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ABSTRACT 

 

In this thesis, the Cubic Interpolated Pseudo Particle (CIP)-Lattice Boltzmann Model 
(LBM) scheme is applied for the simulation of lid driven flow for deep cavities. The 
thesis describe on how the advection term in the lattice Boltzmann equation is discretise 
and solved using CIP. The CIP which is similar to the form of finite difference method 
is known as numerical method for solving advection equations with low numerical 
diffusion. The obtained results feature the flow in deep lid driven cavity, in which the 
streamlines, the dynamics of primary vortices and corner vortices, and the velocity 
profile are investigated and compared with previous study from experiment and theory. 
By coupled the CIP and LBM, good agreement is obtained for the present study with 
those previous study using original LBM. 
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ABSTRAK 

 

Dalam tesis ini, simulasi menggunakan ‘Cubic Interpolated Pseudo Particle (CIP)-lattice 
Boltzmann Model (LBM)’ dijalankan untuk bekas dengan penutup bergerak yang 
dalam. Tesis ini menjelaskan persamaan kerangka ‘Boltzmann’ yang dideskritasikan 
dan menyelesaikannya dengan menggunakan kaedah CIP. Kaedah CIP yang juga 
hampir dalam bentuk yang serupa dengan kaedah ‘finite difference’ dikenalpasti sebagai 
kaedah ‘numerical’ untuk menyelesaikan persamaan kerangka bagi difusi ‘numerical’ 
yang rendah. Keputusan yang diperoleh menunjukkan perolakan dalam bekas dengan 
penutup bergerak yang dalam, ‘streamlines’, dinamik pusaran utama dan pusaran tepi, 
dan profil halaju dikaji serta dibandingkan dengan kajian melalui teori dan eksperimen 
sebelum ini. Dengan menggabungkan kaedah CIP dan LBM, persamaan yang ketara 
diantara kaedah yang baru dengan kaedah yang lama iaitu kaedah LBM konvensional 
dapat dilihat.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 PROJECT BACKGROUND 

 

Fluid dynamics is a branch of classical physics and it is an instance of 

continuum mechanics. Fluid dynamics influence the improvement and development of 

technologies in a variety of field in which its application involves industries such as 

automotive, aviation, marine, construction, biomedical, chemical processing, oil and 

gas, and many others. Wide range of problems from ventilations in building to the 

smallest scale in micro-pumps can be addressed because of fluid dynamic scalable 

nature. 

 

The fundamentals of fluid dynamics are related to the conservation law that 

consist of conservation of mass, Newton’s Second Law of Motion, and the First Law of 

Thermodynamics which are based on classical mechanics and are modified in quantum 

mechanics and general relativity. Subsequently produce the continuity equation and the 

Navier-Stoke equation, a mathematical relationship governing the fluid flow. The 

Navier-Stoke equations are nonlinear partial differential equations in many cases, and 

the nonlinearity makes most cases difficult or impossible to solve. 

 

The rise and constant development of computer technologies however helps to 

solve fluid problems by using computational or numerical method. One of the essential 

tools that can provide solution to a complex equation such as the Navier-Stoke equation, 

the continuity equation, or any equations which derives from it is the Computational 

Fluid Dynamics (CFD).  
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In recent years, another class of computational technique is used to simulate 

fluid flow as oppose to conventional methods based on the Navier-Stoke equation. The 

method which is known as Lattice Boltzmann method (LBM) is a discrete 

computational method based upon the Boltzmann equation. A number of standard 

benchmark problems and other complex flow problems have been simulated. The LBM 

prove to be an efficient method with its ability to easily represent complex physical 

phenomena, ranging from single and multiphase flow in complex geometries to fluids 

with chemical reaction. One of the key advantages for LBM is the suitability for parallel 

computation. However, the framework of LBM is still lacking in spite of the great 

interest in the method. But with rapid development in the field, the LBM are constantly 

become one the subject for potential improvement. 

 

One of the classical benchmark problem been used regularly with LBM 

simulation is the lid-driven cavity flow, notably a two dimensional square cavity. The 

lid-driven cavity had been used to test new numerical schemes and methods. For this 

research, the lid-driven cavity is used as the main benchmark problem because of its 

available analytical solution. Details of previous simulations that had been carried out 

for the lid-driven cavity flow are widely available to be used for the study. The lid-

driven cavities are used to simulate, observe, and analyze the flow structure or vortex 

formation in lid-driven cavity. However, the shape of the cavity does not necessarily 

limited to a two dimensional square cavity. In this study, the deep lid-driven cavity is to 

be use.  

