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ABSTRACT 
 

 

 

 

 The control of pH process is a problem frequently encountered in the chemical 

process and biotechnology industries. It has been recognized as a challenging problem 

due to the time varying and nonlinear characteristics of the pH processes. This is 

particularly true when control has to be achieved in the neutral range (a pH betweens 6 

to 8) when only strong acid and strong bases are present. The objectives of this research 

are development mathematical model for pH system, simulation studies under steady 

and unsteady state condition and validation of mathematical model through 

experimentation. The model of the pH process applied in this paper known as the 

principle of physico- chemical dynamic modeling. This model used acetic acid and 

sodium hydroxide for simulating the behavior of a simple pH process in a time optimal 

control loop. The mathematical model based on first principles is developed from 

acetate balance, sodium balance, acetic acid equilibrium, water equilibrium and 

electroneutrality equation. Then, the model equations are solved in MATLAB 

environment. The results from the MATLAB simulation program are compared with 

experimental result to validate the developed fundamental model. The results showed 

that most of the error between the model and experiment result are within 3% which 

proved the model has the capability to capture the dynamics of the process. 
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ABSTRAK 

 

 

 

 

 Pengendalian proses pH adalah masalah yang sering dihadapi dalam proses 

kimia dan industry bioteknologi. Ini telah diakui sebagai masalah mencabar kerana 

masa yang berbeza- beza dan cirri- ciri nonlinear proses pH. Hal ini terutama benar 

ketika kawalan harus dicapai dalam julat neutral( antara pH 6 hingga 8) ketika hanya 

asid kuat dan basa kuat hadir. Tujuan dari penyelidikan ini adalah untuk pembangunan 

model matematik untuk system pH, kajian simulasi pada keadaan steady dan unsteady 

dan validasi model metematik melalui eksperimen. Model proses pH diaplikasikan 

dalam masalah ini dikenali sebagai prinsip permodelan dinamik fizik- kimia. Model ini 

menggunakan asid asetik dan natruim hidroksida untuk mensimulasikan perilaku dari 

proses pH sederhana dalam loop kawalan masa yang optimum. Model matematik 

berdasarkan prinsip- prinsip pertama adalah dikembangkan daripada baki asetik, 

keseimbangan natrium, keseimbangan asid asetik, keseimbangan air dan persamaan 

neutraliti. Kemudian, persamaan model diselesaikan dalam persekitaran MATLAB. 

Keputusan dari program simulasi MATLAB dubandungkan dengan keputusan 

eksperimen untuk mengesahkan kesasihan model asas yang telah dikembangkan. 

Keputusan kajian menunjukkan bahawa sebahagian besar kesalahan antara hasil model 

dan eksperimen dalam julat 3% membuktikan model memiliki kemampuan untuk 

mengesan proses dinamik.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

 The pH system is very important in world of chemistry especially in chemical 

industries. In chemistry, pH is a measure of acidity or basicity of a solution. Normally, 

at pH equal to 7 the solution is called neutral while at pH above 7 is called base and 

acid solution is vice versa to the base. 

 

 

 There are two different schools of dynamic pH modeling. The first one is the 

classical physico- chemical modeling approach presented by McAvoy et al. (1972) and 

the rection invariant formulation of the physico- chemical approach presented by 

Gustafsson and Waller (1982). Both approaches are based on same idea of separating 

the chemical reaction (equilibrium) from the reaction invariant dynamics. The concept 

of reaction invariant is referred to the conservation of substance on concentrations. The 

term was originally introduced by Fjeld et al. 1974. In this thesis, the classical physico- 

chemical modeling approach is used in development mathematical algorithm.   

 

 

 According toPeter Ylén (2001),pH models are divided into two types. The first 

type is known as static modeling. Static model are valid when the system has reached 

the equilibrium. The acid- base unit reactions can be considered instantaneous
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and therefore static modeling is a very natural approach. Static models include titration 

curves and distribution diagrams. Experimental static models are often basic tools for 

product quality control as well as process state indicators. Experimental methods have 

been used for both qualitative and quantitative analysis. 

 

 

 The second type of pH model is dynamic modeling. Dynamic modeling is more 

difficult than static modeling. The different between static modeling from dynamic 

modeling is it concentrates only on the equilibrium state where the system does not 

change as a function of time. In the dynamic modeling procedure the behavior of pH 

and related phenomena are considered as functions of time. This statements means they 

will change autonomously even though the changes in the input have already passed. 

The dynamic pH system can be divided into two categories. First category is when the 

systems where chemical phenomena are significantly faster than flow and mixing 

phenomena. The second category is when the system is not in case like category one.  

 

 

 

 

1.2 Problem Statement 

 

 

 pH control is well known as a difficult problem frequently encountered in the 

chemical process and biotechnology industries It has be recognized as a challenging 

problem due to the time- varying and nonlinear characteristics of the pH process. The 

difficulty arises from the high nonlinearities of the process around the neutralization 

process. This is true when control has to be achieved in the neutral range (a pH 

betweens 6 to 8) when only strong acids and strong bases are present.  

