Contents

Anaerobic Digestion ... 1
Sevcen Aydin

Using Pretreatment and Enzymatic Saccharification Technologies to Produce Fermentable Sugars from Agricultural Wastes 15
Caoxing Huang, Ben Jeuck, and Qiang Yong

Various Sludge Pretreatments: Their Impact on Biogas Generation 39
J. Rajesh Banu and S. Kavitha

Hydrolysis of Lignocellulosic Biomass for Recovering Hemicellulose:
State of the Art ... 73
I.S.M. Rafiql, A.M.M. Saknah, and A.W. Zularisam

Latent Potential of Microalgal Biomass: Research Efforts and Challenges .. 107
Pau Loke Show, Arumugasamy Senthil Kumar, Sue Wen Siow,
Siti Sabariah Din, Vidya Sundaram, and Kulandai Arockia Rajesh Packiam

Treatment of Dye Wastewater for Water Reuse Using Membrane
Bioreactor and Biofouling Control .. 121
Muhammad Faisal Siddiqui, Lakhveer Singh, and Zularisam Ab Wahid

Economic and Market Value of Biogas Technology 137
Abu Yousuf, Maksudur Rahman Khan, Domenico Pirozzi,
Zularisam Ab Wahid, and Samson Mekbib Atinaw

Biomass Gasification ... 159
Samson Mekbib Atinaw, Shaharin Anwar Sulaiman, and Suzana Yusup

Activated Carbon from Renewable Sources: Thermochemical
Conversion and Activation of Biomass and Carbon Residues
from Biomass Gasification .. 187
Davide Bergna, Henrik Romar, Sari Tuomikoski, Hanna Runtti,
Teija Kangas, Pekka Tynjälä, and Ulla Lassi
Pyrolysis of Biomass ... 215
Dooshyantsingh Oochit, Anurita Selvarajoo,
and Senthil Kumar Arumugasamy

Liquefaction of Biomass for Bio-oil Products 231
Hua-jun Huang, Xing-zhong Yuan, and Guo-qiang Wu

Intensified Synthesis of Bioethanol from Sustainable Biomass 251
Saurabh M. Joshi and Parag R. Gogate

Current Approaches in Producing Oil and Biodiesel from Microalgal Biomass ... 289
Marcondes M. Pacheco, Michele Hoeltz, Diego de Souza,
Lisianne B. Benitez, Rosana C.S. Schneider, and Maria V.G. Müller

Intensified Synthesis of Biodiesel from Sustainable Raw Materials Using Enzymatic Approach 311
Preeti B. Subhedar and Parag R. Gogate

Sandra Silva, Ana Cristina Rodrigues, Ana Ferraz, and Joaquim Alonso

Microbial Fuel Cells: Types and Applications 367
Ravinder Kumar, Lakhveer Singh, and A.W. Zularisam