 

One of the purposes of this study is to understand the theory of LBM as well as 

the Cubic Interpolated Pseudo Particle (CIP) method. Other than that, the developing of 

CIP-LBM will be use to analyze the flow for deep lid-driven cavity.  

 

1.2 PROJECT OBJECTIVE 

 

The objective of this study is to develop Cubic Interpolated Pseudo Particle-

Lattice Boltzmann scheme for the simulation of deep lid driven cavity flow. 
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1.3  PROJECT SCOPE 

 

Analysis of lid driven cavity flow using Reynolds number between 1×103 to 

1×105.To simulate deep lid driven cavity flow using CIP-LBM scheme. Detail 

characteristic numerical value of flow will be carrying out; isothermal line, streamlines, 

maximum horizontal velocity and maximum vertical velocity with position where they 

occur will be compared. 

 

1.4 PROBLEM STATEMENT 

 

One of the problems of LBM is that the conventional LBM were limited to 

uniform grid in which the microscopic velocity is constant. Uniform grid cannot 

perform when high resolution is needed at specific location. Another problem case 

would be the low order accuracy of conventional LBM as well as its second order 

accuracy in time and space.  The Cubic Interpolated Pseudo Particle (CIP) method can 

be use in application to linear or multi-dimensional problem. Since the method approach 

is almost similar to finite difference form, a CIP-LBM scheme would be develop for the 

simulation of lid cavity flow in this project. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 NAVIER-STOKES EQUATION 

 

The Navier-Stokes equations were named for the French engineer and scientist 

Claude Louis Henri Navier and the English mathematical physicist George Gabriel 

Stokes. The equations essential form was set forth by Navier in 1822; however, the 

origin of viscous stress was not properly treat. The latter was addressed by others, in 

particular Poisson and Saint-Venant, but independently developed by Stokes in 1845. 

Stokes constructed a number of solutions to the equations of viscous flow, which 

confirmed their ability to describe fluid dynamical phenomena. 

 

The equation which describe the motion of fluid substances, that is substances 

which can flow, arise from applying Newton's second law to fluid motion, together with 

the assumption that the fluid stress is the sum of a diffusing viscous term (proportional 

to the gradient of velocity), plus a pressure term. The mathematical relationship which 

govern the fluid flow is the continuity equation and Navier-Stokes equation given by 

 

0=⋅∇ u      (2.1) 

 

uuuu 2∇+−∇=∇⋅+
∂
∂ υP

t
    (2.2) 

 

with velocity u, pressure P, and kinematic shear viscosity υ . The Navier–Stokes 

equations are a set of nonlinear partial differential equations which, unlike algebraic 

http://en.wikipedia.org/wiki/Fluid�
http://en.wikipedia.org/wiki/Flow�
http://en.wikipedia.org/wiki/Newton%27s_second_law�
http://en.wikipedia.org/wiki/Fluid�
http://en.wikipedia.org/wiki/Stress_%28physics%29�
http://en.wikipedia.org/wiki/Diffusion�
http://en.wikipedia.org/wiki/Viscosity�
http://en.wikipedia.org/wiki/Pressure�
http://en.wikipedia.org/wiki/Differential_equation�
http://en.wikipedia.org/wiki/Algebraic_equations�
http://en.wikipedia.org/wiki/Algebraic_equations�
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equations, do not explicitly establish a relation among the variables of interest (e.g. 

velocity and pressure). Rather, they establish relations among the rates of change.  

 

2.2 COMPUTATIONAL FLUID DYNAMICS 

 

 Computational Fluid Dynamics (CFD) is one of the branches of fluid mechanics 

that uses numerical methods and algorithms to solve and analyze problems that involve 

fluid flows. The CFD has become an essential tool in solving problems governing the 

Navier-Stokes equation and the continuity equation or any equation which derived from 

them. 

 

 The fundamental in CFD is how continuous fluid is treated in a discretized 

fashion on a computer. One method is to discretize the spatial domain into small cells to 

form a volume mesh or grid, and then apply a suitable algorithm to solve the equations 

of motion (Euler equations for inviscid, and Navier-Stokes equations for viscous flow). 

In many instances, other equations are solved simultaneously with the Navier-Stokes 

equations. These other equations can include those describing species concentration 

(mass transfer), chemical reactions, heat transfer, etc. More advanced codes allow the 

simulation of more complex cases involving multi-phase flows (e.g. liquid/gas, 

solid/gas, liquid/solid), non-Newtonian fluids (such as blood), or chemically reacting 

flows (such as combustion). 

