

STUDY ON COPPER'INCORPORATED MESOFOROUS SILICA SBA-15

FOR N₂O CATALYTIC DECOMPOSITION

MOHD HAIZAL MOHD HUSIN

Thesis submitted in fulfillment of requirements for the award of degree of Doctor of Philosophy

Faculty of Chemical & Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

JULY 2016

TABLE OF CONTENTS

Page

i
ii
iii
iv
v
vi
x
xii
xxi

CHAPTER 1 GENERAL INTRODUCTION

1.1	Introduction	1		
1.2	N ₂ O Emission	2		
1.3	Catalytic Removal of N ₂ O Emissions			
1.4	Mesoporous Silicate Types SBA-15			
1.5	Problem Statement			
1.6	Purpose of the Research	8		
	1.6.1 Objectives of the Research1.6.2 Scopes of the Research	8 9		
1.7	Outline of the Thesis	9		

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	11
2.2	Background of Greenhouse Gases Emission	13
2.3	Background of N ₂ O Emission	15
	2.3.1 Chemistry of Nitrous Oxide	15
	2.3.2 Nitrous Oxide as a Greenhouses Gases	16
	2.3.3 N ₂ O Emissions in the Industrial Processes	18
	2.3.4 N_2O emission control	20

2.4	Catalytic Removal of N ₂ O Emissions	20
	 2.4.1 Catalytic Decomposition of N₂O 2.4.2 Mechanism of N₂O Decomposition 2.4.3 Catalytic Reduction of N₂O 	20 24 25
2.5	Porous Materials	26
2.6	Mesoporous Molecular Sieves	27
2.7	Mesoporous Silicate Types SBA-15.	28
	 2.7.1 The Synthesis of SBA-15 2.7.2 Mechanism for the Formation of SBA-15 2.7.3 The Characterisation of SBA-15 2.7.4 The Application of SBA-15. 	29 30 31 32
2.8	Metal Incorporated SBA-15.	33

CHAPTER 3 EXPERIMENTAL METHODS

3.1	Introduction	37
3.2	Catalyst Preparation	39
	3.2.1 Preparation of SBA-153.2.2 Preparation of M/SBA-15 materials by impregnation method	39 40
	3.2.3 Preparation of Selected Transition Metal incorporated SBA-15	40
	3.2.3.1 Different acidity condition	40
	3.2.3.2 pH modified condition by addition of HMTA	40
	3.2.3 Preparation of Metal Oxide in the SBA-15 by Physical Mixture Method	41
3.3	Characterisation	42
	3.3.1 X-ray Diffraction	42
	3.3.2 N_2 adsorption-desorption Analysis	45
	3.3.3 Transmission Electron Microscopy	46
	3.3.4 Scanning Electron Microscopy	46
	3.3.5 Elemental Analysis	47
	3.2.5.1 Atomic absorption spectroscopy	47
	3.3.5.2 Energy-dispersive X-ray spectroscopy	47
	3.3.6 Fourier Transform Infrared Spectroscopy	48
	3.3.7 Diffuse Reflectance UV-visible Spectroscopy	49
	3.3.8 Thermogravimetric Analysis	50
	3.3.9 X-ray photoelectron spectroscopy	50
	3.3.10 Temperature Programmed Reduction	51
3.4	Catalytic Activities Studies	52
	3.4.1 N ₂ O decomposition	52
	3.4.2 N ₂ O reduction by CH_4	53

3.4.3	Kinetic studies	53
3.4.4	Stability Testing	53

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introdu	action	54
4.2	Synthe	esis of SBA-15 under different acidity	55
	4.2.1	 Results and Discussion 4.2.1.1 pH value 4.2.1.2 X-Ray Diffraction (XRD) 4.2.1.3 N₂ adsorption-desorption analysis 4.2.1.4 Transmission Electron Microscopy (TEM) 4.2.1.5 Fourier Transform Infrared Spectroscopy (FT-IR) 4.2.1.6 Thermogravimetric analysis (TGA) Summary 	55 55 58 62 68 72 75 81
4.3	Screen	ing Study of Transition Metals on SBA-15	82
	4.3.1	 Results and Discussion 4.3.1.1 Elemental analysis 4.3.1.2 X-Ray Diffraction (XRD) 4.3.1.3 N₂ adsorption-desorption analysis 4.3.1.4 Scanning Electron Microscope (SEM) 4.3.1.5 Catalytic activities for N₂O decomposition 4.3.1.6 Kinetics Study on N₂O decomposition Summary 	82 83 85 87 89 91 94 96
4.4	Coppe	er Incorporated SBA-15 and Their Catalytic Activity	97
	4.4.1 4.4.2 4.4.3	Effect of HCl concentration on Cu/SBA-15 Effect of addition HMTA on Cu/SBA-15 at different Cu:Si molar ratio. Effect of HMTA on Cu/SBA-15 prepared in different	97 107 118
	4.4.4 4.4.5	acidic environment. Effect of different HMTA:Si molar ratio on Cu/SBA-15 Summary	128 139
4.5	Comp Metho	arative Study on Cu/SBA-15 Prepared Through Different	141
	4.5.1	 Results and discussion 4.5.1.1 Element analysis 4.5.1.2 XRD analysis 4.5.1.3 Textural properties 4.5.1.4 TEM image 4.5.1.5 FT-IR analysis 4.5.1.6 UV-Vis analysis 4.5.1.7 TPR analysis 4.5.1.8 XPS analysis 4.5.1.9 Catalytic Activity for N₂O decomposition 	141 142 146 149 151 152 154 156 158

		4.5.1.10 Kinetic study of N ₂ O decomposition for Cu-SBA-15	160
	4.5.2	Summary	162
4.6	Cataly	tic Decomposition of N ₂ O	163
	4.6.1	Catalytic Decomposition versus Homogenous Decomposition	163
		4.6.1.1 Homogenous N ₂ O decomposition	163
		4.6.1.2 Effect of pre-treatment on activity	164
	4.6.2	N ₂ O decomposition activity various Cu -SBA-15	167
	4.6.3	Catalytic Activity of various Cu-SBA-15 catalysts for N_2O reduction by CH ₄	169
		4.6.3.1 Effect of different N ₂ O:CH ₄ ratio	169
		4.6.3.2 Effect of various copper-SBA-15 catalysts	171
	4.6.4	The stability of various copper on SBA-15 for N_2O decomposition reaction	175
	4.6.5	Summary	177

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1	Conclusion	178
5.2	Recommendation	180
REF	FERENCES	181
APPENDICES		

A	N_2O , N_2 and O_2 analysis by Gas Chromatography	191

LIST OF TABLES

Table	Title	Page
2.1	The Greenhouse Gases Atmospheric Lifetime and Global Warming Potential (GWP) and Radiative forcing	15
2.2	Metal incorporated SBA-15 preparation condition and catalytic activity.	34
4.1	The effect of preparation conditions of SBA-15 on pH values of reaction mixtures	56
4.2	Textural properties of SBA-15 samples prepared without and with addition of HMTA at different HCl concentration	63
4.3	Elemental analysis by AAS and EDX of SBA-15 and M/SBA-15 samples	83
4.4	20 of dominant peaks in of XRD patterns for M/SBA-15 samples	87
4.5	Unit cell parameter and texture properties of M/SBA-15 samples	88
4.6	Turnover frequency at different reaction temperature for decomposition of N_2O over M/SBA-15	94
4.7	Activation energy (E_a) and pre-exponential factor (A) for the decomposition of N_2O over M/SBA-15	95
4.8	pH values of Cu/SBA-15 samples prepared under different acidity without addition of HMTA.	97
4.9	Element analysis by AAS and EDX of Cu/SBA-15 samples prepared under different acidity without addition of HMTA	98
4.10	XRD analysis for Cu/SBA-15 samples prepared without addition HMTA in different acidity	100
4.11	Texture properties of Cu/SBA-15 (1:30) molar ratio sample prepared without addition HMTA in different acidity	101
4.12	pH values of Cu/SBA-15 sample preparation under different Cu:Si molar ratio with addition of HMTA in 0.10 M HCl	107
4.13	Elemental analyses by AAS and EDX of Cu/SBA-15 samples in 0.1 M HCl prepared under different Cu:Si molar ratio with addition of HMTA.	108

