

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Syngas production from methane dry reforming over SmCoO₃ perovskite catalyst: Kinetics and mechanistic studies

Osarieme Uyi Osazuwa ^{a,b}, Herma Dina Setiabudi ^a, Sureena Abdullah ^a, Chin Kui Cheng ^{a,b,*}

^a Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia

^b Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia

ARTICLE INFO

Article history: Received 2 December 2016 Received in revised form 25 February 2017 Accepted 9 March 2017 Available online 4 April 2017

Keywords: Dry reforming Kinetics Methane Perovskite SmCoO₃ Syngas

ABSTRACT

The kinetics of the methane dry (CO₂) reforming over the SmCoO₃ was investigated in the temperature ranged 973–1073 K by varying the CH₄ and CO₂ partial pressures. Based on detailed study of the reaction mechanism, a mechanistic model is proposed from which a kinetic model is derived. The mechanistic pattern assumes adsorption of CH₄ on reduced Co, followed by methane cracking and carbon deposition. CO₂ reacts with Sm₂O₃ to form Sm₂O₂CO₃ and the oxycarbonates react with carbon to produce CO. The power law and Langmuir–Hinshelwood kinetic model which is established on this mechanism were able to forecast the kinetic results.

© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

E-mail address: chinkui@ump.edu.my (C.K. Cheng).

http://dx.doi.org/10.1016/j.ijhydene.2017.03.061

0360-3199/© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia. Fax: +60 9 5492889.