Performance 
1 MSPSOER > BPSO 
2 MSPSOER = MSPSO 
3 MSPSO = BPSO 

Note: ">"means better than and "="means similar 

To sum up, the performance between each algorithm is offered in Table 4.16. 

4.3 The Performance of the MSGSA, the MSGSAER, and the BGSA for solving 

the TSP 

This section offers the comparisons of the performance between the MS GSA, the 

MSGSAER, and the BGSA problems with small and bigger size of the TSP benchmark 

instance. The small and bigger size of the TSP benchmark instances are considered with 

the number of city ranged from 14 to 52 and 76 to 1889, respectively. Due to sensitivity 

of algorithmic parameters, Go is set to 100 and fJ is set to 20 according to the authors of 

GSA (Rashedi, Nezamabadi-pour, & Saryazdi, 2009a). The number of iteration T for the 

small and bigger size of the TSP benchmark instances are set to 10000 and 1000, 

respectively. T for the bigger size of the TSP benchmark instances is set smaller in order 

to speed up the computation in obtaining results. The total number of runs is 50 for the 

both two size categories. 

In order to evaluate the/performance of the algorithms in consideration, the 

indicators used are the quality of results and speed of convergence, and the superiority of 

results on individual runs. With regard to the speed of convergence, each agent of each 

algorithm records the objective value of the best solution found in every iteration. 

Convergence patterns for each algorithm are then constructed using the best solution of 

each algorithm. 



Table 4.17 
Parameter Settings of the MSGSA, the MSGSAER, and the BGSA on the Small Size of the 
TSP Benchmark Instances. 

Parameter 
Algorithm 

MS GSA MSGSAER BGSA 
Number of run 50 50 50 
Number of iteration 10000 10000 10000 . 
Number of agent 30 30 30 
Go 100 100 100 

fJ 20 20 20 

Table 4.18 
Parameter Settings of the MSGSA, the MSGSAER, and the BGSA on the Bigger Size of 
the TSP Benchmark Instances. 

Parameter 
Algorithm 

MS GSA MSGSAER BGSA 
Number of run 50 50 50 
Number of iteration 10000 10000 10000 
Number of agent 30 30 30 

Go 100 100 100 

fJ 20 20 20 

In this study, the parameters and their respective value for the small and bigger size of 

the TSP benchmark instances of the MS GSA, the MSGSAER, and the BGSA are listed 

in Table 4.17 and Table 4.18, respectively. 



4.3.1 The Performance of the MSGSA, the MSGSAER, and the BGSA for Small 

Size of the TSP Benchmark Instances 

A summary of the performance of the MSOSA, the MSGSAER, and the BOSA 

for small size of the TSP benchmark instances is given in Table 4.19. The values reported 
. 

are best, worst, average, and standard deviation of solutions over 50 independent runs. The 

MSGSAER yields smaller values for the minimum for all the six sets of the TSP 

benchmark instance compared to the MSGSA and the BGSA, thus verifying that the 

MSGSAER produces higher quality solutions. On the other hand, the best result found 

from these 50 independent runs of each algorithm for each TSP benchmark instance 

algorithm are selected and then portrayed in several convergence patterns. Best fitness is 

recorded in the convergence patterns of each iteration. 

Table 4.19 
Performance of the MSGSA, the MSGSAER, and the BGSA on the Small Size of the TSP 
Benchmark Instances. 

TSP instance Algorithm Min Mean Max SD 
Burma14 MS GSA 3567.00 3827.88 4023.00 112.01 

MSOSAER 3323.00 3368.00 3411.00 21.60 
BGSA 3893 4437.58 4857.00 192.39 

Ulysses16 MSG SA 7278.00 7938.58 8376.00 219.29 
MSOSAER 6802.60 6905.00 24.76 7481.00 

BOSA 7481.00 8800.20 9355.00 389.83 
Ulysses22 MS GSA 9411.00 10351.62 10859.00 317.05 

MSOSAER 6971.00 7117.18 7302.00 87.92 
BOSA 10099.00 11157.12 11835.00 389.31 

Bays29 MSG SA 3673.00 3993.46 4168.00 104.58 
MSOSAER 2076.00 2144.54 2239.00 52.17 

BGSA 3819.00 4235.85 4483.00 108.70 
Eil51 MS GSA 1175.00 1229.50 1278.00 24.23 

MSOSAER 473.00 483.20 490.00 4.94 
BGSA 1191.00 1269.16 1326.00 22.86 

Berlin52 MSOSA 20859.00 21993.80 22848.00 451.47 
MSOSAER 7751.00 7914.76 8300.00 144.09 

BGSA 21533.00 22830.96 24056.00 522.24 
Note: Bold signifies the best mean result for each instance 
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Figu.re 4.8. Comparison of the convergence pattern of the MSGSA, the MSGSAER, and 
the BGSA for Burma14 benchmark instance. 
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Figu.re 4.9. Comparison of the convergence pattern of the MSGSA, the MSGSAER, and 
the BGSA for Ulysses 16 benchmark instance. 

Figure 4.8 and Figure 4.9 show that the MSGSAER converges slower. 
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Figure 4.11. Comparison of the convergence pattern of the MSGSA, the MSGSAER, and 
the BGSA for Bays29 benchmark instance. 

Figure 4.11 and Figure 4.12 also show that the MSGSAER converges slower. 
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Figure 4.13. Comparison of the convergence pattern of the MS GSA, the MSGSAER, and 
the BGSA forBerlin52 benchmark instance. 

Figure 4.12 and 4.13 also show that the MSGSAER converges slower. 



Table 4.20 
Number of Times of the MSGSA Performs Better, Similar, or Worse compared to the 
BGSA. 

TSP instance MSGSA vs. BGSA 
Better Similar Worse 

Burma14 49 0 1 
Ulysses16 48 0 2 
Ulysses22 47 . 0 3 
Bays29 48 0 2 
Ei151 44 0 6 
Berlin52 47 0 3 

Table 4.21 
Number ofTirlzes of the MSGSAER Performs Better, Similar, or Worse compared to the 
BGSA. 

TSP instance 
MSGSAER vs. BGSA 

Better Similar Worse 
Burma14 50 0 0 
Ulysses16 50 0 0 
Ulysses22 50 0 0 
Bays29 50 0 0 
Eil51 50 0; 0 
Berlin52 50 0 0 

Two comparisons between the individual runs for the MSGSA and the BGSA, 

and the MSGSAERand the BGSA are shown in Table 4.20 and Table 4.21. In these two 

tables, the number of times of the MSGSA and the MSGSAER perform better, similar, 

or worse in compare to the BGSA are recorded. With regard to the individual runs 

conducted, it is observed that the MSGSA and the MSGSAER perfor~s better in compare 

to the BGSA in obtaining the best solution in each benchmark instance. 



The difference between the solutions obtained by these four algorithms is also 

analysed using boxplots, as shown in Figure 4.14. In this figure, each rectangle represents 

one of the six benchmark instances (ranging from (a) to (f)). Inside each rectangle, 

boxplots representing the distribution of the best solution value for the MSGSA, the 

MSGSAER, and the BGSA are drawn. In each boxplot, the minimum and maximum 
. 

values are the lowest and highest lines, the upper and lower ends of the box are the upper 

and lower quartiles, a line within the box shows the median, and the isolated points are 

the outliers of the distribution. 
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Each boxplot offers the information about the quality and the performance of the 

MS GSA, the MSGSAER, and the BGSA. The size of the box represents how varies the 

results. A smaller box indicates a constant performance of the parameters. In some 

occasions, the results obtained by the three algorithms contain outliers. The outliers should 

not be casted from measurement because they are feasible solutions. The pure outliers are 

actually produced with an actual measurement from the experiments and without clerical 

errors. The unusual marks are generated by the stochastic behaviour of the algorithms. 

Because the TSP is a minimization problem, a boxplot that its lower line closes to the 

minimum value is covetable since the boxplot demonstrates better quality of the solutions. 

It can be observed from Figure 4.14 that the MSGSAER gives good performance on the 

six sets of TSP benchmark instances. 

It seems that nonparametric test should be used to compare the algorithms because 

the solutions are not normally distributed. Wilcoxon's Signed-Rank test is performed to 

the MSGSA and the BGSA in order to investigate either the quality of results between 

these two algorithms are identical or not; the null hypoth~sis is that the quality of results 

of these two algorithms are identical. Table 4.22 provides rank information that is used 

to execute Wilcoxon's Signed-Rank test. 

The level of significance is set at 5% (p < 0.05) and sample size is 6. The critical 

value for two-sided test is 1 and the decision rule is as follows: Reject the null hypothesis 

if the test statistic, W:Sl. With regard to the Wilcoxon' s Signed Rank Test, the test statistic 

is W= 0, where W- = [O] = 0 and W = [3 + 6 + 5 + 2 +'1+4] = 21. Therefore, the null 

Table 4.22 
Wilcoxon 's Signed-Rank Test Table. 

TSP instance MS GSA BGSA Di ff Rank 

Burma14 3827.88 4437.58 -609.70 3 
Ulysses16 7938.58 8800.20 -861.62 6 
Ulysses22 10351.62 11157.12 -805.50 5 
Bays29 3993.46 4235.85 -242.39 2 
Eil51 1229.50 1269.16 -39.66 1 
Berlin52 21993.80 22830.96 -837.16 4 



Table 4.23 
Friedman Test based on Results Computed in Table 4.19. 

TSP Instance Item MSGSA MSGSAER 
Bunna14 Friedman Rank 2 1 
Ulysses 16 Friedman Rank 2 1 
Ulysses22 Friedman Rank 2 1 
Bays29 Friedman Rank 2 1 
Eil5 l Friedman Rank 2 1 
Berlin52 Friedman Rank 2 1 
Average Friedman rank 2.50 2.00 

BGSA 
3 
3 
3 
3 
3 
3 

1.00 

hypothesis can be rejected because 0 > 1. The result is statistically significant at p < 0.05, 

where the performance of the MS GSA is better than the BGSA. 

To investigate the performance of the MSGSA, the MSGSAER, and the BGSA, 

other nonparametric test is performed; the Friedman test with significance level 0.05 is 

performed using the experimental results from Table 4.19. The test begins with sorting 

the three algorithms based on their average performance, as presented in Table 4.23. The 

average rank is then utilized to measure the Friedman statistic value. It seems that the 

Friedman statistic value i2F is greater than the critical value ia, (12.000 > 5.9910). Thus, 

significant differences exist between the algorithms. 

Because significant difference exists, a post hoc procedure called Holm procedure 

is then performed and the three algorithms are compared to each other. This procedure 

can identify what are the pairs of the algorithms that have the significant difference. The 

result of the Holm procedure in Table 4.24 shows that there are significant difference 

exists between the performance of the MSGSAER and the BGSA because P < Holm. 

Table 4.24 
Holm Procedure based on Average Friedman Rank in Table 4.23. 

Algorithm P z 
MSGSAER vs. BGSA 0.0005 3.4641 
MSGSA vs. BGSA 0.0833 1.7321 
MSGSA vs. MSGSAER 0.0833 1.7321 

Holm 
0.0167 
0.0250 
0.0500 



Table 4.25 
Performance of the MSGSA, the MSGSAER, and the BGSA Measurement using 
Friedman Test for Small Size of the TSP Benchmark Instances. 

Summary Performance 
1 MSGSAER > BGSA 
2 MSGSA = BGSA 
3 MSGSA = MSGSAER 

Note:">" means better than and "="means similar 

Summary of the Holm procedure on these three algorithms is provided in Table 4.25. 

4.3.2 The Performance of the MSGSA, the MSGSAER, and the BGSA for Bigger 

Size of the TSP Benchmark Instances 

The best, worst, average, and standard deviation of solutions recorded for each 

algorithm on medium size of the TSP benchmark instance is shown in Table 4.26. 

Table 4.26 
Performance of the MSGSA, the MSGSAER, and the BGSA on the Medium Size of the 
TSP Benchmark Instance. 

TSP instance Algorithm Min Mean Max SD 
Eil76 MS GSA 1927.00 2062.06 2133.00 56.87 

MSGSAER 1927.00 2049.12 2143.00 63.46 
BGSA 1958.00 2059.60 2121.00 40.14 

RdlOO MS GSA 44578.00 47007.08 48472.00 756.97 
MSGSAER 43387.00 46597.72 48224.00 1389.86 

BGSA 44677.00 46345.06 47410,00 635.08 
EillOl MS GSA 2802.00 2893.08 2967.00 39.59 

MSGSAER 2750.00 2889.14 2953.00 41.46 
BGSA 2519.00 2694.38 2906.00 81.69 

Bierl27 MS GSA 518604.00 559991.00 571026.00 9027.67 
MSGSAER 541522.00 560471.54 572171.00 6427.68 

BGSA 483443.00 510137.90 533830.00 10528.60 
Chl30 MSG SA 38376.00 40011.24 41032.00 737.36 

MSGSAER 37723.00 39507.28 40995.00 944.54 
BGSA 38326.00 39533.30 40457.00 591.38 

Chl50 MS GSA 45824 46915.86 48187 652.281 
MSGSAER 45774 46942.14 47980 669.8379 

BGSA 44922 46660.14 47570 592.7121 
Note: Bold signifies the best mean result for each instance 



Table 4.27 
Performance of the MSGSA, the MSGSAER, and the BGSA on the Big Size of the TSP 
Benchmark Instance. 