 

 

 Because of the pH process nonlinear characteristic, the linear model cannot 

predict the process behavior accurately in all operating region. The steady state gain of 

pH process shows significant variation with the change of in the operating point. This 

makes it difficult to design a single linear controller to perform accurately in all the 
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regions. This is because linear model only acceptable when the process operates at a 

single set point. The problem is many chemical processes including pH process do not 

operate at single set points. They are often required to operate at different set points 

depending on the product needed.  

 

 

 

 

1.3 Objectives of Study 

 

 

i. Development of mathematical model for pH system based on first principles. 

ii. Validation of mathematical model through experimentation. 

iii. Simulation studies under steady and unsteady state condition. 

 

 

 

 

1.4 Scope of Study 

 

 

 The scopes of study addressed in this research are: 

 

 

i. Develop of mathematical model based on first principles 

ii. Develop nonlinear model 

iii. Nonlinear model validation and analysis 

iv. Steady and unsteady state conditions 
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1.5 Rationale and Significance of Research 

 

 

 pH system is highly nonlinear and time varying process. Based on S- shaped 

titration curve, the steady state gain shows significant variation with the change in the 

operating point. This makes it difficult to design a single linear controller to perform 

satisfactorily in all regions. So, development of nonlinear is necessary to implement 

Nonlinear Model Predictive Control (NMPC) for pH system in industries. 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1pH Process 

 

 

 According to Peter Ylén (2001),pH processes always contain instantaneous 

reaction kinetics. The protolysation reactions arevery fast in general, but there can be 

slow side reactions that limit the overall speed of reactionkinetics. There is always 

equilibrium between hydroxide and oxonium ions (ion product of water).The oxonium 

and hydroxide ions participate in numerous separate reactions and instead of 

chainreactions there is a net of reactions with the neutralisation or the autoprotolysation 

reaction as theconnecting link. 

 

 

H3O
+
 + OH

- 
↔ 2H2O 

Kw = [H3O
+
] . [OH

-
] = 10

-14
 (mol/l)

2
, at 25

°
C                            (2.1) 

 

 

Instead of forming balances for oxonium and hydroxide a more practical solution is to 

use the charge balance (electro-neutrality equation) and the ion product of water for 

combining pHphenomena to other reactions. The pH-value is defined as 

 

 

pH= -log10 {H3O
+ 

}= -log [H3O
+
]                            (2.2) 
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The control of pH system is a very important problem in many chemical and 

biological processes, particularly in effluent wastewater treatment. In wastewater 

treatment plant, the cell growth rate and the accurate stabilization of pH at an optimal 

level often determines the efficiency of the bioprocess. It also plays an important role in 

neutralizing the excess reagents, acidic byproducts and obtaining high yield of selective 

products. The pH process can be classified as a continuous process, batch process or fed 

batch process (Bharathi et al. 2007).  

 

 

2.2 Nonlinear Characteristics of pH Process 

 

 

 In many processes, pH neutralisation is a very fast and simple reaction. In terms 

of practical control, it is recognized as a difficult control problem (Shinskey 1973; 

Pishvaie et al. 2000; Wright et al. 1991). The difficulties arise from high process 

nonlinearity (the process gain can change tens or hundreds of times over a small pH 

range) and from changes in the pH characteristics due to changes in influent 

concentration (Karnachi and Waterworth, 2003).The difficulties of pH process 

nonlinear characteristic also stated by Gomez et al. 2004 in his paper. He stated the 

difficult task in controlling pH process is when control has to be achieved in the neutral 

range (a pH between six and eight) when only strong bases are present. 

 

 

According to Lin and Yu (1993), the non-linearity can be understoodfrom the S-

shaped static pH responses with the additionof titrate. The S-shaped titration curve is 

theprimary source of the non-linearity. Ali (2001) also agreed with that statement and 

stated in his paper the nonlinearity appears in the S- shape titration curve associated 

with pH processes. The process gain grows drastically at the intermediate region of the 

S- shape curve, i.e. around the neutralization point. This behavior is the main source of 

control difficulty. Moreover, the shape of the titration curve is distorted when the feed 

condition changes.  

 

 



7 
 

 The titration curve usually considered as a gain variation. Figure 1 show three 

typical titration curves for which conventional linear controllers suffer from poor 

performances or instability due to large gain variations. 

 

 

 

 

 

Figure 1: Three typical titration curves having the most severe gain variation. (a) strong 

acid-strong base system, (b) weak acid-strong base system, (c) strong acid, weak acid-

strong base system (Lee and Park, 2000). 

 

 

 The nonlinear behavior of pH process also can be observed through step 

responses of pH process graph. From figure 2, the different pH value (steady state value 

– current value) between the same percentages changes of step response are not same. 

For an example, at 5% change, the different pH value when step response increase by 

5% is higher than decrease by 5%. That phenomena show the pH process is nonlinear 

process. If the process is linear the different pH value for both decreasing and 

increasing step response should be same. 
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Figure 2: Step responses of pH process (Mahmoodi et al. 2008) 

 

 

 

 

2.3 Nonlinear Process Models 

 

 

 According to Henson (1998), the industrial success of LMPC (Linear Model 

Predictive Control) is largely attributable to the availability of commercial software 

packages which can be used to develop linear dynamic models directly from process 

data (Qin and Badgwell, 1997). These linear empirical models are used by the LMPC 

controller to predict and optimize process performance. NMPC (Nonlinear Model 

Predictive Control) requires the availability of a suitable nonlinear dynamic model of 

the process. Consequently, the development of nonlinear process models is of 

paramount importance. Due to the complexity of nonlinear systems, it is not possible to 
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develop nonlinear system identification techniques by straightforward extension of the 

linear theory (Pearson and Ogunnaike, 1997). As an alternative, the NMPC controller 

may be based on a fundamental model which is derived from basic conservation laws 

and constitutive relations. 