Index ... 385
About the Editors

Vipin Chandra Kalia is presently working as Emeritus Scientist. He has been the Chief Scientist, and the Deputy Director, at Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology, Delhi. He is a Professor, AcSIR, who obtained his M.Sc. and Ph.D. in Genetics, from Indian Agricultural Research Institute, New Delhi. He has been elected as: (1) Fellow of the National Academy of Sciences (FNASc), (2) Fellow of the National Academy of Agricultural Sciences (FNAAS), and (3) Fellow of the Association of Microbiologists of India (FAMI), and. His main areas of research are Microbial biodiversity, Bioenergy, Biopolymers, Genomics, Microbial evolution, Quorum sensing, Quorum quenching, Drug discovery and Antimicrobials. He has published more than 100 papers in Scientific journals such as (1) Nature Biotechnology, (2) Biotechnology Advances, (3) Trends in Biotechnology, (4) Annual Review of Microbiology, (5) Critical Reviews in Microbiology, (6) Bioresource Technology, (7) PLoS One, (8) BMC Genomics, (9) International Journal of Hydrogen Energy, and (10) Gene. He has authored 14 book chapters. His works have been cited 3712 times with an h index of 32 and an i10 index of 71 (http://scholar.google.co.in/citations?hl=en&user=XaUw-VIALAAAJ). He has Edited three books: (i) Quorum Sensing versus Quorum Quenching: A Battle with No End in Sight (2015), http://link.springer.com/book/10.1007/978-81-322-1982-8, (ii) Microbial Factories Vol. 1: Biofuels, Waste treatment (2015) http://link.springer.com/book/10.1007%2F978-81-322-2598-0, and (iii) Microbial Factories Vol. 2: Biodiversity, Biopolymers, Bioactive Molecules (2015) http://link.springer.com/book/10.1007%2F978-81-322-2595-9. He is presently the Editor-in-Chief of the Indian Journal of Microbiology and editor of: (1) Journal of Microbiology and Biotechnology (Korea), (2) International Scholarly Res. Network Renewable Energy, (3) Dataset Papers in Microbiology, and (4) PLoS One. He is a life member of the following Scientific societies: (1)
Lakhveer Singh is presently working as senior lecturer at Faculty of Engineering Technology, Universiti Malaysia Pahang, Malaysia. He received his B.Sc. and M.Sc. in Chemistry from Himachal Pradesh Universiti Shimla and Punjab Universiti Chandigarh, India, in 2007 and 2009, respectively and Ph.D. in Industrial Chemistry from Universiti Malaysia Pahang (UMP) 2013. He has teaching, research and Industries experience with Universities and Industry in India. His main areas of interest are Bioenergy production, Bioreactors development, Wastewater treatment, MFC and Green Technology. In addition to research activities, he teaches undergraduate courses and guides doctoral students at Universiti Malaysia Pahang. He has a more than 30 number of international publications in high impact journals. His works have been cited 309 times with an h index of 10 and an i10 index of 10 (https://scholar.google.com/citations?user=TK3C9WEAAAAJ&hl=en). He has authored three book chapters and one book. He also holds a four patent filing application for his research. He is a reviewer of Elsevier, Wiley and Springer International journals. Presently he is the editor of Advance in Chemical and Biological Engineering journal, managing editor of International journal of engineering technology (IJETS) and guest editor of International Journal of Energy Engineering. He is also a member of International Water Association (IWA). He can be contacted at: lucki.chem09@gmail.com lakhveer@ump.edu.my.
Microbial Fuel Cells: Types and Applications

Ravinder Kumar, Lakhveer Singh, and A.W. Zularisam

Abstract Microbial fuel cells (MFCs) are bioelectrochemical devices that convert the chemical energy present in organic or inorganic compounds into electric current by using microorganisms as the catalysts. MFCs are of different types; however, the basic designs used in the laboratories for its applications include double-chamber MFC, single-chamber MFC, upflow MFC and stacked MFC. Moreover, some other designs have also been used for the studies. The type of electrode materials and proton exchange membrane (PEM) used in MFCs has most significant role for its outcomes for different applications such as bioelectricity generation, wastewater treatment, bioremediation of toxic compounds, biohydrogen production and biosensors. Furthermore, MFCs are operated at the optimized parameters such as thermophilic temperatures, neutral pH, etc. to obtain more significant results for respective application. This chapter explores the various types of MFCs, the operational parameters to improve its performance and the most studied applications of the MFCs.

Keywords Microbial fuel cells • Catalysts • Wastewater treatment • Bioelectricity generation • Biosensors • Proton exchange membrane

1 Introduction

The microbial fuel cell (MFC) technology is one of the most attractive technologies at present for renewable energy production and simultaneous wastewater treatment. MFCs are the bioelectrochemical devices that utilize microorganisms as the biocatalysts to convert the chemical energy present in organic or inorganic compounds into electric current (Aelterman et al. 2006; Bermek et al. 2014; Kumar et al. 2016). A typical double-chamber MFC is made up of two chambers, i.e. the anode and the cathode. Usually a proton exchange membrane (PEM) is placed between these two chambers that allows the protons produced at the anode to pass...