 

 The basic approach in the use of CFD includes preprocessing, simulation, and 

postprocessing. In preprocessing, the geometry of the problem is defined and the 

volume occupied by fluid is divided into mesh. During this process, both physical 

modeling and boundary conditions are defined. Simulation begins after the process and 

the equations are solve iteratively. Postprocessing is where the postprocessor is used for 

the analysis and visualization of the resulting solution. 

 

2.3 LATTICE GAS APPROACH 

 

 The lattice gas approach (LGA) is a particular type of cellular automaton used to 

simulate fluid flow. The approach which has been prove to be less popular for the 

http://en.wikipedia.org/wiki/Velocity�
http://en.wikipedia.org/wiki/Pressure�
http://en.wikipedia.org/wiki/Derivative�
http://en.wikipedia.org/wiki/Fluid_mechanics�
http://en.wikipedia.org/wiki/Numerical_methods�
http://en.wikipedia.org/wiki/Unstructured_grid�
http://en.wikipedia.org/wiki/Regular_grid�
http://en.wikipedia.org/wiki/Algorithm�
http://en.wikipedia.org/wiki/Euler_equations�
http://en.wikipedia.org/wiki/Navier-Stokes_equations�
http://en.wikipedia.org/wiki/Navier-Stokes_equations�
http://en.wikipedia.org/wiki/Navier-Stokes_equations�
http://en.wikipedia.org/wiki/Concentration�
http://en.wikipedia.org/wiki/Mass_transfer�
http://en.wikipedia.org/wiki/Chemical_reaction�
http://en.wikipedia.org/wiki/Heat_transfer�
http://en.wikipedia.org/wiki/Non-Newtonian_fluid�
http://en.wikipedia.org/wiki/Blood�
http://en.wikipedia.org/wiki/Chemical_reaction�
http://en.wikipedia.org/wiki/Combustion�
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simulation of fluid flow consists of a lattice in which the sites can take a certain number 

of different states. In this approach, the various states are particle with certain velocities. 

The LGA evolution of the simulation is done in discrete time steps. 

 

 The processes that are carried out at each time steps consist of a collision step 

and a propagation step. In the collision step, collisions of particles can change their 

velocities’ direction. Collision rules can be use to analyze or predict the outcome of 

multiple particles that reach the same site. The collision rules are required to conserve 

mass and total momentum. In propagation step, particles velocities will determine the 

direction sites the particles will move to. 

 

 The LGA has the advantages of having exact computing without any round-off 

error due to floating-point precision because of the Boolean logic operation, and that the 

method has much simple computing for simulation compare to other method. Despite its 

advantages, the LGA also has the disadvantages that include the lack of Galilean 

invariance and can be noisy. There is also the difficulty in expanding model for the 

three dimensional problems where it needs more dimensions for maintaining sufficient 

symmetric grid. However, the disadvantages are overcome by the lattice Boltzmann 

method, thus making it the precursor the new alternative method. 

 

2.4 LATTICE BOLTZMANN METHOD 

 

 The lattice Boltzmann method (LBM) is a relatively new numerical method for 

simulating viscous fluid flow. However, the lattice Boltzmann (LB) approach has found 

success in a host of fluid dynamic related problems and has been attracting interest from 

the physic and engineering communities as possible alternative approach to solve 

complex fluid dynamic problems in recent years. 

 

 Basically the lattice Boltzmann approach is developed from the lattice gas, but it 

can also be derived from the Boltzmann equation. Instead of solving the Navier–Stokes 

equations, the discrete Boltzmann equation is solved to simulate the flow of a 

Newtonian fluid with collision models such as Bhatnagar-Gross-Krook (BGK). By 

simulating the interaction of a limited number of particles the viscous flow behavior 

http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations�
http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations�
http://en.wikipedia.org/wiki/Boltzmann_equation�
http://en.wikipedia.org/wiki/Newtonian_fluid�
http://en.wikipedia.org/wiki/Collision�
http://en.wikipedia.org/wiki/Bhatnagar-Gross-Krook�
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emerges automatically from the intrinsic particle streaming and collision processes. The 

Boltzmann equation is given by 

 

)(),(),( ftxftttcxf Ω=−∆+∆+ ,    (2.3) 

 

in which f  is the density distribution function, c  is the microscopic velocity, and )( fΩ  

is the collision integral. The Bhatnagar-Gross-Krook (BGK) collision model can be 

define as  

 

( )fff eq −=Ω
τ
1)( ,     (2.4) 

 

with relaxation parameter t, and equilibrium distribution  f eq. Thus, the equation obtain 

from Eq. (2.3) and Eq. (2.4) is expressed as 

 

τ

eqff
txftttcxf

−
−=−∆+∆+ ),(),( ,   (2.5) 

 

which represents the Lattice Boltzmann BGK model. Both equations represent the 

steaming step and the collision step that occur in the LBM. The illustration of the 

streaming and collision step is shown in Figure 2.1. 