 

 

 There are three types of nonlinear models: 

 

 

1. Fundamental models 

2. Empirical models 

3. Hybrid models 

 

 

In this research, the fundamental model of pH system is developed. 

 

 

2.3.1 Fundamental Models 

 

 

 Fundamental dynamics models are derived by applying transient mass, energy 

and momentum balances to the process (Ogunnaike and Ray, 1994). In the absence of 

spatial variations, the resulting models have the general form 

 

 

(2.3) 

(2.4) 

(2.5) 

 

 

wherex is a n-dimensional vector of state variables, u is a m- dimensional vector of 

manipulated input variables and y is a p- dimensional vector of controlled output 

variables. The ordinary differential equations (2.2) and algebraic equation (2.3) are 

derived from conservation laws and various constitutive relations, while the output 

equations (2.4) are chosen by the control system designer. Because NMPC is most 
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naturally formulated in discrete time, it is necessary to discrete the continuous time 

differential equations. This is usually achieved by orthogonal collocation or finite 

elements (Meadows and Rawlings, 1997). 

 

 

 Advantages of fundamental models are highly constrained with respect to their 

structure and parameters, provides physical interpretation of all the variables involved 

in the model, less process data is required for development, and model parameters can 

be estimated from laboratory experiments and routine operating data instead of time 

consuming plant tests (Henson, 1998). As long as the underlying assumptions remains 

valid, fundamental models can be expected to extrapolate to operating regions which 

are not represented in the data set used for model development (Meadows and 

Rawlings, 1997). This first-principle models also valid globally and can predict system 

dynamics over the entire operating range. However, development of a reliable first-

principle model is a difficult and time-consuming task (Mahmoodi et al. 2008). For 

Pearson (1995), the fundamental model generally give us more complete process 

understanding than empirical model and also generally much more complex and require 

correspondingly longer to develop. 

 

 

 The disadvantages of this model are lack of process knowledge often leads to 

disappointing results, since it is hard to capture all relevant phenomena in the model and 

the resulting dynamic model may be too complex to be useful for NMPC design. But 

this drawback can be avoided by the use of reduction techniques such as singular 

perturbations. 

 

 

 The principle of physico-chemical dynamic modelling of a pH-process was first 

stated by McAvoy et al.in 1972. They used the model (acetic acid and sodium 

hydroxide) for simulating the behavior of a simple pH-process in a time-optimal control 

loop. Richter et al.1974 presented a model including the electro-neutrality condition for 

many 1-valued acids and bases two years later. Gustafsson and Waller, (1982) and 

Jutila and Orava, (1981) developed more complex models, closer to practical processes. 
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The term “reaction invariant” was originally introduced by Fjeld etal. (1974) but the pH 

process formulation of reaction invariants was presented by Gustafsson and Waller, 

(1982) as a systematic matrix formulation of the physico-chemical modeling procedure. 

The stoichiometric chemical reactions and the charge balance form together a set of 

equations that can be used for determining the reaction invariants with the help of 

simple linear algebra. More elaborate chemical systems including complex formation 

and two-phase systems (solid/liquid) are presented by Gustafsson et al, (1995). 

 

 

 

 

2.3.2 Empirical Model 

 

 

 In many applications, lack of process knowledge and/or a suitable dynamic 

simulator precludes the derivative of a fundamental model. This necessitates the 

development of empirical nonlinear models from dynamic plant data.According to 

Henson (1998) the development of empirical nonlinear models from plant data is known 

as nonlinear system identification. A fundamental difficulty associated with empirical 

modeling approach is selection of suitable model form. Discrete- time models are most 

appropriate because plant data is available at discrete instant and NMPC is most 

naturally formulated in discrete time. The types of discrete time nonlinear model 

include: 

 

 

1. Polynomial nonlinear auto- regressive moving average model with exogenous 

inputs (polynomial NARMAX) 

2. Volterra models 

3. Artificial neural network (ANN) models 

4. Nonlinear FIR (NFIR) MODELS 

5. Hammerstein and Wiener models 
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 The development of empirical nonlinear models from plant data is known as 

nonlinear system identification. Nonlinear system identification in practice involves the 

following steps: 

 

 

1- Selection of a model structure 

2- Given a model structure, design of the input sequence, u(k) 

3- Given u(k), generation of the system response y(k) 

4- From the input- output dataset, estimation of the model parameters 

5- Assessment of identified model quality based on the estimated model parameters 

6- Iteration and model refinement as necessary 

 

 

 Based on paper write by Henson (1998), as compared to fundamental model 

models, empirical nonlinear models have several advantages. First, this model not 

required the detailed process understanding. This is an important consideration for 

complex industrial process such as polymerization reactors, which are difficult to model 

from fundamental principles. Because of NMPC requires online solution of a nonlinear 

programming problem, computational overhead and reliability is intimately connected 

with the complexity of the nonlinear model. Other advantage of empirical model is that 

the nonlinear model can be chosen to restrict model complexity (Pearson and 

Ogunnaike, 1997). 