TSP 
Algorithm Min Mean Max SD 

instance 
Rd400 MSG SA 189342.00 193251.48 196089.00 2395.96 

MSGSAER 192113.00 194776.78 197788.00 1444.07 
BGSA 190485.00 193274.9S 196162.00 1290.79 

Rat783 MSGSA 72134.00 150589.8.00 169459.00 37140.86 
MSGSAER 72134.00 152614.60 169634.00 33911.23 

BGSA 71869.00 86997.04 I 02835.00 13437.60 
Pr1002 MSGSA 349403.00 4926156.00 6363234.00 2473434.00 

MSGSAER 349403.00 5397462.00 6354110.00 2088434.00 
BGSA 349317.00 1698504.00 3767664.00 1599321.00 

Rl1304 MSGSA 3231694.00 8879502.00 9071746.00 816257.80 
MSGSAER 3231694.00 8758477.00 9050009.00 1140379.00 

BGSA 3226247.00 5967482.00 6371747.00 706717.70 
Rl1323 MSGSA 3088190.00 9238533.00 9456165.00 889042.60 

MSGSAER 3088190.00 9026843.00 9443225.00 1367142.00 
BGSA 6004770.00 6391573.00 6729587.00 151284.6.00 

Rl1889 MSGSA 6601280.00 14061828.00 14302746.00 1078312.00 
MSGSAER 6601280.00 13906016.00 14313826.00 1507092.00 

BGSA 6601280.00 11189187.001 11963460.00 1377345.00 
Note: Bold signifies the best mean result for each instance 

Meanwhile, the best, worst, average, and standard deviation of solutions recorded 

for each algorithm on big size of the TSP benchmark instance is shown in Table 4.27. 

Wilcoxon's Signed-Rank test is initially performed to the MSGSA and the BGSA that 

use medium and big size of the TSP benchmark instance in order to investigate either the 

quality of results between these two algorithms are identical or not; the null hypothesis is 

that the quality of results of these two algorithms are identical. 



Table 4.28 
Wilcoxon 's Signed-Rank Test Table. 

TSP Instance MS GSA BGSA Di ff Rank 

Eil76 2062.06 2059.60 2.46 11 
RdlOO 47007.08 46345.06 662.02 7 
EillOl 2893.08 2694.38 198.70 10 
Bier127 559991.00 510137.90 49853.10 6 
Chl30 40011.24 39533.30 477.94 8 
Ch150 46915.86 46660.14 255.72 9 
Rd400 193251.48 193274.98 -23.50 12 
Rat783 150589.8 86997.04 63592.76 5 
Pr1002 4926156.00 1698504.00 3227652.00 1 
Rll304 8879502 5967482 2912020.00 2 
Rl1323 9238533 6391573 2846960.00 4 
Rl1889 14061828 11189187 2872641.00 3 

Table 4.28 provides rank information that is used to execute Wilcoxon's Signed­

Rank test. The level of significance is set at 5% (p < 0.05) and sample size is 12. The 

critical value for two-sided test is 14 and the decision rule is as follows: Reject the null 

hypothesis if the test statistic, W~14. With regard to the 1Wilcoxon's Signed Rank Test, 

the test statistic is W= 12, where W'" = [11+7 + 10 + 6 + 8 + 9 + 5 + 1+2 + 4 + 3] = 66 

and W- = [12] = 12. Therefore, the null hypothesis can be rejected because 12 < 14. The 

result is statistically significant at p < 0.05, where the BGSA performs better than the 

MSGSA. 

To study the performance of the MSGSA, the MSGSAER, and the BGSA, the 

Friedman test with significance level 0.05 is performed using the experimental results 

from Table 4.26 and Table 4.27. The test begins with sorting the three algorithms based 



Table 4.29 
Friedman Test based on Results Computed in Table 4.26 and Table 4.27. 

TSP instance Item MSGSA MSGSAER MSGSA 
Eil76 Friedman Rank 3 1 2 
RdlOO Friedman Rank 3 2 1 
Eill 01 Friedman Rank 3 2 1 
Bier127 Friedman Rank 2 3 1 
Ch130 Friedman Rank 3 1 2 
Ch 150 Friedman Rank 2 3 1 
Rd400 Friedman Rank 1 3 2 
Rat783 Friedman Rank 1 3 2 
Prl 002 Friedman Rank 3 1 2 
Rl1304 Friedman Rank 3 2 1 
Rll323 Friedman Rank 3 2 1 
RI 1889 Friedman Rank 3 2 1 
Average Friedman rank 2.50 2.08 1.42 

Table 4.30 
Holm Procedure based on Average Friedman Rank in Table 4.29. 

A~~hm P z 
MSGSA vs. BGSA 0.0022 3.0619 
MSGSAER vs. BOSA 0.0662 1.8371 
MSGSA vs. MSGSAER 0.2207 1.224 7 

Holm 
0.0167 
0.0250 
0.0500 

on their average performance, as presented in Table 4.29. The average rank is then utilized 

to measure the Friedman statistic value. It seems that the Friedman statistic value i2F is 
greater than the critical value la, (29.0418 > 5.9910). Thus, significant differences exist 

between the algorithms. 

Holm procedure is then performed, and the three algorithms are compared to each 

other. The result of the Holm pro_cedure in Table 4.30 presents that there are significant 

differences exist between the performance of the MSGSA and the BGSA, and the 

MSGSA and the MSGSAER because P < Holm. 



Table 4.31 
Performance of the MSGSA, the MSGSAER, and the BGSA Measurement using 
Friedman Test for Bigger Size of the TSP Benchmark Instances. 

Summary Performance 
I BGSA > MSGSA 
2 MSGSAER = BGSA 
3 MSGSA = MSGSAER 

Note: ">" means better than and "="means similar 

To sum up, the performance between each algorithm is offered in Table 4.31. 

4.4 The Performance Comparison between the MSPSO, the MSPSOER, the 

MSGSA, and the MSGSAER for solving the TSP 

This section presents the performance comparison between the MSPSO, the 

MSPSOER, the MSGSA, and the MSGSAER for the TSP using the Friedman test. The 

null hypotheses is each ranking of the four algorithms within each benchmark instance is 

equally likely; there are no significant differences between the algorithms. 

To study the performance of the MSPSO, the MSPSOER, the MSGSA, and the 

MSGSAER, the Friedman test with significance level 0.05 is performed. 



The test begins with sorting the three algorithms based on their average 

performance, as presented in Table 4.32. The average rank is then utilized to measure the 

Friedman statistic value. It seems that the Friedman statistic value iF is greater than the 

critical value ia, (127.0670 > 7.8150). Thus, significant differences exist between the 

algorithms. 

Table 4.32 
Friedman Test based on the Experimental Results of the MSPSO, the MSPSOER, the 
MSGSA, and the MSGSAER. 

TSP Item MSPSO MSPSOER MS GSA MSGSAER 
instance 

Burma14 Friedman Rank 3 2 4 1 
Ulyssesl6 Friedman Rank 3 2 4 1 
Ulysses22 Friedman Rank 3 2 4 1 
Bays29 Friedman Rank 3 2 4 1 
Eil51 Friedman Rank 3 2 4 1 
Berlin52 Friedman Rank 4 2 3 1 
Eil76 Friedman Rank 2 1 4 3 
RdlOO Friedman Rank 1 2 4 3 
EillOl Friedman Rank 2 1 4 3 
Bier127 Friedman Rank 2 1 3 4 
Chl30 Friedman Rank 1 2 4 3 
Chl50 Friedman Rank 1 2 3 4 
Rd400 Friedman Rank 2 1 3 4 
Rat783 Friedman Rank 2 1 3 4 
Prl002 Friedman Rank 2 1 4 3 
Rll304 Friedman Rank 2 1 4 3 
Rll323 · Friedman Rank 2 1 4 3 
Rll889 Friedman Rank 2 1 4 3 
Average Friedman rank 2.22 1.50' 3.72 2.56 



Table 4.33 
Holm Procedure based on Average Friedman Rank in Table 4.32. 

Algorithm P z 
MSGSA vs. MSPSOER 0.0000 5.1588 
MSPSO vs. MSGSA 0.0005 3.4857 
MSGSA vs. MSGSAER 0.0070 2.6956 
MSPSOER vs. MSGSAER 0.0138 2.4632 
MSPSO vs. MSPSOER 0.0944 ·1.6731 
MSPSO vs. MSGSAER 0.4295 0.7901 

Table 4.34 

Holm 
0.0083 
0.0100 
0.0125 
0.0167 
0.0250 
0.0500 

Performance of the MSPSO, the MSPSOER, the MSGSA, and the MSGSAER 
Measurement using Friedman Test for Bigger Size of the TSP Benchmark Instances. 

Summary Performance 
1 MSPSOER > MSGSA 
2 MSPSO > MSGSA 
3 MSGSAER > MSGSA 
4 MSPSOER > MSGSAER 
5 MSPSO = MSPSOER 
6 MSPSO = MSGSAER 

Note: ">" means better than and "="means similar 

Holm procedure is then conducted to know which pairs of algorithms are 

significantly difference. The result of the Holm procedure in Table 4.33 shows that there 

are significant differences exist between the performance of the MSGSA and the 

MSPSOER, the MSPSO and the MSGSA, the MSGSA and the MSGSAER, and the 

MSPSOER and the MSGSAER because P <Holm. 

Meanwhile, there are no significant differences exist between the MSPSO and the 

MSPSOER, and the MSPSO and the MSGSAER because P > Holm. To sum up, the 
f 

performance between each algorithm is offered in Table 4.34. 



4.5 The Performance of the MSPSO, the MSPSOER, the MSGSA, and the 

MSGSAER for solving the ASP 

This section provides 'the relative efficiency of the performance of the proposed 

approach based on the MSPSO, the proposed approach based on the MSPSOER, the 

proposed approach based on the MSGSA, and the proposed approach based on the 

MSGSAER. Each proposed algorithm is then compared to the approach based on the SA 

(Motavalli & Islam, 1997), the GA (Choi, Lee, & Cho, 2008), and the BPSO (Mukred et 

al., 2012). In all comparisons, the quality of the results of each proposed approach is 

measured based on the fitness values of the best solutions in minimizing the total 

assembly time. 

Subsequently, this section offers results of a series of experiments to tune the best 

parameters for the four proposed algorithms for the assembly sequence planning problem 

due to the success of these algorithms are heavily depend on setting of control parameters. 

For the proposed approach based on the MSPSO and the proposed approach based on the 

MSPSOER, the control parameters namely; inertia weight w, coefficient factors c1 and 

c2, number of particles NOP, and number of iteration T. Meanwhile, for the proposed 

approach based on the MSGSA and the proposed approach based on the MSGSAER, the 

control parameters namely; constant /J, initial gravitational constant Go, number of agents 

NOA and number of iteration T. These control parameters should be carefully selected 

when using the algorithms in order to know the best parameters, so a successful 

implementation of these algorithms can be achieved. 

The solutions for each variation of the parameters is presented using boxplot. Each 

boxplot offers the information about the quality and the performance of the particular 

parameters. The size of the box represents how varies the results. A smaller box indicates 

a constant performance of the parameters. In some occasions, the results obtained by the 

three algorithms contain outliers. The outliers should not be casted from measurement 

because they are feasible solutions. The pure outliers are actually produced with an actual 

measurement from the experiments and without clerical errors. The unusual marks are 

generated by the stochastic behaviour of the algorithms. Because the TSP is a 

minimization problem, a boxplot that its lower line closes to the minimum value is 

covetable since the boxplot demonstrates better quality of the solutions. 



A nonparametric test is used to compare the variation of the parameters because 

the solutions are not normally distributed. In this study, the Friedman test with 

significance level 0.05 is used. This test is advisable for comparison that is more than two 

sets of parameters (Dieterich', 2012). The test begins with sorting the variation of the 

parameters based on their average performance. The average rank is then utilized to 

measure the Friedman statistic value. If the Friedman· statistic value iF is smaller than 

the critical value i a, the performance of the proposed approach based on the four 

algorithms that use the parameters is on par with others; otherwise, the differences are 

significantly exist. If significant differences exist, the various sets of parameters are then 

compared each other using the Holm procedure. This procedure can identify what are the 

pairs of the parameters that have the significant differences. 

4.5.1 Results of the Proposed Approach based on the MSPSO compared to the SA 

In the experiments, the parameters used for the proposed approach based on the 

MSPSO and the approach based on the SA are presented' in Table 4.35. Based on these 

parameters, the quality of the results of the proposed approach based on the MSPSO for 

the 50 runs is presented in Table 4.36. 

Table 4.35 
Experimental Parameters for the Proposed Approach based on the MSPSO and the 
ApProach based on the SA. 

Parameters MSPSO SA 
Iteration 500 · 500 
Number of particle 30 NAP 
winitial 0.9 NAP 
wFinal 0.4 NAP 
Coefficient factor, c1 and c2 2 NAP 
Initial temperature (°C) NAP 100 
Cooling rate NAP 0.95 
Number of run 50 NA 

NA= not available from the source, NAP =not applicable. 

Table 4.36 
Quality of the Results for the Proposed Approach based on the MSPSO. 
_Experiment Min Mean Max SD 

1 514.0 530.0 538.5 4.5 



Table 4.37 
Best Results and Associated Assembly Sequences of the Proposed Approach based on the 
MSPSO and the Approach based on the SA. 

Approach Total Assembly sequence 
based assembly time 

MSPSO 514.0 
SA 528.7 

2-4-3-1-9-12-5-13-15-18-16-11-6-7-8-10-14-17-19 
2-1-4-9-3-12-13-16-5-15-18-6-11-7-8-10-14-17-19 

Table 4.37 shows a comparison of the best results of the proposed approach based on the 

MSPSO and the approach based on the SA with their assembly sequences. The best values 

which are the minimum of total assembly time obtained by the proposed approach based 

on the MSPSO and the approach based on the SA are given in Table 4.37. It shows that 

the proposed approach based on the MSPSO outperformed the approach based on the SA. 

4.5.2 Results of the Proposed Approach based on the MSPSO compared to the GA 

Table 4.38 shows the parameters used for the p~oposed approach based on the 

MSPSO and the approach based on the GA in three different experiments. The quality of 

the results of the proposed approach based on the MSPSO for 50 runs is presented in 

Table 4.39. 

Table 4.38 
Experimental Parameters for the Proposed Approach based on the MSPSO and the 
Approach based on the GA. 