4.14	XRD analysis for Cu/SBA-15 sample prepared with addition HMTA on different Cu/Si molar	110
4.15	Texture properties of Cu/SBA-15 samples prepared with addition HMTA under different Cu/Si molar ratio	112
4.16	pH values of Cu/SBA-15 sample preparation under different acidity with addition of HMTA	118
4.17	Element analysis by AAS and EDX Cu/SBA-15 sample preparation under different acidity with addition of HMTA	119
4.18	XRD analysis for sample prepared with HMTA addition on different acidity condition	121
4.19	Texture properties of Cu/SBA-15 samples prepared by addition of HMTA on different acidic environment	123
4.20	pH values of Cu/SBA-15 sample prepared under different HMTA:Si molar ratios	129
4.21	Element analysis by AAS and EDX of Cu/SBA-15 sample prepared under different HMTA:Si molar ratios	130
4.22	XRD analysis for Cu/SBA-15 sample prepared with addition HMTA on different HMTA:Si molar ratio	131
4.23	Texture properties of Cu/SBA-15 samples prepared with addition of HMTA on different HMTA:Si molar ratio	134
4.24	Element analysis of Cu/SBA-15 samples different method preparation	141
4.25	XRD analysis for Cu/SBA-15 samples different method preparation	145
4.26	Texture properties of Cu/SBA-15 samples different method preparation	146
4.27	Kinetic data for catalytic decomposition of N_2O over Cu/SBA-15 samples prepared through different methods.	161

LIST OF FIGURES

Figure	Title	Page
2.1	The schematic of greenhouse effect	11
2.2	Concentrations of greenhouse gases over the last 2,000 years	12
2.3	The resonance structures of nitrous oxide	15
2.4	Human-related sources of N ₂ O production	18
2.5	Schematic of the mesoporous silica SBA-15 synthesis	29
2.6	Interaction between hydrophilic ethylenede of polymeric templating agent Pluronic-123 and silicate source.	30
2.7	Basic characteristic of SBA-15	31
3.1	Flow chart representing overall experimental approach	38
3.2	Schematic drawing of the principle of X-ray diffraction	43
3.3	XRD pattern (a) Wide angles (b): Low angles XRD for SBA- 15 samples	43
3.4	Instrumentation of Panalytical XPERT-PRO for XRD analysis	44
3.5	Instrumentation of of Micromeritics ASAP 2020 for N_2 adsorption-desorption Analysis.	45
3.6	Instrumentation of FEI Tecnai G2 for TEM analysis.	46
3.7	Instrumentation of ZEISS EVO 50 for SEM analysis.	47
3.8	Instrumentation of PerkinElmer Spectrum One for FT-IR analysis.	49
3.9	Instrumentation of Evolution 300 UV-Visible spectrophotometer for Diffuse reflectance.	49
3.10	Instrumentation of TA Instruments- TGA Q 500 for thermogravimetric analysis.	50
3.11	Instrumentation of Micromeritics AutoChem II 2920 for H ₂ -TPR.	51
3.12	Schematic diagram of reaction test rig	52

4.1	Small-angle XRD pattern of SBA-15 samples prepared under different acidity	59
4.2	Small-angle XRD pattern of SBA-15 samples prepared under different acidity with HMTA added after 6 hours hydrolysis	60
4.3	The small-angle XRD pattern of SBA-15 (0.1 M)y prepared with addition of HMTA samples after 6 hours hydrolysis under different ratio of HMTA:Si	61
4.4	Small-angle XRD pattern of SBA-15 (0.1 M) samples prepared with HMTA added after under different duration time of hydrolysis	62
4.5	N_2 adsorption-desorption isotherm (A) and pore size distribution (B) of SBA-15 samples prepared under different acidity	64
4.6	N_2 adsorption-desorption isotherm (A) and pore size distribution (B) of SBA-15 samples prepared under different acidity with HMTA added after 6 hours of hydrolysis	65
4.7	N_2 adsorption-desorption isotherm (A) and pore size distribution (B) of SBA-15 (0.1 M)y samples prepared with HMTA addition after 6 hours hydrolysis under different ratio of HMTA:Si	66
4.8	N_2 adsorption-desorption isotherm (A) and pore size distribution (B) of SBA-15 (0.1 M) samples prepared with HMTA added after under different duration time of hydrolysis	68
4.9	TEM micrograph and histogram profile of samples SBA-15 samples under different acidity	69
4.10	TEM micrograph and histogram profile SBA-15 samples prepared under different acidity with HMTA added after 6 hours of hydrolysis	70
4.11	TEM micrograph and histogram profile of SBA-15 $(0.1 \text{ M})_y$ samples prepared with addition of HMTA samples after 6 hours of hydrolysis under different ratio of HMTA:Si	71
4.12	The TEM micrograph and histogram profile of SBA-15 (0.1 M) samples prepared with HMTA added after under different duration time of hydrolysis	72
4.13	The FT-IR spectra of SBA-15 samples prepared (A) different acidity, (B) different acidity with HMTA added, (C) SBA-15 (0.1 M)y addition of HMTA in different ratio HMTA/Si (D) addition of HMTA after certain duration time of hydrolysis	73

4.14	The FT-IR spectra of (a) HMTA (b) P123 (c) SBA-15 unwashed (d) SBA-15 washed and (e) SBA-15 calcined	74
4.15	TGA thermogram of (a) calcined SBA-15 (b) SBA-15 washed and (c) SBA-15 unwashed	76
4.16	DTG thermogram of (a) SBA-15 (b) SBA-15 washed and (c) SBA-15 unwashed	77
4.17	TEM micrograph of samples SBA-15 prepared under different acidity condition	80
4.18	Plot of Surface Area and Pore Size of SBA-15 samples prepared under different pH value	81
4.19	Plot of Unit cell and Wall thickness of SBA-15 samples prepared under different pH value	81
4.20	EDX profiles of M/SBA-15 samples	84
4.21	Small-angle XRD pattern of M/SBA-15 samples	85
4.22	Wide-angle XRD pattern of M/SBA-15 samples	86
4.23	N_2 adsorption-desorption isotherm of M/SBA-15 samples	88
4.24	The pore size distribution of M/SBA-15 samples	89
4.25	SEM images of M/SBA-15 samples	90
4.26	N_2O conversion by SBA-15 and M/SBA-15 samples at different reaction temperatures	92
4.27	Arrhenius plot of ln K verses $1/T$ for N ₂ O decomposition on various M/SBA-15 samples	95
4.28	The small-angle XRD pattern of Cu/SBA-15 (1:30) molar ratio without addition HMTA in different acidity	99
4.29	The wide-angle XRD pattern of Cu/SBA-15 (1:30) molar ratio without addition HMTA in different acidity.	100
4.30	N_2 adsorption-desorption isotherm (A) and pore size distribution (B) Cu/SBA-15 (1:30) molar ratio sample prepared without addition HMTA in different acidity (a) SBA-15, (b) 2.0 M, (c) 1.0 M, (d) 0.10 M, (e) 0.01 M, and (f) 0.005 M.	102
4.31	The SEM image of Cu/SBA-15 samples with (1:30) molar ratio sample prepared without addition HMTA in different	103