 

 

Example of empirical models used for controlling pH system: 

 

 

1) Wiener model 

 

 

Wiener model are quite similar with Hammerstein model but they are different from 

the arrangement of static nonlinearity and linear dynamics at their structures. 
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Figure 3: Hammerstein model structure (Pearson, 1995) 

 

 

Figure 4: Wiener model structure (Pearson, 1995) 

 

 

Wiener models have the capability of approximating, with arbitrary accuracy, any 

fading memory nonlinear time invariant system (Boyd and Chua, 1985), and they have 

been successfully used to model several nonlinear systems encountered in the process 

industry, such as distillation columns (Bloemen et al. 2001), and pH processes 

(Norquay et al. 1998 & 1999, Kalafatis et al. 1995). In the paper wrote by Baeyens et al. 

(2004), they stated that input-output data from a nonlinear, first principles simulation 

model of the pH neutralization process are used for subspace-based identification of a 

black-box Wiener-type model. The proposed nonlinear subspace identification method 

has the advantage of delivering a Wiener model in a format which is suitable for its use 

in a standard linear-model-based predictive control scheme. The identified Wiener 

model is used as the internal model in a model predictive controller (MPC) which is 

used to control the nonlinear white-box simulation model. To account for the 
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immeasurable disturbance, a nonlinear observer is proposed. The performance of the 

Wiener model predictive control (WMPC) is compared with that of a linear MPC, and 

with a more traditional feedback control, namely a PID control. The WMPC scheme 

introduced in before this was implemented using the function in the MPC toolbox for 

use with MATLAB (Morari and Ricker, 1994). Simulation results show that the WMPC 

outperforms the linear MPC and the PID controllers. 

 

 

2) Wiener- Laguerre model. 

 

 

Wiener models are frequently used for identification of nonlinear processes in 

nonlinear model predictive control systems.Laguerre filters are frequently used as the 

linear part of Wiener models resulting in the so-called Wiener–Laguerre model. 

Thismodel structure was used for the identification of a highly nonlinear chemical 

process with the aim of being used in an NMPCcontroller. 

 

 

In the paper wrote by Mahmoodi et al. (2008), they stated that Laguerre filters and 

simple polynomials are used respectively as linear and nonlinear parts of aWiener 

structure. The obtained model structure is the so-calledWiener–Laguerre model. This 

model is used to evaluate identification of a pH neutralization process. Then the model 

is used in a nonlinear model predictive control framework based on the sequential 

quadratic programming (SQP) algorithm. Various orders of Laguerre filters and 

nonlinear polynomials are tested, and the results are compared for the validation of 

these models. Validation results for various orders suggest that in order to have a good 

trade-off between simplicity of the model and its corresponding fitness, a second order 

nonlinear polynomial along with two Laguerre filtersmay be selected. The fitness of this 

model according to variance account for (VAF) criterion is 92.32%, which is 

completely acceptable for nonlinear model predictive control applications. Then the 

identified Wiener–Laguerre model is used for nonlinear model predictive control and 

the results are compared with model predictive control in which just Wiener model was 

used for identification. It is shown that the use of the Wiener–Laguerre structure 
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improves the quality of modeling together with the rate of convergence of SQP in a 

reasonable time. Furthermore, these results are also compared with the performance of a 

linear model predictive controller based on Laguerre model to provide a fair comparison 

between linear and nonlinear systems. 

 

 

Table 1:SSE criteria for applied controller in set- point tracking (Mahmoodi et al, 2008) 

 

Controller SSE 

NMPC (Wiener- Laguerre) 

MPC (Wiener) 

MPC (Laguerre) 

157.1854 

429.9803 

199.671 

 

 

 

 

Figure 5: NMPC based on Wiener- Laguerre in comparison with MPC based on 

Laguerre and Wiener models (Mahmoodi et al, 2008) 

 

 

Simulation results showthat, for the considered application, the Wiener–Laguerre 

MPC performs slightly better than the MPC basedon the linear Laguerre model, but it 
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performsmuch better than that corresponding to the Wiener model presented byBaeyens 

et al. (2004). 

 

 

3) Neural Network Model 

 

 

Dudul and Ghatol, 2005 had investigated the identification of the pH Neutralization 

process in a constant volume stirring tank using a two layer multi-layer perceptron 

neural network. It is shown that the neural network based state-space innovations form 

model has clearly outperformed the equivalent linear model in simulation and thus, it is 

possible to obtain good results for this process with neural network based state-space 

innovations form model. It is by no means claimed that the optimal solution is found 

however it is shown that the proposed neural network based model provides a simple 

means to identify the given nonlinear multi-input-single-output system.  