Parameters 

Iteration 
Number of particle 
wlnitial 
wFinal 
Coefficient factor, 
c1 and c2 

Experiment 1 
MSPSO GA 

100 100 
20 20 
0.9 NAP 
0.4 NAP 
2 NAP 

Experiment 2 
MSPSO GA 

100 100 
40 40 
0.9 NAP 
0.4 NAP 
2 NAP 

Mutation rate NAP 0.05 NAP 0.05 
Crossover NAP 0.5 NAP 0.5 
Number ofrun 50 NA 50 NA 

NA = not available from the source, NAP =not applicable. 

· Experiment 3 
MSPSO GA 

100 100 
100 100 
0.9 NAP 
0.4 NAP 
2 NAP 

NAP 
NAP 

50 

0.05 
0.5 
NA 



Table 4.39 
Quality of the Results for the Proposed Approach based on the MSPSO. 

Experiment Min Mean Max SD 
1 517.6 536.1 548.7 6.4 
2 $24.6 536.6 548.6 5.9 
3 522.0 537.1 548.3 6.2 

Table 4.40 
Best Results of the Proposed Approach based on the MSPSO and the Approach based on 
the GA for Each Experiment. 

Experiment Total assembly time (MSPSO) 
1 517 .6 
2 524.6 
3 522.0 

Table 4.41 

Total assembly time (GA) 
535.1 
527.9 
524.1 

Best results and the Associated Assembly Sequences of the Proposed Approach based on 
the MSPSO and the Approach based on the GA. 

Approach Total Assembly sequence 
based assembly 

MSPSO 
GA 

time 
517.6 
524.1 

2-1-4-9-15-3-5-6-18-12-7-13-16-8-11-14-10-17-19 
2-18-3-12-1-13-16-5-11-15-4-6-9-7-8-10-14-17-19 

Table 4.40 shows the results of the approach based on the GA for the three 

different experiments. In all three experiments, the proposed approach based on the 

MSPSO surpassed the approach based on the GA in minimizing the total assembly time 

for the respective parameters. The best value which is the minimum of total assembly 

time obtained by the proposed approach based on the MSPSO in the three different 

experiments is then selected to be compared against the best value produced by the 

approach based on the GA, as presented in Table 4.40. Referring to the results given in 

Table 4.41, the proposed approach based on the MSPSO also outperformed the approach 

based on the GA in obtaining the minimum total assembly time of the ASP problem. 



4.5.3 Results of the Proposed Approach based on the MSPSO compared to the 

BPSO 

Parameters used for the proposed approach based on the MSPSO and the approach 

based on the BPSO are listed in Table 4.42 for three qifferent experiments. The quality 

of the results of the proposed approach based on the MSPSO and the approach based on 

the BPSO for 10 runs is presented in Table 4.43. As shown in Table 4.43, the proposed 

approach based on the MSPSO yields bigger values for the minimum and mean for each 

experiment, thus verifying that the proposed approach based on the MSPSO produces 

lower quality solutions compared to the approach based on the BPSO. 

Table 4.42 
Experimental Parameters for the Proposed Approach based on the MSPSO and the 
APJ!..roach based on the BPSO. 

Parameters 
Experiment 1 Experiment 2 Experiment 3 

MSPSO BPSO MSPSO BPSO MSPSO BPSO 
Iteration 500 500 500 500 500 500 
Number of 

40 40 50 50 60 60 
particle 
co Initial 0.9 0.9 0.9 0.9 0.9 0.9 
co Final 0.4 0.4 0.4 0.4 0.4 0.4 
Coefficient 

2 2 2 2 2 2 
factor, c1 and c2 
Number of run 50 50 50 50 50 50 

Table 4.43 
Quality of the Results for the proposed approach based on the MSPSO and the Approach 
based on the BPSO. 

Ex 

1 
2 
3 

Min 
MSPSO BPSO 

518.5 514.4 
519.5 515.8 
514.7 516.9 

Ex = experiment. 

Mean 
MSPSO BPSO 

528.8 520.3 
529.0 520.8 
529.5 521.l 

Max 
MSPSO BPSO 

522.6 526.2 
522.2 523.4 
522.4 527.9 

SD 
MSPSO BPSO 

5.2 3.8 
5.5 2.3 
6.2 3.2 



Table 4.44 
Best Results and their Associated Assembly Sequences of the Proposed Approach based 
on the MSPSO and the Approach based on the BPSO. 

Approach Total Assembly sequence 
based assembly 

MSPSO 
BPSO 

time 
514.7 
514.4 

3-1-2-4-12-9-16-13-5-15-18-11-6-7-8-14-10-17-19 
16-2-13-4-1-15-11-9-6~5-18-7-8-14-12-10-3-17-19 

The best values which are the minimum of total assembly time obtained by the proposed 

approach based on the MSPSO and the approach based on the BPSO are given in Table 

4.44. It shows that the proposed approach based on the BPSO outperformed the approach 

based on the MSPSO. 

4.5.4 Effect of the MSPSO Parameters 

To quantify the results, the 50 runs are performed for each parameter variation, so 
' 

that the combination of the best parameter settings can be found. Table 4.45 offers the 

MSPSO outcomes as a result of varying its parameters. Figure 4.15 illustrates the results 

in box plots. According to Table 4.45, the best parameters for inertia weight OJ, coefficient 

factors CJ and c2, number of particles, and number of iteration Tare OJ= 0.9 to 0.4, CJ and 

c2 = 2, number of particles NOP = 25, T = 500 respectively. The best objective value 

obtained for these parameters is 511.5. The assembly sequence 



Table 4.45 
Study of Tuninf( the MSPSO Parameters. 

Parameter Min Mean Max SD Other parameters 
OJ= 0.9 to 0.4 520.2 530.3 539.0 4.9 T= 500, Ct and c2 = 2.00, NOP= 30 

OJ= 0.9 to 0.5 520.9 529.8 537.8 3.7 T = 500, Ct and c2 = 2.00, NOP= 30 

OJ = 0.9 to 0.6 514.4 528.4 539.2 5.7 T = 500, Ct and c2 = 2.00, NOP= 30 

OJ= 0.9 to 0.7 520.9 529.8 537.8 3.7 T = 500, Ct and c2 = 2.00, NOP = 30 

OJ = 0.9 to 0.8 520.2 530.3 539.0 4.9 T = 500, Ct and c2 = 2.00, NOP ~ 30 

ct and c2 = 1.00 518.7 530.1 539.3 5.1 T = 500, OJ= 0.9 to 0.4, NOP= 30 

Ct and c2 = 1.25 512.3 526.9 534.7 5.0 T= 500, ro= 0.9 to 0.4, NOP= 30 

Ct and c2 = 1.50 517.0 529.4 540.0 4.1 T= 500, ro= 0.9 to 0.4, NOP= 30 

Ct and c2= 1.75 519.9 528.1 538.7 4.4 T= 500, ro= 0.9 to 0.4, NOP= 30 

c1 and c2 = 2.00 518.2 527.5 537.3 4.3 T= 500, OJ= 0.9 to 0.4, NOP= 30 

NOP= 10 521.2 529.0 539.0 3.4 Ct and c2 = 2.00, OJ= 0.9 to 0.4, T = 500 

NOP= 15 519.5 529.9 538.3 4.3 Ct and c2= 2.00, OJ= 0.9 to 0.4, T= 500 

NOP=20 516.0 527.2 535.2 4.5 Ct and c2 = 2.00, ro= 0.9 to 0.4, T = 500 

NOP=25 511.5 528.1 538.7 5.4 c1 and ci = 2.00, ro= 0.9 to 0.4, T = 500 

NOP=30 515.1 529.1 537.9 5.2 Ct and c2= 2.00, OJ= 0.9 to 0.4, T= 500 

T=300 516.5 530.7 542.2 5.4 Ct and c2 = 2.00, OJ= 0.9 to 0.4, NOP= 30 

T=400 522.3 529.3 538.9 4.0 Ct and c2 = 2.00, ro= 0.9 to 0.4, NOP= 30 

T=500 520.2 530.3 539.0 4.9 Ct and c2 = 2.00, OJ= 0.9 to 0.4, NOP = 30 

T=600 520.3 528.7 536.4 4.0 Ct and c2 = 2.00, OJ= 0.9 to 0.4, NOP= 30 

T= 700 516.0 527.4 536.7 4.7 Ct and c2 = 2.00, ro= 0.9 to 0.4, NOP= 30 
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Figure 4.15. Effect of the usage of the different parameters (MSPSO). 

generated for the best objective value using these parameters is 15-1-2-4-12-9-3-13-5-18-

6-16-11-7-8-14-10-17-l 9. The result clearly shows that the MSPSO is an efficient 

approach compared to the SA, the GA, and the BPSO. 



Table 4.46 
Friedman Test on the Effect of the Inertia Weight OJ, the Coefficient Factors CJ and c2, 

Number of Particle NOP, and Number o[_Jteration T. 
Items Parameter settings 

Inertia weight ro 0.9.to 0.4 0.9 to 0.5 0.9 to 0.6 0.9 to 0.7 0.9 to 0.8 
Average Friedman 

4.50 2.50 1.00 2.50 4.50 rank 
Coefficient factors c1 

1.00 1.25 i.50 1.75 2.00 and c2 
Average Friedman 

5.00 1.00 4.00 3.00 2.00 rank 
Number of iteration 

10 15 20 25 30 NOP 
Average Friedman 

3.00 5.00 1.00 2.00 4.00 rank 
Number of iteration 

300 400 500 600 700 T 
Average Friedman 

5.00 3.00 4.00 2.00 1.00 
rank 

Based on Table 4.46, the preferences of inertia weight OJ, coefficient factors c1 

and c2, the number of iteration NOP, and the number of iteration Ton the performance of 

the MSPSO are investigated. The Friedman statistic indicates that using different OJ values 

cause significant difference to the MSPSO because the Friedman statistic value i1F is 

greater than the critical value ra, (18.0000 > 9.4880), hence demonstrating that the 

performance of the MSPSO is extensively affected by the preference of OJ. 



Table 4.47 
Holm Procedure on the Initial Weight OJ. 

Dataset p z Holm 
OJ= 0.9 to 0.4 vs. OJ= 0.9 to 0.6 0.0000 4.9497 0.0053 
OJ = 0.9 to 0.6 vs. OJ = 0.9 to 0.8 0.0000 4.9497 0.0053 
OJ = 0.9 to 0.4 vs. OJ = 0.9 to 0.5 0.0047 2.8284 0.0077 
OJ= 0.9 to 0.4 vs. OJ= 0.9 to 0.7 0.0047 2.8284 0.0077 
OJ = 0.9 to 0.5 vs. OJ = 0.9 to 0.8 0.0047 2.8284 0.0077 
OJ= 0.9 to 0.7 vs. OJ= 0.9 to 0.8 0.0047 2.8284 0.0077 
OJ = 0.9 to 0.5 vs. OJ = 0.9 to 0.6 0.0339 2.1213 0.0143 
OJ= 0.9 to 0.6 vs. OJ= 0.9 to 0.7 0.0339 2.1213 0.0143 
OJ = 0.9 to 0.4 vs. OJ = 0.9 to 0.8 1.0000 4.9497 0.0333 
OJ= 0.9 to 0.5 vs. OJ= 0.9 to 0.7 1.0000 4.9497 0.0333 

The Holm procedure is then performed and its statistical values are portrayed in 

Table 4.47. The result of the Holm procedure shows that significant differences exist 

between the performances of the MSPSO if comparing the results between these two OJ 

values namely, OJ = 0.9 to 0.4 and OJ = 0.9 to 0.6, OJ = 0.9 to 0.6 and OJ= 0.9 to 0.8, OJ = 

0.9 to 0.4 and OJ= 0.9 to 0.5, OJ= 0.9 to 0.4 and OJ= 0.9 to 0.7, OJ= 0.9 to 0.5 and OJ= 0.9 

to 0.8, and OJ= 0.9 to 0.7 and OJ= 0.9 to 0.8. 

Meanwhile, the Friedman test is also performed on the effect of the different 

coefficient factors CJ and c2. The Friedman statistic indicates that different coefficient 

factors CJ and c2 cause significant difference to the MSPSO because the Friedman statistic 

value i2 F is greater than the critical value i2 a, (18.6667 > 9 .4880), hence indicating that 

the performance of the MSPSO is extensiv~ly affected by the preference of coefficient 

factors CJ and c2. 



The Holm procedure is then performed and the results are shown in Table 4.48. 

The results demonstrate that significant differences exist between the performances of the 

MSPSO if comparing the results between these two coefficient factors c1 and c2 namely, 

c1 and c2 = 1.00 vs. c1 and ci = 1.25, c1 and c2 = 1.00 vs. CJ and c2 = 2.00, CJ and c 2 = 1.25 

vs. CJ and c2 = 1.50, CJ and c2 = 1.00 vs. CJ and c2 = 1.75, CJ and c2 = 1.50 vs. CJ and c2 = 

2.00, and CJ and c2 = 1.25 vs. CJ and c2 = 1.75. 

The Friedman statistic also provides a finding on the performance that uses 

different number of particle values; there are significant differences to the MSPSO, 

because the Friedman statistic value i2F is greater tha~ the critical value j2 a, (18.6667 > 

9.4880), thus presenting that the performance of the MSPSO is influenced by the 

preference of number of particle. 

Table 4.48 
Holm Procedure on the Coefficient Factors c1 and c2. 

Da~scl P 
CJ and c2 = 1.00 vs. CJ and c2 = 1.25 0.0000 
CJ and c2 = 1.00 vs. c1 and c2 = 2.00 0.0000 
c1 and c2 = 1.25 vs. CJ and c2 = 1.50 0.0000 
CJ and c2 = 1.00 vs. c1 and c2 = 1.75 0.0047 
c1 and c2 = 1.50 vs. c1 and c2 = 2.00 0.004 7 
c1 and c2 = 1.25 vs. c1 and c2 = 1.75 0.0047 
CJ and c2 = 1.00 vs. CJ and c2 = 1.50 0.1573 
CJ and c2 = 1.50 vs. CJ and c2 = 1. 75 0.1573 
CJ and c2 = 1.25 vs. c1 and c2 = 2.00 0.1573 
CJ and c2 = 1. 75 vs. c1 and c2 = 2.00 0.1573 

z 
5.6569 
4.2426 
4.2426 
2.8284 
2.8284 
2.8284 
1.4142 
1.4142 
1.4142 
1.4142 

Holm 
0.0050 
0.0059 
0.0059 
0.0083 
0.0083 
0.0083 
0.0200 
0.0200 
0.0200 
0.0200 



The Holm procedure is then performed and its statistical values are displayed in 

Table 4.49. The results of Holm procedure demonstrate that significant differences exist 

between the performances of the MSPSO if comparing the results between these two 

number of particle namely, NOP= 15 vs. NOP= 20, NOP= 15 vs. NOP= 25, NOP= 20 

vs. NOP= 30, NOP= 10 vs. NOP= 15, NOP= 25 vs. NOP= 30, and NOP= 10 vs. NOP 

== 200. 