 

 
 

Figure 2.1: Particle distributions before and after stream step 
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 While the LGA models are Boolean ones, the lattice Boltzmann equation models 

are floating-number counterpart of the corresponding LGA models-where a particle 

which is represented by a Boolean number in the LGA model is replaced by the single-

particle distribution function which represented by real number. Theoretically the lattice 

Boltzmann equation is independent of the LGA. The lattice Boltzmann equation is a 

finite-difference form of the continuous Boltzmann equation. 

 

The lattice Boltzmann method has several advantages over other method. One of 

the advantages is the stability of the approach. In other words, it is easy to implement 

and parallelize the computation of the basic LBM. Another advantage of a standard 

LBM is the use of uniform Cartesian grid. Besides, the rule for the approach is 

explicitly updated and particle distribution information is shown. The method however 

does have its limitation in terms of the high-mach number flows, where it would be 

difficult to be used in this method. Other than that, the method also lacks a consistent 

thermo-hydrodynamic scheme. 

 

 Despite its limitation, the LBM has become an ideal tool for fluid flow 

simulation. It has essentially become one of useful tool in few engineering application 

which requires fast and semi-automatic integration of complex geometries, grid 

generation process can be avoided, and short turn-around times in industrial process. It 

can be use to analyze heat transfer, and turbulence in fluid as well as chemical reaction 

modeling in chemical engineering. Other LBM application include in biomedical, 

nanotechnology, and weather prediction. 

 

2.5 LID DRIVEN CAVITY 

 

 One of a widely used test case for benchmarking incompressible isothermal flow 

code can be represented by the lid driven cavity flow. The lid driven cavity problem has 

simple geometry and it is usually in two-dimensional. The boundary conditions for the 

problem are simple as well. A standard lid driven cavity problem case consist of fluid 

contained inside a square cavity with Dirichlet boundary conditions on all side, having 
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three static walls, and an upper wall that slides at constant speed which set the fluid into 

motion.  

 

 
 

Figure 2.2: Square lid driven cavity with three static and one moving walls 

 

2.6 CUBIC INTERPOLATED PSEUDO PARTICLE 

 

 The Cubic Interpolated Pseudo Particle (CIP) scheme was introduced by H. 

Takewaki, A. Nishiguchi, and T. Yabe et al. (1985) for solving hyperbolic-type 

equations which proved to be stable and less-diffusive scheme. The method has similar 

approach to the finite element method (FEM), the boundary element method (BEM), 

and the particle scheme. Accordingly the scheme may be a bridge between the FEM and 

the particle schemes. The CIP can be seen as a semi-Lagrangian method due to its 

advection scheme which employs a Lagrangian invariant solution (T. Yabe, 2001). 

 

 To review the CIP method, a simple model equation is used to show the 

advection equation such as  

 

                                                          
0=

∂
∂

+
∂
∂

x
fu

t
f

     (2.6) 

 

where velocity u is a constant value. Since the profile propagates at a velocity u, at 

constant velocity, the advection equation gives simple translation of function f. 
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                                             ),(),( ttuxfttxf ii ∆+=∆+     (2.7) 

 

Given two values of f(x) at two grid points, the profile between this point can be 

interpolated by the cubic polynomial f(x) =a3+bx2+cx+d. Since the conventional 

interpolation requires four unknown that need to be solve, the equation such as 

 

                           iiiiiiii dxxcxxbxxaxF +−+−+−= )()()()( 23   (2.8) 

 

is differentiate with the spatial variable x. Given an interval (xi-1, x), at point x = xi, 

equation 

 

                                                    iiii fdxF ==)(      (2.9) 

 

 were obtained. The gradient at this point: 

 

                                                   
ii

ii gc
dx

xF
==

)(      (2.10) 

 

At point x = xi-1, equation obtained: 

 

                            1
23

1)( −− =+∆−∆+∆−= iiiiiii fdxcxbxaxF    (2.11) 

 

The gradient at this point: 

 

                                    
1

21 23)(
−

− =+∆−∆= iiii
ii ggxbxa

dx
xdF    (2.12) 

 

Substitute Eq. (2.9) and Eq. (2.10) into Eq. (2.12) gives; 

 

                                         3

2
1

x
xgxbffa iiii

i ∆
∆−∆−−

= −     (2.13) 
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Substitute Eq. (2.10) and Eq. (2.13) into Eq. (2.12) gives; 

 

                                         x
gg

x
ffb iiii

i ∆
+

+
∆
−

= −− 1
2

1 2)(3     (2.14) 

 

Substitute Eq. (2.14) into Eq. (2.13) gives; 

 

                                         3
1

2
1 )(2

x
ff

x
gga iiii

i ∆
−

+
∆
+

= −−     (2.15) 

 

 Once ai and bi are given in terms of f n and gn, the value fn+1 and gn+1 are simply 

given by shifting the polynomial as in Eq. (2.7). The superscript n is omitted in Eq. 