acidity

4.32	The TEM micrograph of Cu/SBA-15 samples with (1:30) molar ratio sample prepared without addition HMTA in differences acidity	104
4.33	The FT-IR spectrum of Cu/SBA-15 samples with (1:30) molar ratio without addition HMTA in different acidity (a) SBA-15, (b) 2.0 M (c) 1.0 M, (d) 0.10 M, (e) 0.01 M, and (f) 0.005 M.	105
4.34	The UV-vis spectrum of Cu/SBA-15 samples with $(1:30)$ molar ratio in different acidity (a) SBA-15, (b) 2.0 M, (c) 1.0 M, (d) 0.10 M, (e) 0.01 M, and (f) 0.005 M.	106
4.35	The catalytic activity of N_2O decomposition on Cu/SBA-15 sample with (1:30) molar ratio without addition of HMTA in different acidity	106
4.36	The small-angle XRD pattern of Cu/SBA-15 in 0.1M HCl with addition of HMTA in HMTA:Cu molar ratio 1:1 at different Cu/Si molar ratio	109
4.37	The wide-angle XRD pattern of Cu/SBA-15 samples in 0.1 M HCl with addition of HMTA in HMTA:Cu molar ratio 1:1 at different Cu/Si molar ratio	111
4.38	The isotherm (A) and pore size distribution (B) of Cu/SBA-15 samples in 0.1M HCl with addition of HMTA in HMTA:Cu molar ratio 1:1 at different Cu/Si molar ratio ; (a) SBA-15, (b) 1:40, (c) 1:30, (d) 1:20, (e) 1:10, and (f) 1:5	112
4.39	The TEM micrograph of Cu/SBA-15 samples in 0.1 M HCl with addition of HMTA in HMTA:Cu molar ratio 1:1 at different Cu/Si molar ratio	113
4.40	The SEM image of Cu/SBA-15 samples in 0.1 M HCl with addition of HMTA in HMTA:Cu molar ratio 1:1 at different Cu/Si molar ratio	114
4.41	The FT-IR spectrum of Cu/SBA-15 samples in 0.1 M HCl with addition of HMTA in HMTA:Cu molar ratio 1:1 at different Cu/Si molar ratio (a) SBA-15, (b) 1:40, (c) 1:30, (d) 1:20, (e) 1:10, and (f) 1:5	115
4.42	The UV-vis spectrum of Cu/SBA-15 samples in 0.1 M HCl with addition of HMTA in HMTA:Cu molar ratio 1:1 at different Cu/Si molar ratio: (a) SBA-15, (b) 1:40, (c) 1:30, (d) 1:20, (e) 1:10, and (f) 1:5	116

4.43	The catalytic activity of N_2O decomposition on Cu/SBA-15 samples in 0.1M HCl with addition HMTA in HMTA:Cu molar ratio 1:1 at differences Cu/Si molar ratio: (a) SBA-15, (b) 1:40, (c) 1:30, (d) 1:20, (e) 1:10, and (f) 1:5	117
4.44	The small-angle XRD pattern of Cu/SBA-15 molar ratio (1:30) samples with addition of HMTA (HMTA:Si molar ratio 1:10) in different acidity.	120
4.45	The wide-angle XRD pattern of Cu/SBA-15 molar ratio (1:30) samples with addition HMTA (HMTA:Si molar ratio 1:10) in differences acidity.	121
4.46	The isotherm (A) and pore size distribution (B) of Cu/SBA- 15 molar ratio (1:30) samples with addition of HMTA (HMTA:Si molar ratio 1:10) in different acidity (a) SBA-15, (b) 2.0 M, (c) 1.0 M, (d) 0.10 M, (e) 0.01 M, and (f) 0.005 M.	122
4.47	The TEM micrograph of Cu/SBA-15 molar ratio (1:30) samples with addition of HMTA (HMTA:Si molar ratio 1:10) in different acidity	124
4.48	The SEM image of Cu/SBA-15 molar ratio (1:30) samples with addition of HMTA (HMTA:Si molar ratio 1:10) in different acidity.	125
4.49	The FT-IR spectrum of Cu/SBA-15 molar ratio (1:30) samples with addition of HMTA (HMTA:Si molar ratio 1:10) in different acidity (a) SBA-15, (b) 2.0 M, (c) 1.0 M, (d) 0.10 M, (e) 0.01 M, and (f) 0.005 M.	126
4.50	The UV-vis spectrum of Cu/SBA-15 molar ratio (1:30) samples with addition HMTA (HMTA:Si molar ratio 1:10) in different acidity (a) SBA-15, (b) 2.0 M, (c) 1.0 M, (d) 0.10 M, (e) 0.01 M, and (f) 0.005 M.	127
4.51	The catalytic activity of N_2O decomposition of Cu/SBA-15 molar ratio (1:30) samples with addition of HMTA (HMTA:Si molar ratio 1:10) in different acidity: (a) SBA-15, (b) 2.0 M, (c) 1.0 M, (d) 0.10 M, (e) 0.01 M, and (f) 0.005 M.	128
4.52	The small-angle XRD pattern of Cu/SBA-15 molar ratio (1:30) samples in 0.1 M HCl with addition HMTA in different HMTA:Si molar ratio	131
4.53	The wide-angle XRD pattern of Cu/SBA-15 molar ratio (1:30) samples in 0.1 M HCl with addition HMTA in different HMTA:Si molar ratio.	132

4.54	The isotherm (A) and pore size distribution (B) of Cu/SBA-15 molar ratio (1:30) samples in 0.1 M HCl with addition of HMTA in different HMTA:Si molar ratio: (a) SBA-15, (b) 1:30, (c) 1:20, (d) 1:10 and (e) 1:5.	133
4.55	The TEM micrograph of Cu/SBA-15 molar ratio (1:30) samples in 0.1 M HCl with addition of HMTA in different HMTA:Si molar ratio: (a) 1:30,(b) 1:20, (c) 1:10 and (d) 1:5.	134
4.56	The SEM image of Cu/SBA-15 molar ratio (1:30) samples in 0.1 M HCl with addition of HMTA in different HMTA:Si molar ratio:	135
4.57	The FT-IR spectrum of Cu/SBA-15 molar ratio (1:30) samples in 0.1 M HCl with addition of HMTA in different HMTA:Si molar ratio: (a) SBA-15, (b) 1:30, (c) 1:20, (d) 1:10 and (e) 1:5.	136
4.58	The UV-vis spectrum of Cu/SBA-15 molar ratio (1:30) samples in 0.1 M HCl with addition HMTA in different HMTA:Si molar ratio: (a) SBA-15, (b) 1:30, (c) 1:20, (d) 1:10 and (e) 1:5.	137
4.59	The catalytic activity for N_2O decomposition on Cu/SBA-15 (1:30) molar ratio in 0.1 M HCl with addition HMTA in different HMTA:Si molar ratio	138
4.60	The small-angle XRD pattern of Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio	143
4.61	The small-angle XRD pattern of Cu/SBA-15samples prepared by pH modification method at different Cu:Si molar ratio	143
4.62	The wide-angle XRD pattern of Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio	144
4.63	The wide-angle XRD patterns of Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio.	144
4.64	The isotherm (A) and pore size distribution (B) of Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio: (a) SBA-15, (b) 1:70, (c) 1:50, (d) 1:30 and (e) 1:10.	148
4.65	The isotherm (A) and pore size distribution (B) of Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio: (a) SBA-15, (b) 1:70, (c) 1:50, (d) 1:30 and (e) 1:10.	148