Meanwhile, the Friedman statistic indicates that using different number of 

iteration values cause significant differences to the MSPSO because the Friedman statistic 

value j1p is greater than the critical value ia., (18.6667 > 9.4880), hence presenting that 

the performance of the MSPSO is influenced by the preference of number of iteration. 

Table 4.49 
Holm Procedure on the Number of Particle NOP. 

Dataset P 
NOP= 15 vs. NOP= 20 0.0000 
NOP= 15 vs. NOP= 25 0.0000 I 

NOP= 20 vs. NOP= 30 0.0000 
NOP= 10 vs. NOP= 15 0.0047 
NOP= 25 vs. NOP= 30 0.0047 
NOP= 10 vs. NOP= 20 0.0047 
NOP= 15 vs. NOP= 30 0.1573 
NOP= 10 vs. NOP= 30 0.1573 
NOP= 20 vs. NOP= 25 0.1573 
NOP= 10 vs. NOP= 25 0.1573 

z 
5.6569 
4.2426 
4.2426 
2.8284 
2.8284 
2.8284 
1.4142 
1.4142 
1.4142 
1.4142 

Holm 
0.0050 
0.0059 
0.0059 
0.0083 
0.0083 
0.0083 
0.0200 
0.0200 
0.0200 
0.0200 



Table 4.50 
Holm Procedure on the Number of Iteration T. 

Dataset 
T- 300 vs. T - 700 
T= 300 vs. T= 600 
T= 500 vs. T= 700 
T= 300 vs. T= 400 
T= 500 VS. T= 600 
T= 400 vs. T= 700 
T= 300 VS. T= 500 
T= 400 vs. T= 500 
T= 600 VS. T= 700 
T= 400 vs. T= 600 

p 

0.0000 
0.0000 
0.0000 
0.0047 
0.0047 
0.0047 
0.1573 
0.1573 
0.1573 
0.1573 

z 
5.6569 
4.2426 
4.2426 
2.8284 
2.8284 
2.8284 
1.4142 
1.4142 
1.4142 
1.4142 

Holm 
0.0050 
0.0059 
0.0059 
0.0083 
0.0083 
0.0083 
0.0200 
0.0200 
0.0200 
0.0200 

The Holm procedure is then performed and its statistical values are portrayed in 

Table 4.50. The results of Holm procedure demonstrate that significant differences exist 

between the performances of the MSPSO if comparing the results between these two 

number of iteration namely, T= 300 and T= 700, T= 300 and T= 600, T= 500 and T= 

700, T= 300 and T= 400, T= 500 and T= 600, and T= 400 and T= 700. 

4.5.5 Results of the Proposed Approach based on the MSPSOER compared to 

the SA 

In the experiments, the parameters used for the proposed approach based on the 

MSPSOER and the approach based on the SA are presented in Table 4.51. Based on these 

Table 4.51 
Experimental Parameters for the Proposed Approach based on the MSPSOER and the 
Approach based on the SA. · 
Parameters MSPSOER SA 
Iteration 500 500 
Number of particle 30 NAP 
wlnitial 0.9 NAP 
wFinal 0.4 NAP 
Coefficient factor, c1 and c2 2 NAP 
Initial temperature (°C) NA I 00 
Cooling rate NA 0.95 
Number of run 50 NA 

NA = not available from the source, NAP =not applicable. 



Table 4.52 
Quality of the Results for the Proposed APProach based on the MSPSOER. 

Experiment Min Mean Max SD 
1 517.9 528.6 538.4 4.3 

Table 4.53 
Best Results and Associated Assembly Sequences of the Proposed Approach based on the 
MSPSOER and the Approach based on the SA. 

Approach Total 
based assembly time 

MSPSOER 517.9 
SA 528.7 

Assembly sequence 

2-1-3-15-4-12-5-13-18-9-6-16-11-7-8-14-10-17-19 
2-1-4-9-3-12-13-16-5-15-18-6-11-7-8-10-14-17-19 

parameters, the quality of the results of the proposed approach based on the MSPSOER 

for the 50 runs is presented in Table 4.52. Table 4.53 shows a comparison of the best 

results of the proposed approach based on the MSPSOER and the approach based on the 

SA with their assembly sequences. Using the minimum values of the proposed approach 

based on the MSPSOER and the approach based on the SA given in Table 4.52, it seems 

that the proposed approach based on the MSPSOER outperformed the approach based on 

the SA in obtaining the minimum total assembly time of the ASP problem. The mean or 

average of the total assembly time yielded by the proposed approach based on the 

MSPSOER to solve the ASP problem is also better than the minimum of the assembly 

time produced by the approach based on SA. 



4.5.6 Results of the Proposed Approach based on the MSPSOER compared to the 

GA 

Table 4.54 shows the parameters used for the proposed approach based on the 

MSPSOER and the approach based on the GA in three 9ifferent experiments. The quality 

of the results of the proposed approach based on the MSPSOER for 50 runs is presented 

in Table 4.55. 

Table 4.54 
Experimental Parameters for the Proposed Approach based on the MSPSOER and the 
Approach based on the GA. 

Parameters 

Iteration 
Number of particle 
wlnitial 
wFinal 
Coefficient factor, 
c1 and c2 

Experiment 1 
MSPSO GA 

ER 
100 
20 
0.9 
0.4 
2 

100 
20 

NAP 
NAP 
NAP 

Experiment 2 
MSPSO GA 

ER 
100 
40 
0.9 
0.4 
2 

100 
40 

NAP 
NAP 
NAP 

Mutation rate NAP 0.05 NAP 0.05 
Crossover NAP 0.5 NAP 0.5 
Number of run 50 NA 50 NA 

NA= not available from the source, NAP =not applicable. 

Table 4.55 

Experiment 3 
MSPSO GA 

ER 
100 
100 
0.9 
0.4 
2 

NAP 
NAP 

50 

100 
100 

NAP 
NAP 
NAP 

0.05 
0.5 
NA 

Quality of the Results for the Proposed Approach based.on the MSPSOER. 
Experiment Min Mean Max , SD 

1 519.5 534.4 548.7 6.0 
2 512.0 533.2 547.3 7.5 
3 523.4 534.8 543.1 5.3 



Table 4.56 shows the results of the approach based on the GA for the three 

different experiments. In all three experiments, the proposed approach based on the 

MSPSOER surpassed the approach based on the GA in minimizing the total assembly 

time for the respective parameters. The best value obtained by the proposed approach 

based on the MSPSOER in the three different experiments is then selected to be compared 

against the best value produced by the approach base·d on the GA, as presented in Table 

4.56. Referring to the results given in Table 4.57, the proposed approach based on the 

MSPSOER also outperformed the approach based on the GA in obtaining the minimum 

total assembly time of the ASP problem. 

Table 4.56 
Best Results of the Proposed Approach based on the MSPSOER and the Approach based 
on the GA for Each Experiment. 

Experiment Total assembly time Total assembly time (GA) 

1 
2 
3 

Table 4.57 

(MSPSOER) 
519.5 
512.0 
523.4 

535.1 
527.9 
524.1 

Best results and the Associated Assembly Sequences of the Proposed Approach based on 
the MSPSOER and the Approach based on the GA. 

Approach Total Assembly sequence 
based assembly 

MSPSOER 
GA 

time 
512.0 
524.1 

1-2-4-9-12-5-15-3-13-16-18-11-6-7-8-14-10-17-19 
2-18-3-12-1-13-16-5-11-15-4-6-9-7-8-10-14-17-19 



4.5. 7 Results of the Proposed Approach based on the MSPSOER compared to the 

BPSO 

Parameters used for the proposed approach based on the MSPSOER and the 

approach based on the BPSO are listed in Table 4.58 f9r three different experiments. The 

quality of the results of the proposed approach based on the MSPSOER and the approach 

based on the BPSO for 10 runs is presented in Table 4.59. As shown in Table 4.59, the 

proposed approach based on the MSPSOER yields bigger values for the minimum and 

mean for each experiment, thus verifying that the proposed approach based on the 

MSPSOER produces lower quality solutions compared to the approach based on the 

BPSO. 

Table 4.58 
Experimental Parameters for the Proposed Approach based on the MSPSOER and the 
Approach based on the BPSO. 

Parameters 

Iteration 
Number of 
particle 
wlnitial 
wFinal 
Coefficient 
factor, c1 and c2 
Number of run 

Table 4.59 

Experiment 1 
MSPSO BPSO 

ER 
500 
40 

0.9 
0.4 
2 

50 

500 
40 

0.9 
0.4 
2 

50 

Experiment 2 
MSPSO BPSO 

ER 
500 
50 

0.9 
0.4 
2 

50 

500 
50 

0.9 
0.4 
2 

50 

Experiment 3 
MSPSO BPSO 

ER 
500 
60 

0.9 
0.4 
2 

50 

500 
60 

0.9 
0.4 
2 

50 

Quality of the Results for the proposed approach based on the MSPSOER and the 
Approach based on the BPSO. 

Min 
Ex MSPSO BPSO 

ER 
1 
2 
3 

517.4 
516.7 
516.9 

Ex = experiment. 

514.4 
515.8 
516.9 

Mean 
MSPSO BPSO 

ER 
528.3 
527.7 
528.8 

520.3 
520.8 
521.1 

Max 
MSPSO BPSO 

ER 
536.4 
537.8 
538.1 

526.2 
523.4 
527.9 

SD 
MSPSO BPSO 

ER 
4.1 
4.1 
4.3 

3.8 
2.3 
3.2 



Table 4.60 
Best Results and their Associated Assembly Sequences of the Proposed Approach based 
on the MSPSOER and the ApProach based on the BPSO. 

Approach Total Assembly sequence 
based assembly 

MSPSOER 
BPSO 

time 
516.7 
514.4 

1-12-2-4-9-3-5-15-13-16-18-11-6-7-8-10-14-17-19 
16-2-13-4-1-15-11-9-6-5-18-7-8-14-12-10-3-17-19 

Table 4.60 compares the best results of these approaches that represent the minimum of 

total assembly time and their associated assembly sequences. The BPSO outperforms 

the MSPSOER in all experiments. 

4.5.8 Effect of the MSPSOER Parameters 

To quantify the results, the 50 runs are performed for each parameter variation, so 

that the combination of the best parameter settings can be found. Table 4.61 offers the 

MSPSOER outcomes as a result of varying its parameters. Figure 4.16 illustrates the 

results in box plots. It is clear from results shown in Table 4.61 that the best parameters 

for inertia weight w, coefficient factors CJ and c2, number of particles, and number of 

iteration Tare w = 0.9 to 0.7, CJ and c2 = 2.00, number of particles NOP= 30, T = 500 

respectively. The best objective value obtained for these parameters is 508.3. The 

assembly sequence generated for the best objective value using these parameters is 1-2-

12-4-3-9-13-15-11-5-16-6-18-7-8-14-10-17-19. The result clearly shows that the 

MSPSOER is an efficient approach compared to the SA, the GA, and the BPSO. 



Table 4.61 
Study o/Tuning the MSPSOER Parameters. 

Parameter Min Mean Max SD Other parameters 
co= 0.9 to 0.4 518.6 526.5 534.7 3.6 T = 500, Ct and c2 = 2.00, NOP = 30 

co= 0.9 to 0.5 513.7 527.0 534.0 4.3 T = 500, c1 and c2 = 2.00, NOP = 30 

co = 0.9 to 0.6 517.9 526.5 535.5 3.9 T= 500, CJ and c2= 2.00, NOP= 30 

w = 0.9 to 0.7 508.3 525.1 536.8 4.7 T = 500, CI and C? = 2.00, NOP= 30 

co = 0.9 to 0.8 515.3 525.1 532.9 4.6 T= 500, Ct and c2 = 2.00, NOP,. 30 

c1 and c2 = 1.00 518.5 530.1 538.2 5.3 T = 500, co= 0.9 to 0.4, NOP= jO 

c1 and c2= 1.25 515.5 528.2 536.2 4.7 T = 500, w= 0.9 to 0.4, NOP= 30 

c1 and c2= 1.50 514.1 527.5 537.1 4.6 T = 500, co= 0.9 to 0.4, NOP= 30 

c1 and c2= 1.75 518.8 527.1 533.8 4.2 T = 500, OJ= 0.9 to 0.4, NOP= 30 

Ct and c2 = 2.00 518.6 526.5 534.7 3.6 T= 500, OJ= 0.9 to 0.4, NOP= 30 

NOP= 10 512.5 527.l 535.8 4.9 c1 and c2 = 2.00, co= 0.9 to 0.4, T = 500 

NOP= 15 516.4 526.9 534.4 4.1 c1 and c2 = 2.00, co= 0.9 to 0.4, T = 500 

NOP=20 518.6 526.5 534.7 3.6 ct and c2 = 2.00, co= 0.9 to' 0.4, T = 500 

NOP=25 515.3 527.3 535.7 4.8 Ct arid C2 = 2.00, w= 0.9 to 0.4, T = 500 

NOP=30 511.0 527.1 533.1 4.2 c1 and c2 = 2.00, co= 0.9 to 0.4, T = 500 

T=300 513.9 523.0 531.3 3.8 Ct and c2 = 2.00, co= 0.9 to 0.4, NOP = 30 

T=400 518.2 527.7 538.0 4.4 c1 and ci = 2.00, co= 0.9 to 0.4, NOP= 30 

T=SOO 518.6 526.5 534.7 3.6 CJ and c2 = 2.00, co= 0.9 to 0.4, NOP = 30 

T=600 508.6 526.8 533.5 4.4 c1 and c2 = 2.00, co= 0.9 to 0.4, NOP = 30 

T=700 510.5 525.4 532.0 4.4 CJ and c2 = 2.00, co= 0.9 to 0.4, NOP= 30 
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Figure 4.16. Effect of the usage of the different parameters (MSPSOER). 