(2.14) and Eq. (2.15) because it will be use later as a quantity having a different 

meaning. Without confusion, a quantity with no superscript can be recognized as to be 

that at time step n. For a linear advection equation where velocity u is constant, the 

value at n+1 can be determined by substituting Eq. (2.14) and Eq. (2.15) into Eq. (2.11) 

and Eq. (2.12) which gives; 

 

                                           
n

i
n
iii

n
i fgbaf +++=+ ξξξ 231    (2.16) 

 

And 

 

                                           
n
iii

n
i gbag ++=+ ξξ 23 21     (2.17) 

 

where,  

 

)(1 tuxFf n ∆−=+ ,  

dx
tuxdFg n )(1 ∆−

=+ ,  

tu∆−=ξ   
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By using the time splitting technique, the one-dimensional scheme can be extent into 

multidimensional scheme. The Boltzmann equations in the two dimensional can be 

expressed as 

 

                                   
)(1 eq

yx ff
y
fc

x
fc

t
f

−−=
∂
∂

+
∂
∂

+
∂
∂

τ     (2.18) 

 

By differentiating Eq. (2.18) with respect to x and y will gives 

 

                          
)(1 eq

xxyxxx f
x

gg
y

cg
x

cg
t ∂

∂
−−=

∂
∂

+
∂
∂

+
∂
∂

τ   (2.19) 

 

                         
)(1 eq

yyyyxy f
y

gg
y

cg
x

cg
t ∂

∂
−−=

∂
∂

+
∂
∂

+
∂
∂

τ   (2.20) 

 

Where 

 

                                                         
xg

x
f
=

∂
∂

     (2.21) 

 

                                                         
yg

y
f
=

∂
∂

     (2.22) 

 

In the case of CIP method, using cubic polynomial as in Eq. (2.23), the profile between 

lattice points is interpolated. 

 

3)(2)(1
)(3))((2)(1

)(4)()(3)(2)(1

),(

22

3223

,

CxxCyyC
xxByyxxByyB

xxAyyxxAxxAyyA

yxF

ii

iiii

iiiii

ji

+−+−+
−+−−+−+

−+−−+−+−=
  (2.23) 

 

Eq. (2.23) can also be rewrite as 
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ji

jiyjijiji

jixjijijiji

ji

f
YfYAXAYA

XfYAXAYAXA
yxF

,

,,,,

,,,,,

,

])765[(

]4)321[(

),(

+

∂++++

∂++++=
    (2.24) 

 

where X=x-xi, j and Y=y-yi, j 

 

In Eq. (2.24), the coefficient can be expressed as  

 

                            
3

,,1, /])(2[1 xxffdA jijixiji ∆∆+∂+−= +    (2.25) 

 

                            yxxdAA jxjiji ∆∆∆∂−= 2
,, /]8[2     (2.26) 

 

                            
2

,,1, /])2(3[3 xxffdA jijixiji ∆∆+∂−= +    (2.27) 

 

                            yxydxdAA iyjxjiji ∆∆∆∂+∆∂+−= /]8[4 ,,    (2.28) 

 

                            
3

,1,, /])(2[5 yyffdA jijiyjji ∆∆+∂+−= +    (2.29) 

 

                            
2

,, /]8[6 yxxdAA iyjiji ∆∆∆∂−=     (2.30) 

 

                            
2

,1,, /])2(3[7 yyffdA jijiyjji ∆∆+∂−= +    (2.31) 

 

                            1,11,,1,,8 ++++ +−−= jijijijiji ffffA     (2.32) 

 

where di=fi+1,j-fi,j and dj=fi,j+1-fi,j  

 

The advection terms for BGK-LB equation is solved using CIP method, the non-

advection terms for BGK-LB is solved using Rungge Kutta Method.  
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Advection; 

 

                                              
0=

∂
∂

+
∂
∂

+
∂
∂

y
fc

x
fc

t
f

yx
    (2.34) 

 