4.66	The TEM micrograph of Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio.	150
4.67	The TEM micrograph of Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio	150
4.68	The FT-IR spectrum of Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio: (a) SBA-15, (b) 1:70, (c) 1:50, (d) 1:30 and (e) 1:10.	151
4.69	The FT-IR spectrum of Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio: (a) SBA-15, (b) 1:70, (c) 1:50, (d) 1:30 and (e) 1:10.	152
4.70	The UV-vis spectrum of Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio: (a) SBA-15, (b) 1:70, (c) 1:50, (d) 1:30 and (e) 1:10.	153
4.71	The UV-vis spectrum of Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio: (a) SBA-15, (b) 1:70, (c) 1:50, (d) 1:30 and (e) 1:10.	153
4.72	The TPR profile of Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio: (a) 1:70, (b) 1:50, (c) 1:30 and (d) 1:10.	155
4.73	The TPR profile of Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio: (a) 1:70, (b) 1:50, (c) 1:30 and (d) 1:10.	156
4.74	The XPS spectra of Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio: (a) 1:70, (b) 1:50, (c) 1:30 and (d) 1:10.	157
4.75	The XPS spectra of of Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio: (a) 1:70, (b) 1:50, (c) 1:30 and (d) 1:10.	158
4.76	The catalytic activity for N_2O decomposition on Cu/SBA-15 samples prepared by impregnation method at different Cu:Si molar ratio.	159
4.77	The catalytic activity for N_2O decomposition on Cu/SBA-15 samples prepared by pH modification method at different Cu:Si molar ratio.	160
4.78	Arrhenius plot of ln K verses $1/T$ for N ₂ O decomposition on (A) Cu/SBA-15 prepared through impregnation method and (B) Cu/SBA-15 prepared through pH modification method at different Cu:Si molar ratio: (a) SBA-15, (b) 1:70, (c) (1:50),	161

(d) (1:30) and (e) (1:10).

4.79	The catalytic activity for N_2O decomposition on (a) blank samples, (b) SBA-15 and (c) Cu/SBA-15 (1:30).	163
4.80	Arrhenius plot of ln K verses $1/T$ for N ₂ O decomposition in (a) homogeneous reaction, (b) catalysed by SBA-15 and (c) catalysed by Cu/SBA-15 (1:30).	164
4.81	The catalytic activity for N ₂ O decomposition on Cu/SBA-15 (1:30) at different pretreatment condition (a) without pre- treatment (b) pre-treatment with O ₂ (c) pre-treatment with He, and (d) pre-treatment with H ₂	165
4.82	The catalytic activity of N_2O decomposition on Cu/SBA-15 (1:30) at different catalysts loading (a) 0.100g (b) 0.200g, (c) 0.300g, and (d) 0.500g.	166
4.83	The catalytic activity for N ₂ O decomposition on Cu/SBA-15 (1:30) at different N ₂ O mixture (a) 1% of N ₂ O, (b) 3% of N ₂ O, (c) 5% of N ₂ O, and (d) 10 % of N ₂ O.	166
4.84	The catalytic activity of N_2O decomposition on (a) SBA-15, (b) CuO-SBA-15 (1:30) physical mixture, (c) Cu-SBA-15 (1:30) impregnated, and (d) Cu/SBA-15(1:30) substituted	168
4.85	N_2O conversion, N_2 and O_2 formation against temperature on (a) Cu/SBA-15(1:30) substituted, (b) Cu-SBA-15 (1:30) impregnated, and (c) CuO-SBA-15 (1:30) physical mixtures	168
4.86	Plotting graph of N_2 and O_2 formation verses N_2O conversion of (a) Cu/SBA-15(1:30) substituted, (b) Cu-SBA-15 (1:30) impregnated, and (c) CuO-SBA-15 (1:30) physical mixtures	169
4.87	The catalytic activity of N_2O reduction by CH ₄ on Cu/SBA-15 (1:30) at different N_2O :CH ₄ ratio (a) 1:0, (b) 1:1, (c) 4:1 and (d) 10:1.	171
4.88	(a) CH_4 conversion against Temperature and (b) Plotting N ₂ O conversion verses CH_4 conversion on Cu/SBA-15 (1:30) substituted at different N ₂ O:CH ₄ ratio (a) 1:1, (b) 4:1 and (c) 10:1.	171
4.89	The catalytic activity of N_2O reduction by CH ₄ at N_2O :CH ₄ (1:1) volume ratio on various copper condition of (a) SBA-15, (b) Cu/SBA-15 substituted, (c) Cu-SBA-15 impregnated, and (d) CuO-SBA-15 physical mixture	172

4.90	The catalytic activity of N_2O decomposition () and N_2O reduction by CH ₄ () on various copper on SBA-15 (1:30) at N_2O :CH ₄ (1:1) ratio for (a) Cu/SBA-15 substituted, (b) Cu-SBA-15 impregnated, (c) CuO-SBA-15 physical mixture and (d) SBA-15	173
4.91	Arrhenius plot of ln K verses $1/T$ for N ₂ O decomposition of (a) SBA-15 (b) Cu/SBA-15(1:30) substituted, (c) Cu-SBA-15 (1:30) impregnated, and (d) CuO-SBA-15 (1:30) physical mixtures.	174
4.92	Arrhenius plot of ln K verses $1/T$ for N ₂ O reduction by CH ₄ at N ₂ O:CH ₄ (1:1) ratio on various copper condition of (a) SBA-15, (b) Cu/SBA-15 substituted, (c) Cu-SBA-15 impregnated and (d) CuO-SBA-15 physical mixture	174
4.93	Stability test of N_2O decomposition for (a) Cu/SBA-15 substituted, (b) Cu-SBA-15 impregnated, and (c) CuO-SBA-15 physical mixture	175
4.94	Stability test of N_2O reduction by CH_4 for (a) Cu/SBA-15 substituted, (b) Cu-SBA-15 impregnated, and (c) CuO-SBA-15 physical mixture	176

LIST OF ABBREVIATIONS

N ₂ O	nitrous oxide
Cu	copper
Si	silica
SBA-15	Santa Barbara acids - 15
HC1	hydrochloric acid
TEOS	tetraethyl orthosilicate
НМТА	hexamethylenetetramine
CH ₄	methane
XRD	X-ray diffraction
TEM	Transmission Electron Microscopy
SEM	Scanning Electron Microscopy
FT-IR	Fourier transform infrared spectroscopy
TGA	Thermogravimetric analysis
AAS	Atomic absorption spectroscopy
TPR	Temperature programmed reduction
EDX	Energy-dispersive X-ray
XPS	X-ray photoelectron spectroscopy
W/F	Weight of catalysts / gas flowrate (g s/mL)
PP bottle	polypropylene bottle

STUDY ON COPPER'INCORPORATED MESOFOROUS SILICA SBA-15

FOR N₂O CATALYTIC DECOMPOSITION

MOHD HAIZAL MOHD HUSIN

Thesis submitted in fulfillment of requirements for the award of degree of Doctor of Philosophy

Faculty of Chemical & Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

JULY 2016

ABSTRACT

Nitrous oxide (N_2O) is an environmental pollutant because it is a relatively strong greenhouse effect gas and contributes towards the destruction of ozone in the stratosphere. Direct decomposition of N2O by catalysts represents one of the potential solutions to minimize N₂O emissions. This research focuses on Cu incorporation into SBA-15 mesoporous silica by pH modification method using hexamethylenetetramine (HMTA) as an internal pH-modifier and its potential use as a catalyst for N₂O decomposition. The effect of acidity on SBA-15 preparation through different initial HCl concentration and the addition of HMTA as pH modifier were investigated. The SBA-15 formed well-ordered hexagonal mesoporous structure at high acidity (2.0 M) and poor ordered hexagonal pore structure at low acidity condition (0.005 M). It was found that under moderate acidic condition (0.1 M HCl) with addition of HMTA (HMTA:Si molar ratio 1:10), well-ordered hexagonal mesoporous SBA-15 could be produced. Meanwhile, copper was chosen for further studies on metal incorporation of SBA-15 (M/SBA-15) because Cu-containing SBA-15 has the highest catalytic activity for N₂O decomposition compared to that of other first row transition metals impregnated on SBA-15. Copper incorporated mesoporous silica (Cu-SBA-15) has been successfully prepared by direct synthesis under medium acidic condition with addition of HMTA as a pH modifier. The Cu/SBA-15 produced were characterised using XRD, N₂ adsorption-desorption, TEM, SEM, FT-IR, UV-vis, XPS and TPR. The results indicate that Cu was mainly incorporated into the framework of SBA-15. The unit-cell, surface area, pore volume and wall thickness increased after the incorporation of the copper ions in SBA-15. HMTA plays a very important role to increase internal pH in order to introduce copper into the framework of SBA-15 silica. Cu loading on Cu/SBA-15 determined using AAS is almost the same to the initial Cu amount, when the pH value is above isoelectronic of silica (pH=2) due to addition of HMTA. Higher amount of HMTA, however, lead to the destruction of SBA-15 structure. Compared with Cu/SBA-15 impregnation method, Cu/SBA-15 prepared through pH modification method shows much higher activity for N₂O catalytic decomposition due to 80% N₂O conversion at 550 °C and reached 100% at 600 °C. The activation energy for the reaction catalysed by Cu/SBA-15 prepared through pH modification method is 91.9 -121.6 kJ/mol. This is much lower compared to that catalysed by Cu/SBA-15 prepared though impregnation, that is in the range between 148.5 - 173.9 kJ/mol. Cu/SBA-15 incorporated sample also has higher activity due catalytic activity started at 300 °C and reaches more 80% conversion at 500 °C for catalytic reduction of N₂O by CH₄.