 

 

Table 2: Comparison between linear and the NN model (Dudul and Ghatol, 2005) 

 

Model Fit for One- step 
Ahead Predictions % 

Fit for simulation % Error 

Linear model 
 
Neural Network 

64.99% 
 
54.934% 

-125.2% 
 
45.168% 

0.0375719 
0.0381779(FPE) 
0.0113365(Train) 
0.00557476(Test) 

 

 

The MSE on a test set (data set not used for training) has been found as 

0.00557476 and the fit for simulation is computed as 45.17%, which is clearly higher 

than that of the state-spacemodel. It is thus observed that the fit for simulation is much 

better in the case of neuronal model and that it tries to learn the dynamics of the system. 

Imperfection in the result can beattributed to both the insufficient data and non-linear 

dynamical behaviour of the system. However, it is possible to obtain good results for a 

pH neutralization process in a constant volume stirring tank with NN based SSIF model. 
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Figure 6: NN Model (4-4-1)(Dudul and Ghatol, 2005) 

 

 

For the network chosen as 4-4-1 shown in figure 6, the ratio of number of 

training patterns to the number of weights in the network is 40 and its generalization 

ability has been improved by means of regularization. This network is trained by 

Levenberg- Marquardt algorithm. 

 

 

 

 

2.3.3 Hybrid Models 

 

 

 Hybrid nonlinear model are developed by combining the fundamental model and 

empirical modeling approaches. This allows the advantages of each modeling approach 

to be exploited. A common method for developing hybrid models is to use empirical 

models to estimate unknown functions in the fundamental model like reaction rates in a 

chemical reactor model (Pottmann and Henson, 1997) In this case, steady- state 

empirical models usually are sufficient. Another possible approach is to utilize a 

fundamental model to capture the basic process characteristics, and then to describes the 

residual between the plant and the model using nonlinear empirical model. Both 

techniques allow the nonlinear model to be constrained by the underlying physics, but 
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they do not requirea complete rigorous model of the plant. While hybrid models hold 

great promise, their use for NMPC design has not been explored. 

 

 

 

 

2.4 Derivation of Dynamic Equations for pH System 

 

 

 The model derived below is known as classical physico- chemical modeling 

approach by McAvoy et al. 1972. Consider a stirred tank into which acetic acid of 

concentration C1 flows in at a rate F1. This acid neutralizes sodiumhydroxide of 

concentration C2 which flows into the tank at a rate F2. The volume of the tank is 

constant and equal toV. The variable of interest is the pH of the outlet stream. The tank 

is assumed to be perfectly mixed and isothermal,and the variables to be determined are: 

[H
+
], [OH

-
], [HAC], [AC

-1
], and [Na

+
]. Once [H+]is known, the pH can bedetermined 

from the expression 

 

 

pH = -log10 [H
+
](2.6) 

 

 

 Material balances on hydrogen or the hydrogen ion would be extremely difficult 

to write down because the dissociationof water and the resultant slight change in water 

concentration would have to be accounted for. This is especially trueif one is interested 

in almost neutral solutions, as is often the case industrially. However, such balances are 

not requiredas is shown below. By making material balances on acetate and sodium, 

using the acetic acid and water equilibrium relationships and the fact that the solution 

must be electrically neutral, we can completely formulate the problem. 

 

 

Letting 

 

ξ = [HAC] + [AC
-
]                                                                                                     (2.7) 

 

and 
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ζ= [Na
+
](2.8) 

 

 

Then the following equations apply: 

 

 

Acetate balance 

 

 

F1C1 – (F1 + F2)ξ = Vdξ/dt          (2.9) 

 

Sodium balance 

 

F2C2 – (F1 + F2)ξ = Vdζ/dt                                                                                      (2.10)                                                                          

 

 

Acetic acid equilibrium 

 

[AC
-
][H

+
] / [HAC] = Ka                                                                                                                 (2.11) 

 

 

Water equilibrium 

 

[H
+
][OH

-
] = Kw(2.12) 

 

 

Electroneutrality 

 

ζ + [H
+
] = [OH

-
] + [AC

- 
]                                                                                           (2.13) 

 

 

 

Equations 2.6through 2.13 are a set of seven independent equations in seven unknowns 

which completely describe thedynamic behavior of the stirred tank. 
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CHAPTER 3 

 

 

 

 

METHODOLOGY 

 

 

 

 

3.1 Develop Mathematical Model based on First Principles 

 

 

The pH process consists of neutralization of two monoprotic reagents of a weak 

acid (acetic acid) and a strong base (sodium hydroxide). The method implements mass 

balances for components called reaction invariants of the Continuous Stirred Tank 

Reactor (CSTR) solution. As shown in Figure 7, the CSTR has two inlet streams: the 

influent process stream and the titrating stream, with one effluent stream at the output. 

The model of the pH neutralization process used in this work follows Valarmathi et al. 

2009that proposed by McAvoy et al. 1972 and is given below.  