To study the effect of the inertia weight OJ, the coefficient factors c1 and c2, number 

of particle NOP, and number of iteration Ton the MSPSOER performance, Friedman test 

is performed on the experimental results shown in Tables 4.61. The average rank is 

presented in Table 4.62. Based on Table 4.62, the Friedman statistic indicates that using 

different OJ values cause significant difference to the MSPSO because the Friedman 

statistic value x2F is greater than the critical valu·e x2a, (18.0000 > 9.4880), hence 

demonstrating that the performance of the MSPSO is extensively affected by the 

preference of OJ. 

Table 4.62 
Friedman Test on the Effect of the Inertia Weight OJ, the Coefficient Factors c1 and c2, 
Number of Particle NOP, and Number oi Iteration T. 

Items Parameter settings 
Inertia weight co 0.9 to 0.4 0.9 to 0.5 0.9 to 0.6 0.9 to 0.7 0.9 to 0.8 
Average Friedman 

3.50 5.00 3.50 1.50 1.50 
rank 
Coefficient factors c1 

1.00 1.25 1.50 1.75 2.00 
and c2 

Average Friedman 
5.00 4.00 3.00 2.00 1.00 

rank 
Number of iteration 

10 15 20 25 30 
NOP 
Average Friedman 

3.00 5.00 1.00 2.00 4.00 
rank 
Number of iteration 

300 400 500 600 700 
T 
Average Friedman 

1.00 5.00 3~00 4.00 2.00 
rank 



Table 4.63 
Holm Procedure on the Initial Weight OJ. 

Dataset 
OJ - 0.9 to 0.5 vs. OJ - 0.9 to 0.7 
OJ= 0.9 to 0.5 vs. OJ= 0.9 to 0.8 
OJ= 0.9 to 0.4 vs. OJ= 0.9 to 0.7 
OJ = 0.9 to 0.4 vs. OJ = 0.9 to 0.8 
OJ= 0.9 to 0.6 vs. OJ= 0.9 to 0.7 
OJ = 0.9 to 0.6 vs. OJ = 0.9 to 0.8 
OJ = 0.9 to 0.4 vs. w = 0.9 to 0.5 
OJ= 0.9-0.5 vs. OJ= 0.9-0.6 
OJ= 0.9-0.4 vs. OJ= 0.9-0.6 
OJ= 0.9-0.7 vs. OJ= 0.9-0.8 

p 

0.0000 
0.0000 
0.0047 
0.0047 
0.0047 
0.0047 
0.0339 
0.0339 
1.0000 
1.0000 

z 
4.9497 
4.9497 
2.8284 
2.8284 
2.8284 
2.8284 
2.1213 
2.1213 
0.0000 
0.0000 

Holm 
0.0053 
0.0053 
0.0077 
0.0077 
0.0077 
0.0077 
0.0143 
0.0143 
0.0333 
0.0333 

The Holm procedure is then performed and its statistical values are portrayed in 

Table 4.63. The results of the Holm procedure record that significant differences exist 

between the performances of the MSPSOER if comparing the results between these two 

OJ values namely OJ= 0.9 to 0.5 vs. OJ= 0.9 to 0.7, w = 0.9 to 0.5 vs. w = 0.9 to 0.8, OJ= 

0.9 to 0.4 vs. m = 0.9 to 0.7, w = 0.9 to 0.4 vs. OJ= 0.9 to 0.8, w = 0.9 to 0.6 vs. OJ= 0.9 

to 0.7, and OJ= 0.9 to 0.6 vs. w = 0.9 to 0.8. 



Table 4.64 
Holm Procedure on the Coefficient Factors c1 and c2. 

Dataset P 
CJ and c2 = 1.00 vs. CJ and c2 = 2.00 0.0000 
CJ and c2 = 1.00 vs. CJ and c2 = 1. 75 0.0000 
CJ and c2 = 1.25 vs. CJ and c2 = 2.00 0.0000 
CJ and c2 = 1.00 vs. CJ and c2 = 1.50 0.0047 
CJ and c2 = 1.25 vs. CJ and c2 = 1.75 0.0049 
CJ and c2 = 1.50 vs. CJ and c2 = 2.00 0.0047 
CJ and c2 = 1.00 vs. CJ and c2 = 1.25 0.1573 
CJ and c2 = 1.25 vs. CJ and c2 = 1.50 0.1573 
CJ and c2 = 1.75 vs. CJ and c2 = 2.00 0.1573 
CJ and c2 = 1.50 vs. CJ and c2 = 1.75 0.1573 

z 
5.6569 
4.2426 
4.2426 
2.8284 
2.8284 
2.8284 
1.4142 
1.4142 
1.4142 
1.4142 

Holm 
0.0050 
0.0059 
0.0059 
0.0083 
0.0083 
0.0083 
0.0200 
0.0200 
0.0200 
0.0200 

The Friedman test performed on the effect of the different coefficient factors CJ 

and c2 shows that the MSPSOER with different coefficient factors CJ and c2 is 

significantly different because the Friedman statistic value ;f Fis greater than the critical 

value fa, (18.6667 > 9.4880). This observation is further studied using the Holm 

procedure as presented in Table 4.64. The outcomes of Holm procedure reveal that 

significant differences exist between the performances ~f the MSPSOER if comparing 

the results between these two coefficient factors CJ and c2 namely, CJ and c2 = 1.00 vs. CJ 

and c2 = 2.00, CJ and c2 = 1.00 vs. CJ and c2 = 1.75, CJ and c2 = 1.25 vs. CJ and c2 = 2.00, CJ 

and c2 = 1.00 vs. CJ and c2 = 1.50, CJ and c2 = 1.25 vs. CJ and c2 = 1. 75, and CJ and c2 = 1.50 

vs. CJ and c2 = 2.00. 



Table 4.65 
Holm Procedure on the Number of Particle NOP. 

Dataset P 
NOP= 15 vs. NOP= 20 0.0000 
NOP= 15 vs. NOP= 25 0.0000 
NOP= 20 vs. NOP= 30 0.0000 
NOP= 10 vs. NOP= 15 0.0047 
NOP= 25 vs. NOP= 30 0.004·7 
NOP= 10 vs. NOP= 20 0.0047 
NOP= 15 vs. NOP= 30 0.1573 
NOP= 10 vs. NOP= 30 0.1573 
NOP= 20 vs. NOP= 25 0.1573 
NOP= 10 vs. NOP= 25 0.1573 

z 
5.6569 
4.2426 
4.2426 
2.8284 
2.8284 
2.8284 
1.4142 
1.4142 
1.4142 
1.4142 

Holm 
0.0050 
0.0059 
0.0059 
0.0083 
0.0083 
0.0083 
0.0200 
0.0200 
0.0200 
0.0200 

The Friedman statistic also provides a finding on the performance that uses 

different number of particle values; there are significant differences to the MSPSOER 

because the Friedman statistic value i2F is greater than the critical value i2 a, (18.6667 > 

9.4880), thus presenting that the performance of the MSPSOER is affected by the choice 

of the number of particle. This result shown in Table 4.65 is then analysed using the Holm 

procedure. The results of Holm procedure demonstrate that significant difference exists 

between the performances of the MSPSOER if comparing the results between these two 

number of particle namely, NOP= 15 vs. NOP= 20, NOP= 15 vs. NOP= 25, NOP= 20 

vs. NOP= 30, NOP= 10 vs. NOP= 15, NOP= 25 vs. NOP= 30, and NOP= 10 vs. NOP 

=200. 



Table 4.66 
Holm Procedure on the Number of Iteration T 

Dataset 
T- 300 vs. T- 700 
T= 300 vs. T= 600 
T= 500 vs. T= 700 
T= 300 vs. T= 400 
T= 500 vs. T= 600 
T= 400 vs. T= 700 
T= 300 vs. T= 500 
T= 400 vs. T= 500 
T= 600 vs. T= 700 
T= 400 vs. T= 600 

p 
0.0000 
0.0000 
0.0000 
0.0047 
0.0047 
0.0047 
0.1573 
0.1573 
0.1573 
0.1573 

z 
5.6569 
4.2426 
4.2426 
2.8284 
2.8284 
2.8284 
1.4142 
1.4142 
1.4142 
1.4142 

Holm 
0.0050 
0.0059 
0.0059 
0.0083 
0.0083 
0.0083 
0.0200 
0.0200 
0.0200 
0.0200 

Meanwhile, the Friedman statistic shows that using different number of iteration 

values makes significant difference to the MSPSOER because the Friedman statistic 

value i2F is greater than the critical value i2 a, (18.6667 > 9.4880), thus presenting that the 

performance of the MSPSOER is affected by the choice of number of iteration. This result 

is further studied using Holm procedure as shown in Table 4.66. The results of Holm 

procedure reveal that significant differences exist between the performances of the 

MSPSOER if comparing the results between these two number of iteration namely, T = 

300 and T= 700, T= 300 and T= 600, T= 500 and T= 700, T= 300 and T= 400, T= 

500 and T= 600, and T= 400 and T= 700. 



4.5.9 Results of the Proposed Approach based on the MSGSA compared to the 

SA 

In the experiments, tlie parameters used for the proposed approach based on the 

MSGSA and the approach based on the SA are presented in Table 4.67. Based on these 

parameters, the quality of the results of the proposed approach based on the MSG SA for 

the 50 runs is presented in Table 4.68. Table 4.69 shows a comparison of the best results 

of the proposed approach based on the MS GSA and the approach based on the SA with 

their assembly sequences. Using the minimum values of the proposed approach based on 

the MSGSA and the approach based on the SA given in Table 4.69, it seems that the 

proposed approach based on the MSGSA outperformed the approach based on the SA in 

obtaining the minimum total assembly time of the ASP problem. The mean or average of 

Table 4.67 
Experimental Parameters for the Proposed Approach based on the MSGSA and the 
Approach based on the SA. 

Parameters MS GSA 
Iteration 500 
Number of agent 30 
G0 100 
p w 
Initial temperature (°C) NAP 
Cooling rate NAP 
Number of run 50 
Number of run 50 

NA = not available from the source, NAP = not applicable. 

Table 4.68 

SA 
500 

NAP 
NAP 

NAP 
100 
0.95 
NA 
NA 

Quality of the Results for the Proposed Approach based on the MSGSA. 
Experiment Min Mean Max SD 

1 509.1 519.0 525.6 3.1 

Table 4.69 
Best Results and Associated Assembly Sequences of the Proposed Approach based on 
the MSGSA and the Approach based on the SA. 
Approach Total Assembly sequence 

based assembly time 
MSGSA 509.1 
SA 528.7 

2-l-4-9-12-3-5-13-15-16-18-6-11-7-8-10-14-17-19 
2-1-4-9-3-12-13-16-5-15-18-6-11-7-8-10-14-17-19 



the total assembly time yielded by the proposed approach based on the MSGSA to solve 

the ASP problem is also better than the minimum of the assembly time produced by the 

approach based on the SA. 

4.5.10 Results of the Proposed Approach based on the MSGSA compared to the GA 

Table 4.70 shows the parameters used for the proposed approach based on the 

MSGSA and the approach based on the GA in three different experiments. The quality of 

the results of the proposed approach based on the MSGSA for 50 runs are presented in 

Table 4.71. 

Table 4.70 
Experimental Parameters for the Proposed Approach based on the MSGSA and the 
Approach based on the GA. 

Parameters 
Experiment 1 Experiment 2 

MSGSA GA MSGSA GA 
Iteration I 00 100 100 100 
Number of agent 20 20 40 40 
G

0 
100 NAP 100 NAP 

f3 20 NAP 20 NAP 
Mutation rate NAP 0.05 NAP 0.05 
Crossover NAP 0.5 NAP 0.5 
Number of run 50 NA 50 NA 

NA =not available from the source, NAP =not applicable. 

Table 4.71 

Experiment 3 
MS GSA GA 

100 100 
100 100 
100 NAP 

20 
NAP 
NAP 

50 

NAP 
0.05 
0.5 
NA 

Quality of the Results for the Proposed Approach based on the MSGSA. 
Experiment Min Mean Max SD 

1 515.5 524.6 531.1 3.9 
2 513.0 523.0 530.2 4.1 
3 515.5 524.6 531.1 3.9 



Table 4.72 
Best Results of the Proposed Approach based on the MSGSA and the Approach based on 
the GA for Each Experiment. 

Experiment Total assembly time (MSGSA) 
1 515.5 
2 513.0 
3 514.9 

Table 4.73 

Total assembly time (GA) 
535.1 
527.9 
524.1 

Best results and the Associated Assembly Sequences of the Proposed Approach based on 
the MSGSA and the Approach based on the GA. 

Approach Total Assembly sequence 
based assembly 

MSGSA 
GA 

time 
513.0 
524.1 

1-2-4-3-9-5-12-13-15-16-18-11-6-7-8-14-10-17-19 
2-18-3-12-1-13-16-5-11-15-4-6-9-7-8-10-14-17-19 

Table 4.72 shows that each best value obtained by the proposed approach based 

on the MSGSA in the three different experiments are better than to each best value 

produced by the approach based on the GA. Meanwhi~, Table 4.73 presents that the 

minimum total assembly time of the ASP obtained by the proposed approach based on 

the MSGSA is better than the value yielded using the approach based on the GA. 



Table 4.72 
Best Results of the Proposed Approach based on the MSGSA and the Approach based on 
the GA for Each Experiment. 