ABSTRAK

Nitrus oksida (N_2O) adalah bahan pencemar alam sekitar kerana ia merupakan gas kesan rumah hijau yang agak kuat dan boleh menyebabkan kemusnahan ozon dalam stratosfera. Penguraian langsung N2O menggunakan kaedah pemangkin merupakan salah satu penyelesaian yang berpotensi meminimumkan pelepasan N₂O. Kajian ini menumpu kepada penyediaan mangkin Cu yang digabungkan dengan SBA-15 silika berliang meso melalui sintesis langsung secara pengubahsuaian pH dengan menggunakan heksametiltetramin (HMTA) sebagai pengubah pH dalaman dan potensi penggunaan bahan ini sebagai mangkin bagi tindak balas penguraian N₂O. Kajian kesan keasidan dalam penyediaan SBA-15 berdasarkan perbezaan kepekatan awalan larutan HCl dan penambahan HMTA sebagai pH diubahsuai telah dilakukan. Bahan SBA-15 yang terhasil menunjukkan struktur heksagon berliang meso yang teratur pada keasidan yang tinggi (2.0 M HCl) manakala struktur liang heksagon yang tidak teratur terbentuk pada keadaan keasidan yang rendah (0.005 M HCl). Hasil kajian menunjukkan keadaan berasid sederhana (0.1 M HCl) dengan penambahan HMTA (HMTA: Si nisbah molar 1:10) mampu menghasilkan struktur heksagon berliang meso yang teratur. Sementara itu, kuprum telah dipilih untuk kajian lanjutan terhadap logam digabungkan dengan SBA-15 (M/SBA-15). Ini kerana sampel SBA-15 yang mengandungi Cu (Cu-SBA-15) menunjukkan aktiviti paling aktif dalam tindak balas penguraian N₂O berbanding sampel yang mengandungi logam peralihan baris pertama yang lain yang telah disediakan melalui kaedah pengisitepuan. Kuprum yang bergabung dengan silika berliang meso (Cu/SBA-15) telah dihasilkan menggunakan keadaan berasid sederhana berserta dengan penambahan HMTA sebagai agen pengubah pH. Sampel Cu/SBA-15 yang terhasil dicirikan menggunakan XRD, N₂ penjerapan-penyahjerapan, TEM, SEM, FT-IR, UV-vis, XPS dan TPR. Dapatan analisa menunjukkan bahawa atom Cu telah bergabung ke dalam kerangka silika SBA-15. Unit-sel, luas permukaan, isi padu liang dan ketebalan dinding meningkat selepas penggabungan ion kuprum dalam SBA-15. HMTA memainkan peranan yang amat penting untuk meningkatkan pH dalaman larutan supaya dapat memasukkan kuprum ke dalam rangka silika SBA-15. Muatan Cu yang diukur menggunakan AAS menunjukkan kuantiti Cu yang hampir sama dengan kuantiti awal, apabila nilai pH melebihi titik isoelektronik silika (pH = 2) melalui penambahan HMTA. Namun begitu penambahan berlebihan HMTA membawa kepada kemusnahan struktur SBA-15. Dalam perbandingan, dengan sampel Cu-SBA-15 yang disediakan melalui kaedah pengisitepuan, sampel Cu/SBA-15 yang disediakan melalui pengubahan pH adalah lebih aktif bagi aktiviti penguraian bermangkin N₂O berdasarkan 80% penukaran N₂O pada suhu 550 °C dan mencapai 100% pada suhu 600 °C. Tenaga pengaktifan bagi tindak balas yang dimangkinkan Cu/SBA-15 kaedah penggabungan adalah 91.9 - 121.6 kJ/mol iaitu lebih rendah berbanding dengan nilai bagi Cu/SBA-15 kaedah pengisitepuan iaitu di antara 148.5 - 173.9 kJ/mol. Cu/SBA-15 disediakan dengan menggunakan kaedah pengubahsuaian pH juga telah menunjukkan aktiviti pemangkinan yang lebih tinggi berdasarkan aktiviti pemangkinan yang bermula pada suhu 300 °C dan mencapai lebih daripada 80% penukaran pada suhu 500 °C bagi tindak balas penurunan N₂O dengan kehadiran CH₄.

- Abu-Zied, B. M. (2011). Cu²⁺-acetate exchanged X zeolites: Preparation, characterization and N₂O decomposition activity. *Microporous and Mesoporous Materials*, 139, 59–66.
- Aguado, J., Arsuaga, J. M., Arencibia, A., Lindo, M., and Gascón, V. (2009). Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. *Journal of Hazardous Materials*, 163, 213-221.
- Aguila, G., Gracia, F. and Araya, P. (2008). CuO and CeO₂ catalysts supported on Al₂O₃, ZrO₂, and SiO₂ in the oxidation of CO at low temperature. *Applied Catalysis A: General*, 343, 16–24.
- Amelinckx, S., van Dyck, D., van Landuyt, J. and van Tendeloo, G. (eds). (1997). Stationary Beam Methods, in Electron Microscopy: Principles and Fundamentals, Germany :Wiley-VCH Verlag GmbH, Weinheim,
- Araujo A. S., Quintella S.A., and Coutinho A.C.S.L.S. (2009). Synthesis monitoring of SBA-15 nanostructured materials. *Adsorption*, 15, 306–311.
- Basahel, S.N., Abd El-Maksod, I.H., Abu-Zied, B.M., and Mokhtar, M. (2010). Effect of Zr^{4+} doping on the stabilization of ZnCo-mixed oxide spinel system and its catalytic activity towards N₂O decomposition. *Journal of Alloys and Compounds*. 493, 630–635.
- Bennici, S. and Gervasini, A. (2006). Catalytic activity of dispersed CuO phases towards nitrogen oxides (N₂O, NO, and NO₂). *Applied Catalysis B: Environmental*, 62, 336-344.
- Brink ven den, R. W., Booneveld, S., Verhaak, M. J. F. M., and Bruijn, F. A. D. (2002). Selective catalytic reduction of N₂O and NOx in a single reactor in the nitric acid industry. *Catalysis Today*. 75, 227–232.
- Che, S., Sakamoto, Y. Terasaki, O. Tatsumi T. (2005). The structure and morphology control of mesoporous silica under acidic conditions. *Microporous and Mesoporous Materials*. 85, 207-218.
- Chen, Y., Huang, Y., Xiu, J., Han, X., and Bao, X., (2004). Direct synthesis, characterization and catalytic activity of titanium-substituted SBA-15 mesoporous molecular sieves. *Applied Catalysis A: General.* 273, 185-191.
- Chiola, V., Ritsko, J. E., and Vanderpool, C. D. (1971). Process for producing low-bulk density silica. US Patent No. 3 556 725.