                                             
0=

∂
∂

+
∂
∂

+
∂
∂

y
gc

x
gc

t
g x

y
x

x
x

    (2.35) 

 

                                             
0=

∂

∂
+

∂

∂
+

∂

∂

y
g

c
x

g
c

t
g y

y
y

x
y

    (2.36) 

 

Non-advection; 

 

                                                  
)(1 eqff

t
f

−−=
∂
∂

τ     (2.37) 

 

                                             
)(1 eq

xx f
x

gg
t ∂

∂
−−=

∂
∂

τ     (2.38) 

 

                                             
)(1 eq

yy f
y

gg
t ∂

∂
−−=

∂
∂

τ     (2.39) 

 

In CIP-LBM, the algorithm consists of advection process and collision process. The 

initial value of distribution f are specified at each grid point. The profile of distribution 

function of two neighboring nodes is constructed according to Eq. (2.24). The advection 

process is applied on advection terms to obtain the distribution value at new time step. 

The collision process is applied on non-advection term base on Eqs. (2.37-2.39).  

 

Above equation is for negative value of u and v. All variables above must be change 

depending on the signs of u and v. Below shows the signs changes of the variables; 
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For u ≥ 0 

i + 1 → i – 1 

∆x → − ∆x 

 

For v ≥ 0 

j + 1 → j – 1 

∆y → −∆y 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

3.1 INTRODUCTION 

 

 As mentioned in the first chapter, the objective of this project is to couple LBM 

with CIP to develop a CIP-LBM scheme for simulation of cavity flow. In this chapter, 

the project method is discussed in order to get the needed results. It is important to 

discuss the steps as the project requires good understanding about the topic and requires 

other knowledge as well. Validation of the conventional LBM code is done by using 

Poiseuille flow and lid driven cavity flow. This part of the paper is also crucial to ensure 

the flow of the project progress is smooth.  

 

 At the beginning of the project, meeting and discussion with project supervisor 

is carried out. The meeting is important to gain an insight about the project and to 

understand the needed task that should be done. Several meeting and discussions with 

project supervisor are also done once in a while throughout the time of project. The 

introduction about the project was done by project supervisor to make sure some needed 

information is given as a head start for the project.  

 

Several steps and task such as literature study of LBM, the study on theory of 

LBM, study on lattice Boltzmann isothermal model, study of CIP-LBM and code 

validation of some cases. Since this project involves both LBM and CIP, thus literature 

study as well as theoretical study is important. As the project is about simulation, 

knowledge in programming is needed to run the simulations. The programming 

software, COMPACT VISUAL FORTRAN 6, is used for the code validation. The 

visualization software, AVS Express 7.2, was also to visualize the data from the 
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simulation. In term coding, applying the numerical method to the flow problem is 

simple and straightforward.  

 

3.2 FLOW CHART 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Received FYP Title 

Literature Study of LBM 

Study on Theory of LBM 

Study of lattice Boltzmann Isothermal Model 
• Flow in Pipe 
• Flow  with Moving Plate 
• Lid Driven Cavity Flow 

Study of CIP-LB 

Project Code Validation 

Simulation of Project 

Presentation 
and Evaluation 

of Project 



18 
 

 

 

 

 

 

 

 

 

 

Figure 3.1: The flow process of study 

 

3.3 LITERATURE STUDY OF LATTICE BOLTZMANN METHOD 

 

 One of the early steps to begin the project is to understand the concept of lattice 

Boltzmann method. In addition to gain information regarding to how it was introduced, 

functions, advantages and disadvantages, literature study on lattice Boltzmann are 

carried out. The lattice Boltzmann would be compared to other existing method such as 

CFD and its previous predecessor LGA. Thus, literature study about Navier-Stokes 

equation, CFD and other approach were also carried out. Meeting and discussions with 

project supervisor are done once in a while throughout the time of project. 

 

3.4 STUDY ON THE THEORY OF LATTICE BOLTZMANN 

 

 In order to understand the derivatives of lattice Boltzmann equation, theory 

concerning lattice Boltzmann are studied which include isothermal LBM. Since the 

scope of the project does not involve heat properties, thermal LBM can be neglected. 

Boundary conditions of LBM for various test cases were also studied. Other test cases 

are used as research to theory of LBM. Various aspect of LBM can be look into such as 

discretization of the Boltzmann equation, simulation using LBM in fluids related cases, 

and properties of lattice Boltzmann. 