 

 

 
Figure 7: pH neutralization process (Valarmathi et al. 2009) 
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 Assumption of perfect mixing is general in the modeling of pH processes, the 

volume of tank is constant and the reaction is isothermal. Material balances in the 

reactor can be given by  

 

 

VdXa/dt = FaCa – (Fa + Fb)Xa                                                                                    (3.1) 

 

VdXb/dt = FbCb – (Fa + Fb)Xb                                                                                    (3.2) 

 

 

where Fa is the flow rate of the influent stream, Fb is the flow rate of the titrating stream, 

Ca is the concentration of the influent stream, Cb is the concentration of the titrating 

stream, xa is the concentration of the acid solution, xb is the concentration of the basic 

solution and V is the volume of the mixture in the CSTR. The above mathematical 

equations describe how the concentration of the acidic and basic components, xaand xb 

change dynamically with time subject to the input streams, Faand Fb . The reaction 

between HAC and NaOH:  

 

 

H2O ↔ H
+ 

+ OH
+
(3.3)

 

HAC ↔ H
+ 

+ AC
- 
(3.4)

 

NaOH ↔ Na
+
 + OH

-
(3.5) 

 

 

Invoking the electroneutrality condition, the sum of the ionic charges in the 

solution must be zero.  

 

 

[Na
+
] + [H

+
] = [AC

-
] + [OH

-
]                                                                                      (3.6) 

 

 

The [X] denotes the concentration of the X ion. The equilibrium relations also hold for 

water and acetic acid  
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Ka= [AC
-
][H

+
] / [HAC] (3.7) 

(3.8) 

 

 

where Xa =[HAC]+[AC
-
 ]and Xb = [Na

+
]  

 

 

The pH value can be determined using equation (3.9) 

 

 

pH = -log10 [H
+
](3.9) 

 

 

where Ka and Kw is the dissociation constant of acetic acid at 25ºC (Ka=1.778x10
-5

 and 

Kw=10
-14 

). 

 

 

 

3.2 Solving Model Equation in MATLAB Environment (Algorithm) 

 

 

 Development of fundamental nonlinear model using MATLAB is based on 

mathematical model algorithm. In this research, the algorithm is develop from the first 

principles that proposed by McAvoy et al. 1972. The inputs are Fa, Fb, Ca and Cb while 

the output is pH value. 

 

 

Firstly, the acetate and sodium balance equation is integrated. 
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From acetate balance (equation 3.1): 

 

 

VdXa/dt = FaCa – (Fa + Fb)Xa 

 

 

 

 

 

 

 

From sodium balance (equation 3.2): 

 

 

VdXb/dt = FbCb – (Fa + Fb)Xb 
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Note that Xa =[HAC]+[AC
-
 ]and Xb = [Na

+
] 

 

 

Then, from water equilibrium (equation 3.8): 

 

 

 

(3.12) 

 

 

Substitute equation 3.12 into acetic acid equilibrium and electroneutrality equation. 

 

 

From acetic acid equilibrium (equation 3.7): 

 

 

                                                                                                      (3.7) 

 

where [HAC] = Xa -  , 
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From electroneutrality equation (3.6): 

 

 

[Na
+
] + [H

+
] = [AC

-
] + [OH

-
]                                                                                      (3.6) 

 

 

 

From equation (3.14), 

 

 

 

 

 

Substitute equation (3.15) into (3.13),  

 

 

 

                                                                                                                                   (3.16) 

 

 

Derive equation (3.16) until; 

          (3.17) 

 

 

Because of equation (3.17) is cubic equation the roots of [OH
-
] will be determined. The 

positive root is considered as a concentration of [OH
-
].  Then, using equation (3.12), the 

value of  can be calculated. Since the value of  is known, pH can be 

determined using equation (3.9). 
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 In the MATLAB M-File, the development of fundamental nonlinear model is 

developed using equations (3.9), (3.10), (3.11), (3.12) and (3.17). The program code is 

shown like below: 

 

 

%assumption:1)tank is perfectly mixed, 2)the process is isothermal 

%3)volume of the tank is constant 

% fa(L/s),fb(L/s),ca(mol/L),cb(mol/L),v(L) is input 

fa=0.00333; fb=0.001667; ca=0.01; cb=0.1; v=1.5;  

%ka=acetic acid equilibrium, kw=water equilibrium 

ka=1.778*10^(-5); 

kw=1*10^(-14); 

%t is time, i refer to iteration 

for i=1:2400; 

t(i)=i; 

%xa and xb is concentration of acid & base solution 

xa(i)=fa*ca/(v/t(i)+fa+fb); 

xb(i)=fb*cb/(v/t(i)+fa+fb); 

%OH,Na,H is concentration of ion hydroxide,sodium& hydrogen 

%ka(OH^3)+(OH^2)(kw-ka*Na+ka*xa)+OH(-kw*Na-ka*kw)-kw^2=0 where Na=xb 

y(i,:)=[ka kw-ka*xb(i)+ka*xa(i) -(kw*xb(i)+ka*kw) -kw^2]; 

%the true value of OH is the positive value which is real root 

z(i,:)=roots(y(i,:)); 
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OH=z(z>0); 

H(i)=kw/OH(i); 

ph(i)=-log10(H(i)); 

end 

plot(t,ph); 
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3.3 Experimental Validation 

 

 

 The experiment data is took from the experiment done in the laboratory. The 

analysis data between the experiment and model will be shown and discussed in chapter 

4. These are the experiment procedures for pH process in continuous stirred tank reactor 

(CSTR):   

 

 

 

The experiment is repeated by changing the flowrate of NaOH (Fb) to 
200mL/min

The pH value at effluent is checked every 10 minutes until the pH value is 
constant

The stop watch is started

Both liquids are allowed to fill up all three reactors. Stirrers 1, 2 and 3 are 
switched on. The stirrer speeds is set to approximately 200 rpm.