- Chmielarz, L., Kustrowski, P., and, M. K., and Dziembaj, R. (2005). Nitrous Oxide Reduction with Ammonia and Methane Over Mesoporous Silica Materials Modified with Transition Metal Oxides. *Journal of Porous Materials*. 12, 183 -191.
- Cho, Y., Shi, R., Borgens, R. B., and Ivanisevic, A. (2008). Functionalized Mesoporous Silica Nanoparticles-Based Drug Delivery System to Rescue Acrolein-Mediated Cell Death. *Nanomedicine*, 3(4), 507-519.
- CongLiang, T., JinLin, L., and Yong, L. K. (2010). Effect of the pore size of Co/SBA-15 isomorphically substituted with zirconium on its catalytic performance in Fischer–Tropsch synthesis. *Sci China Chem.*, 53 (12), 1–9.
- Cui, X., Zin W. C., Cho, W. J. and Ha, C.S. (2005). Nonionic triblock copolymer synthesis of SBA-15 above the isoelectric point of silica (pH=2-5). *Materials Letters*, 59(18), 2257-2261.
- Dai, Q., Wang, X., Chen, G., Zheng, Y., and Lu, G. (2007). Direct Synthesis Of Cerium (III)-Incorporated SBA-15 Mesoporous Molecular Sieves By Two-Step Synthesis Method. *Microporous and Mesoporous Materials*, 100, 268-275.
- Dandekar, A. and Vannice, M. A. (1999). Decomposition and reduction of N₂O over copper catalysts. *Applied Catalysis B: Environmental*, 22, 179–200.
- Dao, L., Guoping, C. and Xingyi, W. (2008). Incorporation of lanthanum into SBA-15 and its catalytic activity in trichloroethylene combustion. *Journal of Rare Earths*, 26(5), 717-721.
- Debbagh, M. N., Bueno-López, A., Lecea, C. S. M. D. and Pérez-Ramírez, J. (2007). Kinetics of the N₂O+CO reaction over steam-activated FeZSM-5. *Applied Catalysis A: General*, 327, 66-72.
- Decyk, P., Trejda, M., and Ziolek, M. (2005). Iron containing mesoporous solids: preparation, characterisation, and surface properties. C. R. Chimie, 8, 635-654.
- DEFRA (2005): Climate change and the greenhouse effect: a briefing from the Hadley Centre (online), Retrieved from <u>http://www.metoffice.com/research/hadleycentre/</u> <u>pubs/ brochures/2005/climate_greenhouse. pdf</u> on 12, June 2012.
- Dentona, P., Schuurman, Y., Giroir-Fendlera, A., Praliauda, H. I. N., Primeta, M., and Mirodatos, C. (2000). N₂O as an intermediate for the formation of N₂ during SCR (NO): stationary and transient conditions. C. R. Acad. Sci. Paris, Se'rie IIc, Chimie:Chemistry, 3, 437–441.

- Doi, K., Wu, Y.Y., Takeda, R., Matsunami, A., Arai, N., Tagawa, T. and Goto, S. (2001). Catalytic decomposition of N₂O in medical operating rooms over Rh/Al₂O₃, Pd/Al₂O₃, and Pt/Al₂O₃. *Applied Catalysis B: Environmental*, 35, 43– 51.
- Drago, R. S. Jurczyk, K. and Kob, N. (1996). Catalyzed decomposition of N₂O on metal oxide supports. *Appl. Catal. B.*, 13, 69–79.
- Environmental Protection Agency (EPA). (2005). Greenhouse Gas Mitigation Potential in U.S. Forestry and Agriculture. U.S. Environmental Protection Agency, Washington, DC, USA. (online). Retrieved from http://www.epa.gov/ climatechange/ghgemissions/geses /n20/html on 12 June 2012.
- Environmental Protection Agency (EPA). (2010). Methane and Nitrous Oxide Emissions from Natural Sources. U.S. Environmental Protection Agency, Washington, DC, USA. (online). Retrieved from http://www.epa.gov/ climatechange/ghgemissions/geses /n20/html on 12 June 2012.
- Eswaramoorthi, I. and Dalai, A. K. (2006). Synthesis, characterisation and catalytic performance of boron substituted SBA-15 molecular sieves. *Microporous and Mesoporous Materials*, 93(1-3), 1-11.
- Fierro, G., Dragone, R. and Ferraris, G. (2008). NO and N₂O Decomposition and Their Reduction by Hydrocarbons Over Fe–Zn Manganite Spinels. *Applied Catalysis* B: Environmental, 78, 183-191.
- Gao, F., Zhang Y., Wan H., Kong Y., Wu X., Dong L., Li B., and Chen Y. (2008). The states of vanadium species in V-SBA-15 synthesized under different pH values. *Microporous and Mesoporous Materials*, 110(2-3), 508-516.
- Giecko, G., Borowiecki, T, Gac, W and Kruk J. (2008). Fe₂O₃/Al₂O₃ catalysts for the N₂O decomposition in the nitric acid industry. *Catalysis Today*, *137*, 403-409.
- Goto, T., Niimi,A., Hirano, K., Takahata N., Fujita, S., Shimokawabe, M. and Takezawa, N. (2000). Comparative Study of Decomposition of N₂O over Metal oxides and Metal ion Exchedanged ZSM-5 Zeolites. *React. Kinet. Catal. Lett.*. 69(2), 375-378.
- Dandl,H. and Emig. G. (1998). Mechanistic approach for the kinetics of the decomposition of nitrous oxide over calcined hydrotalcites. *Applied Catalysis A: General*, 168, 261-268.
- Hamdy, M., Mul, G., Wei, W., Anand, R., Hanefeld, U., Jansen, J. and Moulijn, J. (2005). Fe, Co and Cu-incorporated TUD-1: Synthesis, characterization and catalytic performance in N₂O decomposition and cyclohexane oxidation. *Catalysis Today*, 110, 264-271.

- Hevia, M. A. G. and Pérez-Ramírez, J. (2008). Assessment of the low-temperature EnviNOx® variant for catalytic N₂O abatement over steam-activated FeZSM-5. *Applied Catalysis B: Environmental*, 77, 248-254.
- Hussain M., Akhter, P., Fino D. and Russo, N. (2013). Modified KIT-6 and SBA-15spherical supported metal catalysts for N₂O decomposition. *Journal of Environmental Chemical Engineering*, 1(3), 164–174.
- IPCC Fourth Assessment Report. (2007). *Historical Overview of Climate Change Science*. United Kingdom and New York: Cambridge University Press.
- IPCC Third Assessment Report. (2001). Climate Change 2001: The Scientific Basis in chapter 4: Atmospheric Chemistry and Greenhouse Gases. United Kingdom and New York: Cambridge University Press.
- Jensen J. O. (2002). Vibrational frequencies and structural determinations of hexamethylenetetramine *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 58(7), 1347–1364.
- Kameoka, S., Kita, K., Takeda, T., Tanaka, S., Ito, S., Yuzaki, K., and, T. M., and Kunimori, K., (2000). Simultaneous removal of N₂O and CH₄ as the strong greenhouse-effect gases over Fe-BEA zeolite in the presence of excess O₂. *Catalysis Letters*, 69, 169–173.
- Kannan, S. (1998). Decomposition of nitrous oxide over the catalysts derived from hydrotalcite-like compounds. *Applied Clay Science*, 13, 347–362.
- Kapteijn, F., Marbán, G., Rodriguez-Mirasol, J., & Moulijn, J. A. (1997). Kinetic Analysis of the Decomposition of Nitrous Oxide over ZSM-5 Catalysts. *Journal* of Catalysis, 167(1), 256-265.
- Kapteijn, F., Rodriguez-Mirasol, J., and Moulijn, J. A. (1996). Heterogeneous catalytic decomposition of nitrous oxide. *Applied Catalysis B: Environmental*, 9, 25-64.
- Kawi, S., Liu, S. Y., and Shen, S.-C. (2001). Catalytic decomposition and reduction of N₂O on Ru/MCM-41 catalyst. *Catalysis Today*, 68, 237–244.
- Kim, M.-Y., Lee, K.W., Park, J.-H., Shin, C-H., Lee, J. and Seo, G. (2010). Catalytic decomposition of nitrous oxide over Fe-BEA zeolites: Essential components of iron active sites. *Korean J. Chem. Eng.*, 27(1), 76-82.
- Komvokis, V.G., Marnellos, G.E., Vasalos, I.A., and Triantafyllidis, K.S. (2009). Effect of pretreatment and regeneration conditions of Ru/γ-Al₂O₃ catalysts for N₂O decomposition and/or reduction in O₂-rich atmospheres and in the presence of NO_X, SO₂ and H₂O. *Applied Catalysis B: Environmental*, 89(3-4), 627-634.