 

 

 

 

Submission of Project 
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3.5 STUDY OF LATTICE BOLTZMANN ISOTHERMAL MODEL 

 

 For this section, the lattice Boltzmann isothermal model is studied by 

investigating several test cases. In this project, the lattice Boltzmann method used is 

focus on isothermal model since it does not involve any temperature and heat properties 

or heat transfer. Thus, studies on lattice Boltzmann thermal model are neglected. The 

test case that will be investigated is the flow in pipe. 

 

3.5.1 Flow in Pipe 

 

 For the isothermal model, the flow profile in pipe is investigated by using the 

effect of different value of Reynolds number. Using existing valid code, simulation of 

flow is done by adjusting some value to the code. The type of flow that is use to 

demonstrate the pipe flow is known as Poiseuille flow. The Poisuville flow program 

code was provided by project supervisor and certain value were edited.  

 

3.5.2 Flow with Moving Plate 

 

 In this section, flow with moving plate is studied as part of the required 

knowledge to be use for the project simulation. The project is concerned to simulation 

of lid driven cavity flow, which boundary conditions is known to be three static wall 

and one moving upper wall. Thus, various cases which come to flow with moving plate 

are investigated. Such flow is to be investigated by validation of Coutte flow code. 

 

3.6 STUDY ON LID-DRIVEN CAVITY FLOW 

 

 Various cases regarding to lid driven cavity flow is studied in this section. The 

reason for using lid driven cavity flow is to observe the vortex inside the lid driven 

cavity. The vortex observed is tested using different Reynolds number. The Reynolds 

numbers used are 100, 400, and 1000. Figure 3.2 shows the illustration for deep lid 

driven cavity flow. For lid-driven cavity, the aspect ratio is given as K = (H/L), where 

cavity depth and cavity width are represented by H and L respectively. The aspect ratio 

for deep cavity is K > 1. 
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Figure 3.2: Deep lid driven cavity with aspect ratio K = H/L 

 

3.6.1 Initial and Boundary Conditions 

 

 As been stated, the lid driven cavity problem used the Dirichlet boundary 

conditions in which left and right walls are static and having u = v = 0 at any given 

direction. The same also goes for the bottom wall which has u = v =0. However, in 

previous study by Patil et al. (2006) for simulation of lid-driven flow in cavities using 

LBM, it mentions the physical boundary conditions may be implemented in some 

different way within the LBE code. 

 

3.6.2 Stationary Wall Conditions 

 

 The ‘complete on-grid bounce back’ boundary condition model is implemented 

on the three stationary walls since it is numerically straightforward. On the flat 

boundary, the model gives a reasonable result. This however could not be said for an 

inclined flat walls or curved ones, as it could not shows a result accurate enough when 

involving such problems. 
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3.6.3 Moving Wall Conditions 

 

 For the moving lid, the lid velocity chosen is set to U = 0.1 for all Reynolds 

number in simulation of deep lid-driven cavity. 

 

3.7 STUDY OF CIP-LBM 

 

 In chapter 2, the Cubic Interpolated Pseudo Particle (CIP) method was reviewed 

together with the lattice Boltzmann method (LBM). The CIP-LBM is studied to 

understand the modification that concerned to develop CIP-LBM scheme for the project 

simulation.  
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3.8 PROJECT CODE VALIDATION 

 

3.8.1 Original LBM Algorithm 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Flow chart for the original LBM algorithm 

 

As shown in Figure 3.3, the LBM algorithm consists of two processes; advection 

process and collision process. Initial values of density distribution f are specified at each 

grid point. Then the system goes through the following steps: 

 

• Advection term is solved by applying the density distribution function streaming 

process. 

• Collision process is solved by BGK collision model. 
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• The boundary conditions are defined based on bounce back boundary 

conditions.  

 

3.8.2 CIP-LBM Algorithm 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Flow chart for CIP-LBM algorithm 

 

 As shown in Figure 3.4, the CIP-LBM algorithm also consists of two processes; 

advection process and collision process. Initial values of density distribution f are 

specified at each grid point. However, the system is different from the original LBM 

algorithm in term of the steps. 

• The non-advection term is solved by applying the collision process. 
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• The profile of distribution function between two neighboring nodes is 

constructed afterwards. Applying the advection process on advection terms, the 

distribution function value at new time step can be obtained. 

 

3.9 PROJECT SIMULATION 

 

 The project is simulated using CIP-LBM code which was written by Azwadi 

(2007). The variables are also based on previous studies by Azwadi (2007) and 

Rosdzimin (2008). The project is run on COMPACT VISUAL FORTRAN 6 software. 

 

 The data for the simulation is visualized using AVS Express 7.2 software. Figure 

3.5 shows the AVS Express 7.2 application that is used. 