Experiment Total assembly time (MSGSA) 
1 . 515.5 
2 513.0 
3 514.9 

Table 4.73 

Total assembly time (GA) 
535.l 
527.9 
524.1 

Best results and the Associated Assembly Sequences of the Proposed Approach based on 
the MSGSA and the Approach based on the GA. 

Approach Total Assembly sequence 
based assembly 

MS GSA 
GA 

time 
513.0 
524.1 

1-2-4-3-9-5-12-13-15-16-18-11-6-7-8-14-10-17-19 
2-18-3-12-1-13-16-5-11-15-4-6-9-7-8-10-14-17-19 

Table 4.72 shows that each best value obtained by the proposed approach based 

on the MSGSA in the three different experiments are better than to each best value 

produced by the approach based on the GA. Meanwhilet Table 4.73 presents that the 

minimum total assembly time of the ASP obtained by the proposed approach based on 

the MSGSA is better than the value yielded using the approach based on the GA. 



4.5.11 Results of the Proposed Approach based on the MSGSA compared to the 

BPSO 

Parameters used for the proposed approach based on the MSGSA and the 

approach based on the BPSO are listed in Table 4.74 foi:three different experiments. The 

quality of the results of the proposed approach based on the MSGSA and the approach 

based on BPSO for 10 runs is presented in Table 4.75. As shown in Table 4.75, the 

proposed approach based on the MSGSA yields smaller values for the minimum and 

mean for each experiment, thus verifying that the proposed approach based on the 

MSGSA produces higher quality solutions compared to the approach based on the BPSO. 

Table 4.74 
Experimental Parameters for the Proposed Approach based on the MSGSA and the 
Approach based on the BPSO. 

Parameters 

Iteration 
Number of agent 

Go 
p 
Inertia weight, ro 
Coefficient 
factor, c1 and c2 

Experiment 1 
MSGSA BPSO 

500 500 
40 40 
100 NAP 

20 NAP 
NAP 0.9 to 0.4 
NAP 2 

Experiment 2 
MSGSA BPSO 

500 500 
50 50 
100 NAP 

20 NAP 
NAP 0.9 to 0.4 
NAP 2 

Number of run 50 50 50 50 
NA= not available from the source, NAP =not applicable. 

Table 4.75 

Experiment 3 
GSA BPSO 
500 500 
60 60 
100 NAP 

20 
NAP 
NAP 

50 

NAP 
0.9 to 0.4 

2 

50 

Quality of the Results for the proposed approach based on the MSGSA and the Approach 
based on the BPSO. 

Ex 

1 
2 
3 

Min 
MSGSA BPSO 

508.4 514.4 
510.8 515.8 
509.5 516.9 

Ex= experiment. 

Mean 
MSGSA BPSO 

517.3 520.3 
518.0 520.8 
517.7 521.1 

Max 
MGSA BPSO 
522.6 526.2 
522.2 523.4 
522.4 527.9 

SD 
MSGSA BPSO 

4.1 3.8 
3.7 2.3 
4.3 3.2 



Table 4.76 
Best Results and their Associated Assembly Sequences of the Proposed Approach based 
on the MSGSA and the APProach based on the BPSO. 

Approach Total Assembly sequence 
based assembly 

MS GSA 
BPSO 

time 
508.4 
514.4 

1-2-4-3-9-5-12-13-15-16-18-11-6-7-8-14-10-17-19 
16-2-13-4-1-15-11-9-6-5-18-7-8-14-12-10-3-17-19 

Table 4.76 compares the best results of these approaches that represent the minimum of 

total assembly time and their associated assembly sequences where the MSGSA 

outperforms the BPSO in all experiments. 

4.5.12 Effect of the MSGSA Parameters 

To quantify the results, the 50 runs are performed for each parameter variation, so 

that the combination of the best parameter settings can be found. Table 4.77 offers the 
' MSGSA outcomes as a result of varying its parameters. Figure 4.17 illustrates the results 

in box plots. It is clear from results shown in Table 4.77 that the best parameters for 

constant /), initial gravitational constant Go, number of agents NOA and number of 

iteration Tare f3 = 20, Go= 100, NOA = 30, T = 500 respectively. The best objective value 

obtained.for these parameters is 508.3. The assembly sequence generated for the best 

objective value using these parameters is 1-2-4-3-9-12-13-5-16-15-18-11-6-7-8-14-10-

17-19. The result clearly shows that the MS GSA is an e_fficient approach compared to the 

SA, the GA, and the BPSO. 
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Figure 4.17. Effect of the usage,ofthe different parameters (MSGSA). 

To study the effect of the constant ,8, the initial gravitational constant Go, the 

number of agents NOA and the number of iteration Ton the MSGSA performance, the 

Friedman test is performed on the experimental results presented in Table 4.77. 
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Figure 4.17. Effect of the usage of the different parameters (MSGSA). 

To study the effect of the constant ,B, the initial gravitational constant Go, the 

number of agents NOA and the number of iteration Ton the MSGSA performance, the 

Friedman test is performed on the experimental results presented in Table 4.77. 



Table 4.77 
Studv of Tuninz the MSG SA Parameters. 

Parameter Min Mean Max SD Other parameters 
P= 10 511.8 522.0 527.7 3.6 T= 500, NOA= 20, Go= 100 

fl= 15 511.8 522.0 527.7 3.6 T= 500, NOA= 20, Go= 100 

/1=20 512.4 522.8 528.9 3.9 T= 500, NOA= 20, Go= 100 

P=25 512.4 522.8 528.9 3.9 T= 500, NOA= 20, Go= 100 

P=30 512.4 522.8 528.9 3.9 T= 500, NOA= 20, Go= 100 

Go=20 514.9 523.8 529.9 3.8 T= 500, NOA= 20, p = 20 

Go=30 515.5 522.8 530.3 3.5 T= 500, NOA = 20, p = 20 

Go=70 511.2 522.9 529.2 3.3 T= 500, NOA= 20, p = 20 

Go= 100 512.4 522.8 528.9 3.9 T= 500, NOA= 20, fJ = 20 

Go= 130 509.0 522.7 527.9 3.9 T= 500, NOA= 20, fJ = 20 

NOA= 10 515.5 525.8 532.1 4.2 T = 500, Go = 100, p = 20 

NOA= 15 515.4 523.9 529.4 3.4 T= 500, Go= 100,/J= 20 

NOA=20 515.2 522.6 530.5 3.0 T= 500, Go= 100,p= 20 

NOA=25 514.6 521.6 529.4 3.3 T= 500, Go= 100,p= 20 

NOA=30 510.4 520.5 526.4 3.3 T= 500, Go= 100,/J= 20 

T=300 516.3 524.3 529.9 3.6 NOA= 20, Go= 100,/J= 20 

T=400 514.9 523.6 529.0 3.2 NOA= 20, Go= 100,/J= 20 

T=500 512.4 522.8 528.9 3.9 NOA = 20, Go= 100, fJ = 20 

T=600 512.2 522.9 530.2 4.0 NOA = 20, Go= 100, fJ = 20 

T=700 508.3 521.9 529.0 3.7 NOA= 20, Go= 100,p= 20 



Table 4.78 
Friedman Test on the Effect of the Inertia Weight w, the Coefficient Factors c1 and c2, 
Number of.Particle NOP, and Number o[_ Iteration T. 

Items Parameter settings 
Constant/J .10 15 20 25 30 
Average Friedman 

1.50 1.50 4.00 4.00 4.00 
rank 
Initial gravitational 

20 30' 70 100 130 constant G 
Average Friedman 

5.00 2.50 4.00 2.50 1.00 
rank 
Number of agents 

10 15 20 25 30 
NOA 
Average Friedman 

5 4 3 2 
rank 
Number of iteration 

300 400 500 600 700 
T 
Average Friedman 

5 4 2 3 
rank 

The average rank is presented in Table 4.78. The Friedman statistic shows that 

using different f3 values cause significant difference to the MS GSA because the Friedman 

statistic value i2F is greater than the critical value Ja, (17.0000 > 9.4880), hence 

indicating that the performance of the MSG SA is affected by the preference of fJ. 



Table 4.79 
Holm Procedure on the Constant {3. 

Dataset 
/3 = 10 vs. /3 = 20 
/3 = 10 vs. /3 = 25 
B = 10 vs. /3 = 30 
/3 = 15 vs. /3 = 20 
/3 = 15 vs. /3 = 25 
/3 = 15 vs. /3 = 30 
/3 = 10 vs. /3 = 15 
/J = 20 VS. {3 = 25 
/3 = 20 vs. /3 = 30 
/3 = 25 vs. /3 = 30 

Table 4.80 

p 
0.0004 
0.0004 
0.0004 
0.0004 
0.0004 
0.0004 
1.0000 
1.0000 
1.0000 
1.0000 

z 
3.5356 
3.5356 
3.5356 
3.5356 
3.5356 
3.5356 
0.0000 
0.0000 
0.0000 
0.0000 

Holm Procedure on the Initial Gravitational Constant Go. 
Dataset P 

Go= 20 vs. Go= 70 0.0000 
Go = 20 vs. Go= 30 0.0000 
Go= 70 vs. Go= 130 0.0004 
Go= 20 vs. Go= 100 0.0004 
Go = 30 vs. Go = 130 0.0339 
Go = 70 vs. Go = 100 0.0339 
Go = 20 vs. Go= 130 0.0339 
Go = 100 vs. Go = 130 0.0339 
Go = 30 vs. Go= 70 0.1573 
Go= 30 vs. Go= 100 1.0000 

z 
5.6569 
4.2426 
3.5355 
3.5355 

,2.1213 
2.1213 
2.1213 
2.1213 
1.4142 
0.0000 

Holm 
0.0067 
0.0067 
0.0067 
0.0067 
0.0067 
0.0067 
0.0200 
0.0200 
0.0200 
0.0200 

Holm 
0.0050 
0.0056 
0.0067 
0.0067 
0.0111 
0.0111 
0.0111 
0.0111 
0.0250 
0.0500 

The Holm procedure is then performed and the results are shown in Table 4.79. 

The results demonstrate that significant differences exist between the performances of the 

MSGSA if comparing the results between these two /3 namely, f3 = "10 vs. /3 = 20, f3 = 10 

vs. f3 = 25,/3 = 10 vs. /3 = 30, f3 = 15 vs. f3 = 20, /3 = 15 vs. f3 = 25, and /3 = 15 vs. f3 = 30. 

On the other hand, the results of Friedman test show that significant difference also exists 

in the MSGSA performance for different Go values because the Friedman statistic value 

i"F is greater than the critical value ;(a, (18.3333 > 9.4880), hence indicating that the 

performance of the MSGSA is extensively affected by the preference of Go. Holm 

procedure is then conducted and its statistical values are provided in Table 4.80. The 

results of the Holm procedure show that significant differences exist between the 

performances of the MSGSA if comparing the results between these two Go values 

namely Go = 20 vs. Go = 70, Go = 20 vs. Go = 30, Go = 70 vs. Go = 130, and Go = 20 vs. 

Go= 100. 



Table 4.81 
Holm Procedure on the Number of Agents NOA. 

Dataset P 
NOA = 10 vs. NOA = 30 0.0000 
NOA = 10 VS. NOA = 25 0.0000 
NOA= 15 VS. NOA= 30 0.0000 
NOA= 10 vs. NOA= 20 0.0047 
NOA= 15 vs. NOA= 25 0.0047 
NOA= 20 vs. NOA= 30 0.0047 
NOA= 10 vs. NOA= 15 0.1573 
NOA= 15 vs. NOA= 20 0.1573 
NOA= 25 vs. NOA= 30 0.1573 
NOA = 20 VS. NOA = 25 0.1573 

z 
5.6569 
4.2426 
4.2426 
2.8284 
2.8284 
2.8284 
1.4142 
1.4142 
1.4142 
1.4142 

Holm 
0.0050 
0.0059 
0.0059 
0.0083 
0.0083 
0.0083 
0.0200 
0.0200 
0.0200 
0.0200 

The Friedman test performed on the effect of the different number of agents shows 

that the MSGSA with different number of agents is significantly different because the 

Friedman statistic value KF is greater than the critical value i2 a, (18.6667 > 9.4880). This 

observation is further studied using Holm procedure as shown in Table 4.81. The 

outcomes of the Holm procedure reveal that significant differences exist between the 

performances of the MSGSA if comparing the results between these two number of agents 

namely, NOA= 10 and NOA= 30, NOA= 10 and NOA= 25, NOA= 15 and NOA= 30, 

NOA = 10 and NOA = 20, NOA = 15 and NOA = 25, and NOA = 20 and NOA = 30. 



Table 4.82 
Holm Procedure on the Number of iteration T. 

Dataset P 
T= 300 vs. T= 600 0.0000 
T = 300 vs. T = 700 0.0000 
T= 500 vs. T= 600 0.0000 
T= 300 VS. T= 400 0.0047 
T= 500 vs. T= 700 0.0047 
T= 400 VS. T= 600 0.0047 
T= 300 vs. T= 500 0.1573 
T= 400 VS. T= 500 0.1573 
T = 600 vs. T = 700 0.1573 
T= 400 vs. T= 700 0.1573 

z 
5.6569 
4.2426 
4.2426 
2.8284 
2.8284 
2.8284 
1.4142 
1.4142 
1.4142 
1.4142 

Holm 
0.0050 
0.0059 
0.0059 
0.0083 
0.0083 
0.0083 
0.0200 
0.0200 
0.0200 
0.0200 

The Friedman statistic shows that using different number of iteration values makes 

significant difference to the MSGSA because the Friedman statistic value i2 F is greater 

than the critical value i2 a, (18.6667 > 9.4880), thus presenting that the performance of the 

MSGSA is affected by the choice of number of iteration. This result is further studied 

using Holm procedure as in Table 4.82. The result of Holm procedure demonstrates that 

significant difference exists between the performances bf the MSGSA if comparing the 

results between these two number of iteration namely, T = 300 and T = 600, T = 300 and 

T= 700, T= 500 and T= 600, T= 300 and T= 400, T= 500 and T= 700, and T= 400 

and T= 600. 