- Kong, A., Wang, H., Yang, X., Hou, Y., and Shan Y.K. (2009). A facile direct route to synthesize large-pore mesoporous silica incorporating high CuO loading with special catalytic property. *Microporous and Mesoporous Materials*. 118, 348– 353.
- Kumar, G. S., Palanichamy, M., Hartmann, M., and Murugesan, V. (2008). A new route for the synthesis of manganese incorporated SBA-15. *Microporous and Mesoporous Materials*, 112(1-3), 53-60.
- Li, Y. and Armor, J.N. (1992). Catalytic decomposition of nitrous oxide on metal exchanged zeolites. *Applied Catalysis B: Environmental*, 1(3), L21–L29
- Li, Y., Zhang, W., Zhang, L., Yang, Q., Wei, Z., Feng, Z., and Li, C. (2004). Direct Synthesis of Al-SBA-15 Mesoporous Materials via Hydrolysis-Controlled Approach. J. Phys. Chem. B., 108, 9739-9744.
- Linssen, T., Cassiers, K., Cool, P. and Vansant E.F. (2003). Mesoporous templated silicates: an overview of their synthesis, catalytic activation and evaluation of the stability. *Advances in Colloid and Interface Science*, *103*, 121-147.
- Liu, M.C., Chang, C.S., Chan, C.C., Sheu H.S and Cheng S.F. (2009). An alkaline route to prepare hydrothermally stable cubic Pm3n mesoporous silica using CTEA template. *Microporous and Mesoporous Materials*, 121(1-3), 41-51.
- Lou, Z., Wang R., Sun H., Chen Y., Yang, Y. (2008). Direct synthesis of highly ordered Co-SBA-15 mesoporous materials by the pH-adjusting approach. *Microporous* and Mesoporous Materials, 110(2-3), 347-354.
- Ma, J., Rodriguez, N.M., Vannice, M.A., and Baker, R.T.K. (2000). Nitrous oxide decomposition and reduction over copper catalysts supported on various types of carbonaceous materials. *Topics in Catalysis*, 10, 27-38.
- Marnellos, G.E., Efthimiadis, E.A. and Vasalos, I.A. (2000). Effect of SO₂ and H₂O on the N₂O decomposition in the presence of O₂ over Ru/Al₂O₃. Applied Catalysis B: Environmental, 46, 523-539.
- Martíneza, A., Lopeza, C., Márqueza, F., and Díazb I. (2003). Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. *Journal of Catalysis*, 220(2), 486–499.
- Meynen, V., Cool, P., and Vansant, E.F. (2009). Verified syntheses of mesoporous materials. *Microporous and Mesoporous Materials*, 125, 170-223.
- Montzka, S.A., Dlugokencky, E.J. and Butler, J.H. (2011). Non-CO₂ greenhouse gases and climate change, *Nature*, 476, 43-50.

- Mu, Z., Li, J. J Hao, Z. P. and Qiao, S. Z. (2008a). Direct synthesis of lanthanidecontaining SBA-15 under weak acidic conditions and its catalytic study. *Microporous and Mesoporous Materials*, 113(1-3),72-80.
- Mu, Z., Li, J. J., Tian, H., Hao, Z. P., and Qiao, S. Z., (2008b). Synthesis of mesoporous Co/Ce-SBA-15 materials and their catalytic performance in the catalytic oxidation of benzene. *Materials Research Bulletin*, 43, 2599-2606.
- National Oceanic and Atmospheric Administration. (2009). Nitrous Oxide Now Top Ozone-depletingEmission (online). Retrieved from https: //www.sciencedaily .com on 12 June, 2012.
- Newalkar, B. L., Komarneni, S. and Katsuki H. (2000). Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwave-hydrothermal process. *Chem. Commun.*, 20, 2389-2390.
- Nowinska, K., Formaniak, R. Kaleta, W. and Waclaw, A. (2003). Heteropoly compounds incorporated into mesoporous material structure. *Applied Catalysis A: General*, 256(1-2), 115-123.
- Obalova, L. and Fíla, V. (2007). Kinetic analysis of N₂O decomposition over calcined hydrotalcites. *Applied Catalysis B: Environmental*, 70(1-4), 353-359.
- Obalova, L., Jiratova, K., Kovanda, F., Valaskova, M., Balabanova, J., and Pacultova, K. (2006). Structure-activity relationship in the N₂O decomposition over Ni-(Mg)-Al and Ni-(Mg)-Mn mixed oxides prepared from hydrotalcite-like precursors. *Journal of Molecular Catalysis A: Chemical*, 248, 210–219.
- Odaka, M., Koike, N., and Suzuki, H. (2000). Influence of catalyst deactivation on N₂O emissions from automobiles. *Chemosphere Global Change Science*, 2, 413-423.
- Ohnishi, C., Iwamoto, S. and Inoue, M. (2008). Direct decomposition of nitrous oxide in the presence of oxygen over iridium catalyst supported on alumina. *Chemical Engineering Science*, 63, 5076 – 5082.
- Oi, J., Obuchi, A., Ogata, A., Bamwenda, G.R., Tanaka, R., Hibino, T. and Kushiyama, S. 1997. Zn, Al, Rh-mixed oxides derived from hydrotalcite-like compound and their catalytic properties for N₂O decomposition. *Applied Catalysis B: Environmental*, 13, 197-203.
- On, D. T., Desplantier-Giscard, D., Danumah, C., and Kaliaguine, S., (2003). Perspectives in catalytic applications of mesostructured materials. *Applied Catalysis A: General*, 253, 545–602.

- Pachatouridou, E., Papistac, E., Iliopoulou, F., Delimitis, A., Goulad, G. Yentekakisd, I.V. Marnellos, G.E. and Konsolakis, M. (2015). Nitrous oxide decomposition over Al₂O₃ supported noble metals (Pt, Pd, Ir): Effect of metal loading and feed composition. *Journal of Environmental Chemical Engineering*, 3(2), 815–821.
- Pai, S., Newalkar B.L and Choudary. N.V. (2006). Synthesis and characterization of cobalt substituted aluminophosphate molecular sieve: Co-SSZ-51 under microwave-hydrothermal conditions. *Microporous and Mesoporous Materials*, 96(1-3), 135-140.
- Pannov, G.I, Sobolev, V.I. and Kharitonov, A.S. (1990). The role of iron in N₂O decomposition on ZSM-5 zeolite and reactivity of the surface oxygen formed. *Journal of Molecular Catalysis*, 61, 85-93.
- Parres-Esclapez, S., Illan-Gomez, M. J., Salinas-Martínez de Lecea, A. Bueno-Lopez. (2010). On the importance of the catalyst redox properties in the N₂O decomposition over alumina and ceria supported Rh, Pd and Pt. *Applied Catalysis B: Environmental, 96*, 370–378.
- Pasha, N., Lingaiah, N., Reddy, P.S.S., and Prasad P.S.S. (2007). An investigation into the effect of Cs promotion on the catalytic activity of NiO in the direct decomposition of N₂O. *Catalysis Letters*, 118 (1–2), 64-68.
- Pavone, A. (2012). Bio-Based Adipic Acid . Process Economics Program Report 284. California: Santa Clara,
- Perez-Ramırez, J., Kapteijn, F., Schoffel, K., and Moulijn, J.A. (2003). Formation and control of N₂O in nitric acid production Where do we stand today? *Applied Catalysis B: Environmental*, 44, 117-151.
- Petunchi, J.O., Hall, W.K (1982). Redox catalysis over iron zeolites: Kinetics and mechanism. *Journal of Catalysis*, 78(2), 327-334.
- Prathap, M.U.A., Kaur, B., and Srivastava, R. (2012). Direct synthesis of metal oxide incorporated mesoporous SBA-15, and their applications in non-enzymatic sensing of glucose. *Journal of Colloid and Interface Science*, 381, 143-151.
- Ravishankara, A.R., Daniel, J.S. and Portmann, R.W. (2009). Nitrous Oxide (N₂O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. *Science*, 326, 123-125.
- Renzo, F.D., Cambon, H., and Dutartre, R. (1997). A 28-year-old synthesis of micelletemplated mesoporous silica. *Microporous Materials*, 10, 283-286.

- Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett D.H., Haynes J.H., Pernicone N., Ramsay J.D.F., Sing K.S.W., and Unger, K.K. (1994). Recommendations for the Characterization of Porous Solids. *Pure & Appl. Chern*, 66(8), 1739-1758.
- Russo, N., Mescia D., Fino, D., Saracco, G. and Specchia, V. (2007). N₂O decomposition over Perovskite Catalysts. *Ind. Eng. Chem. Res.*, 46, 4226-4231.
- Rutkowska, M., Piwowarska, Z., Micek, E. and Chmielarz, L. (2015). Hierarchical Fe-, Cu- and Co-Beta zeolites obtained by mesotemplate-free method. Part I: Synthesis and catalytic activity in N₂O decomposition. *Microporous and Mesoporous Materials*, 209, 54–65.
- Satsuma, A., Maeshima, H., Watanabe, K., Suzuki, K. and Hattori, T. (2000). Effects of Methane and Oxygen on Decomposition of Nitrous Oxide over Metal Oxide Catalysts. *Catalysis Today*, 63, 347-353.
- Schulz-Ekloff, G., Rathousky, J. and Zukal, A. (1999). Mesoporous silica with controlled porous structure and regular morphology. *International Journal of Inorganic Materials*, 1, 97-102.
- Shah, A.T., Li, B. and Abdalla, Z.E.A. (2010). Direct synthesis of Cu–SBA-16 by internal pH-modification method and its performance for adsorption of dibenzothiophene. *Microporous and Mesoporous Materials*, 130, 248-254.
- Shah, P., Ramaswamy, A.V., Lazar, K. and Ramaswamy, V. (2007). Direct hydrothermal synthesis of mesoporous Sn-SBA-15 materials under weak acidic conditions. *Microporous and Mesoporous Materials*, 100(1-3), 210-226.
- Shen, Q., Li, L., Li, J., Tian, H. and Hao, Z. (2009). A study on N₂O catalytic decomposition over Co/MgO catalysts. *Journal of Hazardous Materials*, 163, 1332-1337.
- Shimizu, A., Tanaka, K. and Fujimori, M. (2000). Abatement technologies for N₂O emissions in the adipic acid industry. *Chemosphere-Global Change Science*, 2, 425-434.
- Shimokawabe, M., Chaki, T., Ozawa, S. and Arai, M. (2005). Activity and Physicochemical Properties of Fe-Zeolite Catalysts for SCR of N₂O with CH₄ *React. Kinet. Catal. Lett.*, 86, 363-370.
- Slowing, I.I., Trewyn, B.G., Giri, S., and Lin, V.S.-Y. (2007). Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications. Advanced Functional Materials, 17, 1225-1236.

- Smeets, P., Sels, B., Vanteeffelen, R., Leeman, H., Hensen, E. and Schoonheydt, R. (2008). The catalytic performance of Cu-containing zeolites in N₂O decomposition and the influence of O₂, NO and H₂O on recombination of oxygen. *Journal of Catalysis*, 256, 183-191.
- Smith, I.M. and Thambimuthu, K.V. (1993). Greenhouse Gas Emissions, Abatement and Control: The Role of Coal. *Energy & Fuels*, 7, 7-13.
- Song, Z., Zhang, Q., Ning, P., Liu, X., Zhang, J., and Wang, Y. (2016). Effect of copper precursors on the catalytic activity of Cu/ZSM-5 catalysts for selective catalytic reduction of NO by NH₃. [journal article]. *Research on Chemical Intermediates*, 1-17.
- Stern H., (2006). The Economics of Climate Change: The Stern Review, Part 1- Climate Change (online). Retrieved from http://www.hm-treasury.gov.uk/ stern_review_report.html on 4 July 2010.
- Svoboda, K. Baxter, D. and Martinec, J. (2006). Nitrous Oxide Emissions from Waste Incineration. *Chem. Pap.*, 60(1), 78-90.
- Taguchi, A. and Schuth F. (2005). Ordered mesoporous materials in catalysis. *Microporous and Mesoporous Materials*, 77(1), 1-45.
- Trogler, W.C. (1999). Physical properties and mechanisms of formation of nitrous oxide. *Coordination Chemistry Reviews*, 187, 303-327.
- Tu, C., Wang, A., Zheng, M., Wang, X. and Zhang, T. (2006). Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation. *Applied Catalysis A: General*, 297, 40-47.
- Turek, T. (1996). Kinetics of nitrous oxide decomposition over Cu-ZSM-5. Applied Catalysis B: Environmental, 9, 201-210.
- Tuti, S., Pepe, F., Pietrogiacomi, D. and Indovina, V. (2001). Decomposition of Nitrous Oxide on C_oO_x/ZrO₂, CuO_x/ZrO₂ and FeO_x/ZrO₂ Catalysts. *React. Kinet. Catal. Lett.*, 72, 35-42.
- Wang, H., Tian, H., and Hao, Z. (2012). Study of DDT and its derivatives DDD, DDE adsorption and degradation over Fe-SBA-15 at low temperature. *Journal of Environmental Sciences*, 24, 536-540.
- Wang, Y.M., Zhuang, T.T., Cao, Y., Jiang Q., Zhu J.H. (2005). Micro- and mesoporous silicas synthesized in acidic water-ethanol solution of equimolar catanionic surfactant. *Journal of Non-Crystalline Solids*, 351, 346-350.

- Xu, X., Xu, H., Kapteijn, F. and Moulijn, J. A. (2004). SBA-15 based catalysts in catalytic N₂O decomposition in a model tail-gas from nitric acid plants. *Applied Catalysis B: Environmental*, 53, 265-274.
- Yao, K.-W., Jaenicke, S., Lin, J.-Y., and Tan, K.L. (1998). Catalytic decomposition of nitrous oxide on grafted CuO/γ-Al₂O₃ catalysts. *Applied Catalysis B: Environmental*, 16, 291-301.
- Zhao, D., Feng, J., Huo Q., Melosh N., Fredrickson, G.H., Chmelka B.F., Stucky G.D. (1998). Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. *Science*, 279, 548-552.
- Zheng, F., Tran, D.N., Busche, B., Glen E.F, Addleman, R.S., Zemanian, T.S. and Aardahl, C.L., (2004). Ethylenediamine-Modified SBA-15 as Regenerable CO₂ Sorbents. *Prepr. Pap.-Am. Chem. Soc.*, Div. Fuel Chem., 49, 261-262.
- Zholobenko, V., Zholobenko, L., Khodakov, A. Y., Impéror-Clerc, M., Durand, D., and Grillo, I. (2008). Initial stages of SBA-15 synthesis: An overview. Advances in Colloid and Interface Science, 142, 67-74.