The needle valves V3 and V4 are adjusted to obtain flowrates of approximately 
200 mL/min for flowmeters FT1 and 100mL for FT2. The flowrates are ensured 

always maintained the same and check that no air bubbles are trapped in the 
piping.

Pumps P1 and P2 is switched on

Valves V3, V4 and V5 is opened

The 3-way valve V1 position towards pump P1 and 3-way valve V2 position 
towards pump P2 is set

10-L of 0.1 M NaOH solution is charged into feed tank T2

10-L of 0.01 M acetic acid solution is charged into feed tank T1
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CHAPTER 4 

 

 

 

 

RESULTS AND DISCUSSIONS 

 

 

 

 

4.1 Validation of Nonlinear Model through Experimentation 

 

 

 In this research two experiments has been done in CSTR. The first experiment is 

done by setting the flowrate of sodium hydroxide (NaOH), Fb at 0.001667 L/s while 

acetate acid (HAC) flowrate, Fa is set at 0.0033 L/s with concentration of acetate acid, 

Ca and NaOH, Cb is constant at Ca= 0.01 M and Cb= 0.1 M. For the second 

experiment, Fb is increased equal to Fa, 0.0033 L/s which Ca and Cb remain constant. 

The data is compared with the model data and percentage error is calculated. The result 

for experiment 1 and 2 is shown at the next page. 
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Table 3: Comparison between experimental data and model (Fa=0.0033 L/s, 

Fb=0.001667 L/s, Ca=0.01M, Cb=0.1M) 

 

 

Time(min) pH 

(program/model) 

pH (experiment) Error (%) 

0 7.00 10.99 36.31 

10  12.2503 12.24 0.08 

20 12.3395 12.35 0.09 

30 12.3593 12.42 0.49 

40 12.3753 12.45 0.6 

 

Figure 8: Graph for comparison between experimental data and model (Fa=0.0033 L/s, 

Fb=0.001667 L/s, Ca=0.01M, Cb=0.1M) 
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Table 4: Comparison between experimental data and model (Fa=0.0033 L/s, Fb=0.0033 

L/s, Ca=0.01M, Cb=0.1M) 

 

 

Time(min) pH (program) pH (experiment Error (%) 

    0 7.00 11.01 36.42 

10  12.5148 12.64 0.99 

20 12.5785 12.72 1.11 

30 12.6020 12.75 1.16 

40 12.6143 12.76 1.14 

 

 

 

Figure 9: Graph for comparison between experimental data and model (Fa=0.0033 L/s, 

Fb=0.0033 L/s, Ca=0.01M, Cb=0.1M) 
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 Based on Table 3, the analysis showed most of the pH values between model 

and experiment is closed. The errors also showed this model can be accepted because of 

very small different pH value between model and experiment data. The higher error 

only occur at time=0 which is the starting of the process. But, the error is decreased 

when the process starts running. The average error at every point is very small which 

most of the errors below 1%. The shape of the graph at figure 8 shown the model is 

almost same to the experiment. The obvious different only occur from 0-550 second 

when the pH is near neutralization point. This situation shows the nonlinear behavior of 

pH process. After that point, the model starts to capture accurately the dynamic of pH 

system which is highly nonlinear process and time- varying. 

 

 

 The error between model and experiment data slightly increased when the 

flowrate of NaOH, Fb is set equal to flowrate of acetic acid, Fa. Based on Table 4, the 

highest error also at time=0, same with experiment 1. The same situation occurred 

during experiment 2. The values of errors also decreased after the process is start. Even 

though the error is bigger compare to experiment 1, this model is acceptable because 

most of the error is still lower than 10%. The nonlinear behavior of pH process also can 

be seen in figure 9. The significance gain variation is showed between times from 0- 

550 second.  
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4.2 Steady State Titration Curve 

 

 

 The S- shaped titration curve is the primary source of the pH non-linearity (Lin 

and Yu, 1993). The non-linearity can be understood from the S- shaped static pH 

responses with the addition of titrant. In figure 10, the flowrate of acetic acid, Fa is 

constant while the flowrate of NaOH, Fb is changed. The value of pH is taken at 2400 

second at the graph of pH against Fb is plotted in figure 6. From the graph, the steady 

state gain shows significant variation with the change in the operating point. This makes 

it difficult to design a single linear controller to perform satisfactorily in all regions. 

That‟s why this research develop the nonlinear fundamental model of pH process 

because this model can predict system dynamics over the entire operating range. 

 

 

 Based on figure 10, the non- linearity appears in the S- shape titration curve 

associated with pH processes. The process gain grows drastically at the intermediate 

region of the S- shape curve, i.e. around the neutralization point. At Fb= 0- 0.4 L/s, the 

pH value increased uniformly. But the increasing grows drastically at Fb= 0.3- 0.4 L/s 

because the pH value near the pH=7 which is neutralization point. This behavior is the 

main source of control difficulty which control need to achieve pH around 7. Moreover, 

the shape of the titration curve is distorted when the feed condition changes. This 

situation adds more complexity to the control system. For this reason, pH control was 

and still is the scope of work for many researchers.  