4.5.13 Results of the Proposed Approach based on the MSGSAER compared to 

the SA 

In the experiments, the parameters used for the proposed approach based on the 

MSGSAER and the ·approach based on SA are presei:ited in Table 4.83. Based on these 

parameters, the quality of the results of the proposed approach based on the MSGSAER 

for the 50 runs is presented in Table 4.84. Table 4.85 shows a comparison of the best 

results of the proposed approach based on the MSGSAER and the approach based on the 

SA with their assembly sequences. Using the minimum values of the proposed approach 

based on the MSGSAER and the approach based on the SA given in Table 4.85, it seems 

that the proposed approach based on the MSGSAER outperformed the approach based 

Table 4.83 
Experimental Parameters for the Proposed Approach based on the MSGSAER and the 
Approach based on the SA. 

Parameters MSGSAER SA 
Iteration 500 500 
Number of agent 30 NAP 
~ 100 NM 

f3 20 NAP 
Initial temperature (°C) NAP 100 
Cooling rate NAP 0.95 
Number of run 50 NA 

NA= not available from the source, NAP =not applicable. 

Table 4.84 
Quality of the Results.for the Proposed Approach based on the MSGSAER. 

Experiment Min Mean Max SD 
1 511.9 519.0 526.4 3.2 

Table 4.85 
Best Results and Associated Assembly Sequences of the Proposed Approach based on the 
MSGSAER and the Approach based on the SA. 

Approach Total 
based assembly time 

MSGSAER 511.9 
SA 528.7 

Assembly sequence 

2-15-4-1-9-12-3-5-13-18-6-16-11-7-8-14-10-17-19 
2-l-4-9-3-12-13-16-5-15-18-6-11-7-8-10-14-17-19 



on the SA, obtaining the minimum total assembly time of the ASP problem. The mean or 

average of the total assembly time yielded by the proposed approach based on the 

MSGSAER to solve the ASP problem is also better than the minimum of the assembly 

time produced by the approach based on the SA. 

4.5.14 Results of the Proposed Approach based on the MSGSAER compared to the 

GA 

Table 4.86 shows the parameters used for the proposed approach based on the 

MSGSAER and the approach based on the GA in three different experiments. The quality 

of the results of the proposed approach based on the MSGSAER for 50 runs is presented 

in Table 4.87. 

Table 4.86 
Experimental Parameters for the Proposed Approach l(ased on the MSGSAER and the 
Approach based on the GA. 

Experiment 1 Experiment 2 Experiment 3 
Parameters MSGSA GA MSGSA GA MS GSA GA 

ER ER ER 
Iteration 100 100 100 100 100 100 
Number of agent 20 20 40 40 100 100 

Go 100 NAP 100 NAP 100 NAP 

f3 20 NAP 20 NAP 20 NAP 
Mutation rate NAP 0.05 NAP 0.05 NAP 0.05 
Crossover NAP 0.5 NAP 0.5 NAP 0.5 
Number of run 50 NA 50 NA 50 NA 

NA = not available from the source, NAP = not applicable. 

Table 4.87 
Quality of the Results for the Proposed Approach based on the MSGSAER. 

Experiment Min Mean Max SD 
1 514.1 524.0 533.0 4.0 
2 508.6 521.8 529.1 3.8 
3 513.5 521.9 528.7 3.5 



Table 4.88 
Best Results of the Proposed Approach based on the MSGSAER and the Approach based 
on the GA for Each Experiment. 

Experiment Total assembly time Total assembly time (GA) 

1 
2 
3 

Table 4.89 

(MSGSAER) 
514.1 
508.6 
513.5 

535.1 
527.9 
524.1 

Best results and the Associated Assembly Sequences of the Proposed Approach based on 
the MSGSAER and the Approach based on the GA. 

Approach Total Assembly sequence 
based assembly 

MSGSAER 
GA 

time 
508.6 
524.1 

1-2-4-9-3-12-5-15-13-16-18-6-11-7-8-10-14-17-19 
2-18-3-12-1-13-16-5-11-15-4-6-9-7-8-10-14-17-19 

Table 4.88 shows the results of the approach based on the GA for the three 

different experiments. In all three experiments, the proposed approach based on the 
' 

MSGSAER surpassed the approach based on the GA in minimizing the total assembly 

time for the respective parameters. The best value obtained by the proposed approach 

based on the MSGSAER in the three different experiments is then selected to be 

compared against the best value produced by the approach based on the GA, as presented 

in Table 4.88. Referring to the results given in Table 4.89, the proposed approach based 

on the MSGSAER also outperformed the approach based on the GA in obtaining the 

minimum total assembly time of the ASP problem. In ~he three experiments, the mean of 

the total assembly time produced by the proposed approach based on the MSGSAER to 

solve the ASP problem is also better than the minimum of the assembly time produced 

by the approach based on the GA. 



4.5.15 Results of the Proposed Approach based on the MSGSAER compared to the 

BPSO 

Parameters used for the proposed approach based on the MSGSAER and the 

approach based on the BPSO are listed in Table 4.90 f<?r three different experiments. The 

quality of the results of the proposed approach based on the MSGSAER and the approach 

based on the BPSO for 10 runs is presented in Table 4.91. Table 4.91 shows that the 

proposed approach based on the MSGSAER yields smaller values for the minimum and 

mean for each experiment, thus verifying that the 

Table 4.90 
Experimental Parameters for the Proposed Approach based on the MSGSAER and the 
APE..roach based on the BPSO. 

Experiment 1 Experiment 2 Experiment 3 
Parameters MSGSA BPSO MS GSA BPSO MSGSA BPSO 

ER ER ER 
Iteration 500 500 500 500 500 500 
Number of 40 40 50 50 60 60 
agent 

Go 100 NAP 100 NAP 100 NAP 

p 20 NAP 20 NAP 20 NAP 
Inertia weight, NAP 0.9 to 0.4 NAP 0.9 to 0.4 NAP 0.9 to 0.4 
(J) 

Coefficient NAP 2 NAP 2 NAP 2 
factor, c1 and 
c2 
Number of run 50 50 50 50 50 50 

NA= not available from the source, NAP = not applicable. 

Table 4.91 
Quality of the Results for the proposed approach based on the MSGSAER and the 
APE..roach based on the BPSO. 

Min 
Ex MSGSA BPSO 

ER 
1 
2 
3 

511.6 
510.4 
512.3 

Ex = experiment. 

514.4 
515.8 
516.9 

Mean 
MSGSA BPSO 

ER 
517.6 
515.2 
517.6 

520.3 
520.8 
521.1 

Max 
MSGSA BPSO 

ER 
524.9 
518.5 
522.5 

526.2 
523.4 
527.9 

SD 
MSGSA BPSO 

ER 
4.2 
2.6 
3.2 

3.8 
2.3 
3.2 



Table 4.92 
Best Results and their Associated Assembly Sequences of the Proposed Approach based 
on the MSGSAER and the Approach based on the BPSO. 
Approach Total Assembly sequence 
based assembly 

MSGSAER 
BPSO 

time 
510.4 
514.4 

2-l-15-4-3-9-12-13-16-5-18-6-7-8-11-10-14-17-19 
16-2-13-4-1-15-11-9--0-5-18-7-8-14-12-10-3-17-19 

proposed approach based on the MSGSAER produces higher quality solutions compared 

to the approach based on the BPSO. Table 4.92 compares the best results of these 

approaches that represent the minimum of total assembly time and their associated 

assembly sequences. The MSGSAER outperforms the BPSO in all experiments. 

4.5.16 Effect of the MSGSAER Parameters 

To quantify the results, the 50 runs are performed for each parameter variation, so 

that the combination of the best parameter settings can ,be found. Table 4.93 offers the 

MSGSAER outcomes as a result of varying its parameters. Figure 4.18 illustrates the 

results in box plots. It is clear from results shown in Table 4.93 that the best parameters 

for constant /3, initial gravitational constant Go, number of agents NOA and number of 

iteration Tare f3 = 20, Go= 100, NOA= 30, T= 500 respectively. The best objective value 

obtained for these parameters is 508.7, which is shown in bold font. The assembly 

sequence generated for the best objective value using these parameters is 1-2-15-4-3-9-

12-13-16-5-18-11-6-7-8-14-10-17-19. The result clearly shows that the MSGSAER is an 

efficient approach compared to the SA, the GA, and the BPSO. 



Table 4.93 
Study of Tuning the MSGSAER Parameters. 

Parameter Min Mean Max SD Other parameters 
,8= 10 515.7 522.4 530.2 3.6 T= 500,NOA = 20, G0= 100 

fJ = 15 515.7 522.4 530.2 3.6 T= 500, NOA = 20, G0= 100 

/J= 20 515.7 522.4 530.2 3.6 T= 500, NOA= 20, G0= 100 

/3= 25 515.7 522.4 530.2 3.6 T= 500, NOA= 20, G0= 100 

/J= 30 515.7 522.4 530.2 3.6 T= 500,NOA = 20, G0= 100 

G0=20 517.3 524.2 531.5 3.1 T = 500, NOA = 20, fJ = 20 

G0=30 513.1 522.3 530.6 4.1 T = 500, NOA = 20, p = 20 

G0=70 510.l 522.0 527.9 3.9 T= 500, NOA= 20, /J= 20 

G0= 100 515.7 522.4 530.2 3.6 T= 500, NOA= 20, fJ = 20 

G0= 130 510.4 522.5 529.3 3.4 T = 500, NOA = 20, p = 20 

NOA= 10 513.5 525.0 530.6 3.9 T= 500, G0= 100,,8= 20 

NOA= 15 513.3 524.1 531.7 3.7 T= 500, G0= 100;/J= 20 

NOA=20 515.7 522.4 530.2 3.6 T = 500, G0= 100, fJ = 20 

NOA=25 514.7 522.0 526.1 2.9 T = 500, G0= 100, fJ = 20 

NOA=30 508.7 520.2 525.2 3.5 T= 500, G0= 100,p= 20 

T=300 513.9 523.0 531.3 3.8 NOA = 20, G0= 100, ,8 = 20 

T=400 508.8 522.2 529.4 4.3 NOA = 20, G0= 100, fJ = 20 

T=SOO 515.7 522.4 530.2 3.6 NOA = 20, G0= 100, ,8 = 20 

T=600 509.9 521.4 526.9 3.6 NOA = 20, G0= 100, fJ = 20 

T=700 514.0 521.5 528.5 3.3 NOA =20, G0 = 100,/3=20 
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Figure 4.18. Effect of the usage of the different parameters (MSGSAER). 

To study the effect of the constant fJ, the initial gravitational .constant Go, the 

number of agents NOA and the number of iteration Ton the MSGSAER performance, 

Friedman test is performed on the experimental results in Tables 4.93. 



Table 4.94 
Friedman Test on the Effect of the Inertia Weight w, the Coefficient Factors c1 and c2, 

Number of Particle NOP, and Number of Iteration T. 
Items Parameter settings 
Constant f3 10 15 20 25 30 
Average Friedman 
rank 

3.00 3.00 3.00 3.00 3.00 

Initial gravitational 
20 30 70 100 130 constant G 

Average Friedman 
5.00 2.00 1.00 3.00 4.00 

rank 
Number of agents 

10 15 20 25 30 
NOA 
Average Friedman 

5 4 3 2 1 
rank 
Number of iteration 

300 400 500 600 700 
T 
Average Friedman 

5 3 4 1 2 
rank 

The average rank is presented in Table 4.94. The Friedman statistic shows that 

using different f3 values makes no significant difference to the MSGSAER, thus showing 

that the performance of the MSGSAER is not greatly affected by the choice of /J. This 

result is confirmed by boxplots in Figure 4.18(a) where the size of the boxes is similar to 

each other. Occasionally, the results obtained by the MSGSAER contains multiple 

outliers, caused by the stochastic behaviour of the MSGSAER. 



Table 4.95 
Holm Procedure on the Initial Gravitational Constant Go. 

Dataset P 
Go= 20 vs. Go= 70 0.0000 
Go = 20 vs. Go = 30 0.0000 
Go= 70 vs. Go = 130 0.0004 
Go= 20 vs. Go = 100 0.0004 
Go = 30 vs. Go= 130 0.0339 
Go = 70 vs. Go = 100 0.0339 
Go = 20 vs. Go= 130 0.0339 
Go= 100 vs. Go = 130 0.0339 
Go= 30 vs. Go= 70 0.1573 
Go= 30 vs. Go= 100 1.0000 

z 
5.6569 
4.2426 
3.5355 
3.5355 
2.1213 
2.1213 
2.1213 
2.1213 
1.4142 
0.0000 

Holm 
0.0050 
0.0056 
0.0067 
0.0067 
0.0111 
0.0111 
0.0111 
0.0111 
0.0250 
0.0500 

On the other hand, the results of Friedman test show that significant difference 

also exists in the MSGSAER performance for different Go values because the Friedman 

statistic value x2F is greater than the critical value i a, (18.6666 > 9.4880), hence 

indicating that the performance of the MSGSAER is extensively affected by the 

preference of Go. Holm procedure is then conducted and its statistical values are provided 

in Table 4.95. The results of the Holm procedure show that significant differences exist 

between the performances of the MSGSAER if comparing the results between these two 

Go values namely Go = 20 vs. Go = 70, Go = 20 vs. Go = 30, Go = 70 vs. Go = 130, Go = 

20 vs. Go = 100, Go= 30 vs. Go = 130, and Go= 70 vs. Go = 100. 



Table 4.96 
Holm Procedure on the Number of Agents NOA. 

Dataset P 
NOA = 10 vs. NOA = 30 0.0000 
NOA = 10 vs. NOA = 25 0.0000 
NOA = 15 vs. NOA = 30 0.0000 
NOA= 10 vs. NOA= 20 0.0047 
NOA= 15 vs. NOA= 25 0.0047 
NOA= 20 vs. NOA= 30 0.0047 
NOA= 10 vs. NOA= 15 0.1573 
NOA= 15 vs. NOA= 20 0.1573 
NOA= 25 vs. NOA= 30 0.1573 
NOA= 20 vs. NOA= 25 0.1573 

z 
5.6569 
4.2426 
4.2426 
2.8284 
2.8284 
2.8284 
1.4142 
1.4142 
1.4142 
1.4142 

Holm 
0.0050 
0.0059 
0.0059 
0.0083 
0.0083 
0.0083 
0.0200 
0.0200 
0.0200 
0.0200 

The Friedman test performed on the effect of the different number of agents shows 

that the MSGSAER with different number of agents is significantly different because the 

Friedman statistic value ;(2F is greater than the critical value ;(20., (18.6667 > 9.4880). This 

observation is further studied using the Holm procedure as shown in Table 4.96. The 

outcomes of the Holm procedure reveal that significant differences exist between the 

performances of the MSGSAER if comparing the results between these two number of 

agents namely, NOA= 10 vs. NOA= 30, NOA= 10 vs. NOA= 25, NOA= 15 vs. NOA= 

30, NOA= 10 vs. NOA= 20, NOA= 15 vs. NOA= 25, and NOA= 20 vs. NOA= 30. 



Table 4.97 
Holm Procedure on the Number of iteration T. 

Dataset P 
T= 300 vs. T= 600 0.0000 
T= 300 vs. T= 700 0.0000 
T= 500 VS. T= 600 0.0000 
T= 300 VS. T= 400 0.0047 
T= 500 VS. T= 700 0.0047 
T= 400 vs. T= 600 0.0047 
T= 300 vs. T= 500 0.1573 
T= 400 vs. T= 500 0.1573 
T= 600 VS. T= 700 0.1573 
T= 400 VS. T= 700 0.1573 

z 
5.6569 
4.2426 
4.2426 
2.8284 
2.8284 
2.8284 
1.4142 
1.4142 
1.4142 
1.4142 

Holm 
0.0050 
0.0059 
0.0059 
0.0083 
0.0083 
0.0083 
0.0200 
0.0200 
0.0200 
0.0200 

The Friedman statistic shows that using different number of iteration values 

makes significant difference to the MSGSAER because the Friedman statistic value i2F 
is greater than the critical value i2 a, (18.6667 > 9.4880), thus presenting that the 

performance of the MSGSAER is affected by the choice of number of iteration. This 

result is further studied using Holm procedure as in Table 4.97. The results of Holm 

procedure demonstrate that significant differences exist between the performances of the 

MSGSA if comparing the results between these two number of iteration namely T == 300 

vs. T == 600, T == 300 vs. T == 700, T == 500 vs. T == 600, T == 300 vs. T == 4000, T == 500 vs. 

T= 700, and T= 400 vs. T= 600. 

4.6 The Performance Comparison between the MSPSO, the MSPSOER, the 

MSGSA, and the MSGSAER for solving the ASP 

With regard to the best result obtained using the best parameters, this section 

presents a comparison between the MSPSO, the MSPSOER, the MSGSA, and the 

MSGSAER for the ASP. 



Table 4.98 
Best Results and their Associated Assembly Sequences of the Proposed Approaches based 
on the MSPSO, the MSPSOER, the MSGSA, and the MSGSAER. 

Approach Total Assembly sequence 
based assembly 

MSPSO 
MSPSOER 
MS GSA 
MSGSAER 

time 
511.5 
508.3 
508.3 
508.7 

15-1-2-4-12-9-3-13-5-18-6-16-11-7-8-14-10-17-19 
1-2-12-4-3-9-13-15-11-5-16-6-18-7-8-14-10-17-19 
1-2-4-3-9-12-13-5-16-15-18-11-6-7-8-14-10-17-19 
1-2-15-4-3-9-12-13-16-5-18-11-6-7-8-14-10-17-19 

Table 4.98 shows that the MSPSOER and the MSGSA able to obtain the best result that 

represents minimum of total assembly time but with different assembly sequence, 

compared to two other approaches (the MSPSO and the MSGSAER). 

4.7 SUMMARY 

The purpose of this chapter is to summarize t~e experimental results, which are 

the outcomes of the research. The results reported in this chapter were obtained from 

several experiments on two categories of COPs; the TSP and the ASP. The chapter begin 

by discussing the experimental results of three algorithms for the TSP, namely the 

MSPSO, the MSPSOER, and the BPSO. Next, the experimental results of the three 

algorithms for the TSP, namely the MSGSA, the MSGSAER, and BGSA are analysed. 

In these two performance measures, the comparison focuses on the quality of results, 

speed of convergence, and the superiority of results qn individual runs. The best solution, 

worst solution, average solution, and standard deviation for each algorithm on the small 

and bigger size of the TSP benchmark instances are recorded. 

The difference between the solutions obtained by all algorithms is also analysed 

using boxplots. Wilcoxon's Sign-Ranked test is then performed to compare the 

performance between the MSPSO and the BPSO. Next, Friedman test is performed to 

investigate if there is significant improvement of the MSPSOER to the MSPSO and the 

BPSO. If significant differences are found, the MSPSO, the MSPSOER, and the BPSO 

are then compared each other using a post hoc procedure. In this study, the Holm 

procedure is chosen. This procedure can identify what are the pairs of the algorithms that 

have the significant differences. Later on, these two tests and the Holm procedure are also 



conducted to study the performance of the MSGSA, the MSGSAER, and BGSA. The 

experimental results obtained from the TSP benchmark instances used showed that the 

MSPSOER able to obtain better results, compared to the MSPSOER and the BPSO. 

Meanwhile, the BGSA have better results compared to the MSGSA and the MSGSAER. 

Subsequently, the chapter discusses the experimental results of four approaches 

for an application in engineering problem (ASP), namely the proposed approach based 

on the MSPSO, the MSPSOER, the MSGSA, and the MSGSAER and compared the 

performance of each algorithm to the SA, the GA, and the BPSO. BPSO. Next, the 

experimental results of three algorithms for the ASP, namely the MS GSA, the 

MSGSAER, and BGSA are analysed. The comparison focuses on the quality of results. 

The best solution, worst solution, average solution, and standard deviation for the ASP are 

recorded. The experimental results obtained shows that the proposed approach based on 

the MSPSO and the MSPSOER consistently outperforms the SA and the GA, but not the 

BPSO. 

The success of any algorithm is heavily depend on setting of control parameters. 

Hence, a series of experiments are carried out to tune the MSPSO, the MSPSOER, the 

MSGSA, and the MSGSAER best parameters for the ASP. Initially, the difference 

between the solutions obtained by all algorithms is analysed using boxplots. To study the 

performance of the proposed approaches based on the MSPSO, the MSPSOER, the 

MSGSA, and the MSGSAER, Friedman test is performed. If significant differences are 

found, a post hoc procedure that is Holm procedure is conducte.d. This procedure can 

identify what are the pairs of the parameters that have the significant differences. With 

regard to the best parameters, the experimental results obtained shows that the proposed 

approaches based on the MSPSO, the MSPSOER, the MSGSA, and the MSGSAER 

consistently outperforms the SA, the GA, and the BPSO. As a final conclusion, the 

proposed approaches based on the MSPSOER and the MSGSA able to obtain the best 

minimum of total assembly time but with different assembly sequence, compared to two 

other approaches (the MSPSO and the MSGSAER). 



CHAPTERS 

CONCLUSION AND RECOMMENDATIONS 

5.1 Thesis Summary 

In this thesis, the research are originated from two fundamental topics, which are 

treated in Chapter 2 and Chapter 3. 

The first topic that is mentioned in Chapter 2 is the algorithms considered; particle 

swarm optimization and gravitational search algorithm. These two algorithms are 

optimization techniques which were developed from nature behaviour and are now 

effective alternative to more established methods, like those in the evolutionary 

computation field. Since the original PSO and GSA can only optimize problem in which 

the elements of the solution are continuous real numbers, a modification of the PSO and 

the GSA for problems with binary-valued solution elements were _introduced. The two 

binary algorithms, BPSO and BGSA preserves the fundamental concept of their 

predecessor except that each particle (BPSO) and each agent (BGSA) in a swarm consists 

of binary string representing a particle's position vector (BPSO) and an agent's position 

vector (BGSA). This algorithm uses the concept of velocity as a probability that a bit flips 

to one or zero. 

With regard to the literature review given in Chapter 2, it demonstrates that many 

previous studies have been proposed to solve discrete COPs that is naturally discrete 

either using the binary codification (i.e. Goldberg, 1989), integer codification (Tasgetiren, 

Evkli, Liang, & Gencyilmaz, 2004), or real-to-binary (Kennedy & Eberhart, 1997) or 

real-to-integer transformation (Wei & Hanning, 2007). There could be other approaches 



that search all possible solutions for solving discrete COPs in other type of search space 

rather than real-valued and binary search spaces, as provided by (Wei-Neng et al., 2010), 

where S-PSO makes use of set-based search space for searching all possible solutions. 

Two problem domains of ·COPs which are TSP and ASP were then provided and 

explained. 

The second topic that is mentioned in Chapter 3 is related to the optimization of 

discrete COPs, and thus to the development of optimization algorithms which can solve 

discrete COPs without involving binary-valued solution elements. In particular, this 

research focused on the representation of multi-state model inspired from a sequential 

circuit in digital system. The multi-state concept was used in the context of evolutionary 

computation precisely with the intent to enable swarm intelligence algorithms to deal with 

discrete COPs. With regard to the existing of states transitions in the sequential circuit, a 

new approach of states representation called multi-state model is then introduced to 

optimize COPs. Up-to-date, the multi-state model is relatively a new type of discretization 

approach that involved transition between many pairs o:fitwo states. To begin, the original 

PSO and the original GSA were modified to multi-state PSO and multi-state GSA in which 

these two algorithms operated using the multi-state model. The characteristic of these two 

proposed algorithms is each solution's vector or dimension was represented as a collective 
/ 

of states; neither continuous nor discrete value. By using this multi-state model, next state 

for each current state can be selected randomly from the collective of states, depending 

on current velocity value. There are two primary features in the multi-state model; a 

current state and a radius. In this model, current state·can be represented as a centroid of 

a circle. Meanwhile, velocity can be represented as radius of the circle. 

Subsequently, the concept of multi-state model based on embedded rule was 

discussed. The concept was fundamentally introduced to solve the repetitive issue 

occurred in the MSPSO and the MSGSA that used the original multi-state model. The 

concept of embedded rule were implemented in the MSPSO and the MSGSA by 

designing such procedure to eventually produce unrepeated states in each solution. This 

procedure obeye,d on an embedded rule which is "each state can only occur once in each 

solution" The introduction of the embedded rule in the multi-state model efficiently 

removed the limitation of the MSPSO and the MSGSA in which all updated solutions 

guaranteed forming by unrepeated states. Next, the chapter offers a description of the 



statistical tests to analyse either there are significant differences in term of performance 

between the algorithms in comparison. The chapter eventually elaborates the general 

process of this research step by step in research methodology. 

Next, this thesis also presents the proposed approaches based on the MSPSO, the 

MSPSOER, the MSGSA, and the MSGSAER applied to the TSP and the ASP with the 

outline of the proposed approaches which includes initialization, the evaluation, and the 

velocities and positions update. It is noticeable that there was an obvious difference 

between the proposed MSPSO and the MSGSA, and the proposed MSPSOER and the 

MSGSAER where the proposed MSPSO and the MSGSA should evolve their infeasible 

solutions to feasible solutions. 

The four proposed algorithms was put to test on the TSP which were built in order 

to investigate the four proposed algorithms ability to produce results with higher quality. 

The results of the tests were then compared to their binary counterpart. The MSPSO and 

the MSPSOER were compared to the BPSO. On the other hand, the MSGSA and the 

· MSGSAER were compared to the BGSA. The comparison focuses on the quality of 

results, speed of convergence, and the superiority of results on individual runs. The best 

solution, worst solution, average solution, and standard deviation for each algorithm on 

the eighteen sets of the TSP benchmark instances are recorded. The experimental results 

obtained from the TSP benchmark instances used showed that the MSPSOER able to 

obtain better results, compared to the MSPSO and the BPSO. However, the BGSA 

produced better results compared to the MS GSA and 'the MSGSAER. 

Subsequently, this thesis discusses the experimental results of four approaches for 

an application in engineering called ASP, namely the MSPSO, the MSPSOER, the 

MSGSA, and the MSGSAER and compared each algorithm to the SA, GA, and the 

BPSO. The experimental results obtained shows that the proposed approach based on the 

MSPSO and the MSPSOER consistently outperformed the SA and the GA, but not the 

BPSO. However, the usage of the best parameters improved experimental results where 

the proposed approaches based on the MSPSO, the MSPSOER, the MSGSA, and the 

MSGSAER consistently outperformed the SA, the GA, and also the BPSO. The MSPSO, 

the MSPSOER, the MS GSA, and the MSGSAER that employed the representation of the 

multi-state can be eventually sighted in Figure 5.1. 
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Figure 5.1. Discretization approaches with the proposed algorithms that used multi-state model. Bold signifies the proposed algorithms. 



5.2 Recommendation for Future Research 

In this thesis, four version of multi-state-based algorithms for solving the TSP and 

the ASP are proposed. The ~lgorithms which are evaluated on the six sets of benchmark 

instances of TSP and the 19 components of ASP are successfully applied and showed 

their superiority performance with respect to the quality of results, compared to the BPSO 

and the BGSA. However, the promising performance that are marked on the four 

proposed algorithms certainly encourage the building of the motivation for further quest 

into the extension of the four multi-state-based algorithms as follows: 

1. It is suggested that the concept of the multi-state representation and its improved 

concept can be applied to other meta-heuristics such as GA, DE, CS, and so forth 

in order to further investigate the effects of the multi-state representation on the 

quality of solutions. 

ii. It is suggested that the MSPSO, the MSPSOER, the MSGSA, and the MSGSAER 

can be tested to other COPs, such as VLSI roudng, DNA sequence design, PCB 

routing, and so forth in order to further investigate the effects of the multi-state 

representation on the quality of solutions on those problems. 

111. It is suggested that the multi-state model and its improved model with the embedded 

rule can be redesigned to solve multi-objective problems. 
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