 

 

 For this process, three regions of nonlinear gains can be identified based on 

figure 10: pH- high, pH- middle and pH- low. pH- high range is starting at point 4.0 L/s 

and above. Meanwhile, pH- middle range is between 0.3- 0.4 L/s and pH- low range is 

around 0- 0.3 L/s. 
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Figure 10: Graph for steady state titration curve  
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4.3 Step Responses of pH Process 

 

 

 In a step test, the process is operating in open- loop without the model- based 

controller, each input is stepped separately, and step responses are recorded. The 

maximum step size can be determined according to process operation experience, and 

step length should be longer than the settling time of the process. Step tests of pH 

neutralization process for one step up and one step down with same sizes are shown in 

figure 11 and 12.  

 

 Figure 11: pH response of Fb for ±10% change 
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Figure 12: pH response of Fa for ±10% change 

 

 

Based on figure 11, it is clear that pH neutralization process as a nonlinear system 

shows different value of dpH/ ∆pH (steady state- current value) for step sizes up to 

±10% for changes in base flowrate, Fb. The same phenomena also occurred when 

flowrate of acetate acid. Fa is changes up to ±10% at figure 12. These two graphs 

showed that pH process is nonlinear system. This is because, the graph should show 

same value of ∆pH if the process is linear. Mahmoodi et al. (2008) discussed same thing 

for pH process nonlinear behavior in their paper. The paper also discussed step 

responses with different sizes like shown in figure 2.   
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CHAPTER 5  

 

 

 

 

CONCLUSION AND RECOMMENDATION 

 

 

 

 

5.1 Conclusion 

 

 

 A suitable nonlinear fundamental model for pH system is developed, which can 

capture and predict system dynamics over the entire operating range. This model is 

developed based on first principle such as conservation laws. The analysis shows the 

compatibility of the model with experimental results. Based on the result and discussion 

part, the error between model and experimental data prove that this model can be 

acceptable.  

 

 

5.2 Recommendation 

 

 

 This research can be improved by doing more experiments and changes more 

parameters to prove the compatibility of this model through experimental. Theboundary 

scope of study also can be expanded by doing empirical model of pH system. Even 

though the first- principle models are valid globally and can predict system dynamics 

over entire operating range, however, development of a reliable first- principle models 

is a difficult and time- consuming task. The potential disadvantage is that the resulting 

dynamic model may be too complex to be useful for NMPC design. 
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On the other hand, the nonlinear empirical models (black- box models) have certain 

advantages over the first- principle models in terms of development time and efforts. 

Thus, from a practical viewpoint, development of an NMPC scheme based on a 

nonlinear black box model is more attractive choice. For an example, Wiener models 

are well-known in NMPC because of their simplicity and capability in modeling 

nonlinear systems, especially those that have linear dynamic and nonlinear output 

mapping. Wiener models have the capability of approximating, with arbitrary accuracy, 

any fading memory nonlinear time invariant system, and they have been successfully 

used to model several nonlinear systems encountered in the process industry for pH 

process. 
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APPENDIX A 

 

 

 

 

M- FILE FOR MATLAB PROGRAMMING 
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APPENDIX B 

 

PROCESS DIAGRAM FOR STIRRED TANK REACTORS IN SERIES 
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APPENDIX C 

 

 

 

 

TABLE FOR FIGURE 10, 11 AND 12 

 

 

 

 

Table for Figure 10 

 

 

Fa is constant at 0.0033 L/s 

 

Fb (L/s) pH 

0 3.4224 

0.0001 4.3924 

0.0002 4.9299 

0.0003 5.7099 

0.0004 11.1871 

0.0005 11.5739 

0.0006 11.7680 

0.0007 11.8967 

0.0008 11.9922 

0.0009 12.0674 

0.001 12.1291 

0.001667 12.3753 
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Table for figure 11 

 

 

Fa is constant at 0.0033 L/s, the origin of Fb is 0.00035 L/sand pH value at stedy state 

(t=0)=7 

 

time ∆pH at -10% changes of Fb 

= 0.000315 L/s 

∆pH at +10% changes of Fb 

= 0.000385 L/s 

0 0 0 

20 0.9872 -2.82 

40 0.9965 -3.101 

60 0.9996 -3.2579 

80 1.0012 -3.3645 

100 1.0021 -3.4438 

120 1.0028 -3.5061 

140 1.0032 -3.5568 

160 1.0036 -3.5991 

180 1.0038 -3.6351 

200 1.004 -3.6662 
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Table for figure 12 

 

 

Fb is constant at 0.001667 L/s, the origin of Fa is 0.0171 L/s and pH value at stedy state 

(t=0)=7 

 

time ∆pH at -10% changes of Fb 

= 0.01539 L/s 

∆pH at +10% changes of Fb 

= 0.01881 L/s 

0 0 0 

20 -3.1432 1.3535 

40 -3.3704 1.3554 

60 -3.4834 1.356 

80 -3.5533 1.3564 

100 -3.6013 1.3566 

120 -3.6366 1.3567 

140 -3.6636 1.3568 

160 -3.6851 1.3569 

180 -3.7025 1.3569 

200 -3.717 1.357 
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