 

 
Figure 3.5: The visualization software, AVS Express 7.2, application menu. 
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CHAPTER 4 

 

 

RESULT AND DISCUSSION 

 

 

4.1 INTRODUCTION 

 

 In this chapter, result analysis for original isothermal LBM code validation will 

be discuss. The study for the original LBM code consist of Poiseuille flow analysis 

which similar to the flow inside a pipe or duct. The original was also done for Coutte 

flow. Later, the result for the main case study regarding deep lid-driven cavity flow will 

also be analyzed. The streamlines for the deep cavities will be shown. The structure for 

the vortices, effects of different Reynolds number and aspect ratio used in present 

simulation for deep cavities will be discussed. Result from the present deep lid-driven 

cavity flow are to be compared with previous simulation for deep cavities using the 

original lattice Boltzmann that were carried out by Patil et al.(2006). The physical 

details of streamlines of both studies will be investigated.  

 

4.2 VALIDATION OF ORIGINAL LBM CODE RESULT 

 

 In this section, original LBM code validation is carried out for the study of 

Poiseuille flow to observe the dimensionless velocity profile in pipe and also Coutte 

flow for study of flow with moving plate using LBM. The Poiseuille flow and Coutte 

flow are chosen as one the benchmark for isothermal Lattice Boltzmann code validation 

due to the availability of its analytical solution. All variables used are based on previous 

study by Azwadi (2007). 
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4.2.1 Poiseuille Flow Analysis 

 

 
 

 Figure 4.1: Flow in pipe based on different dimensionless velocity value 

 

Figure 4.1 shows the representation of dimensionless velocity profile in pipe 

using LBM.  The flow for this benchmark case is driven by the pressure gradient. In this 

case however, different dimensionless velocity number is used to validate the Lattice 

Boltzmann code for the Poiseuille flow. The velocity value are set to 5000, 10000, and 

20000 in LBM unit. Based on Figure 4.1, the results are shown for the inlet of the pipe 

or duct velocity profile which increases according to the value used. The boundary 

conditions set are non-slip bounce back boundary condition for the solid top and bottom 

wall, as well the periodic boundary condition for the horizontal fluid flow. 
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4.2.2 Coutte Flow Analysis 

  

 
 

Figure 4.2: Flow velocity of Coutte flow using lattice Boltzmann method 

 

The Coutte flow is used to demonstrate in the space between two parallel plates, 

specifically for laminar flow. The code validation for Coutte flow had been carried out 

regarding to flow with moving plate. In Coutte flow, the top plate is moved with 

constant velocity while the bottom plate is at stationary.  

 

In Figure 4.2, the flow velocities of the Coutte flow are shown for various 

dimensionless numbers which can be represented by the Reynolds number. From the 

figure, the flow reaches the steady state at high Reynolds number with the velocity 

increase linearly zero from at bottom to U at the top plate.  

 

For the initial conditions, velocity is set to zero everywhere except for the top 

boundary. For the boundary conditions, the non-slip bounce back is implemented for 

both solid top and bottom wall. The periodic boundary condition is implemented for the 

fluid flow in x-direction. 
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4.3 RESULTS FOR DEEP LID-DRIVEN CAVITY FLOW 

 

 In this section, the result of the main case study which is for rectangular, deep 

lid-driven cavities will be presented and discussed. The Reynolds number used for these 

series simulations are set to Re = 100, 400, 1000, together with various value of aspect 

ratio K. The Reynolds number can define by lid velocity U and the width of the cavity L 

given by; 

 

v
UL

=Re  

 

With aspect ratio, K given by; 

 

L
HK =  

 

where H is the cavity depth and L is the length. Thus a rectangular cavity specifically 

main interest of this case which is for deep lid-driven cavities, the aspect ratio would be 

K > 1. The test run are all performed under lid-velocity U = 0.1. 
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Figure 4.3: Comparison of the x-component of velocity, u, at the mid-plane with result 

by Patil et al. (2006), for K = 2. 

 

Shown in Figure 4.3 is comparison at the mid-plane velocity profile from the 

present CIP-LBM with previous original LBM simulation results by Patil (2006) for the 

deep lid-driven cavities with aspect ratio K = 2. The selected value of Re = 400 and Re 

= 1000 are used for the simulations. Based on Figure 4.3, the present CIP-LBM results 

are in good agreement with previous study using original LBM by Patil et al. (2006) for 

both Reynolds numbers. However, by using CIP-LBM, the meshing used is less then 

compared to the meshing used in original LBM about 50%.  

 

Simulations of deep cavities for aspect ratio K = 1.5 was done with Re = 100, 

400, and 1000 been selected. For these test, the mesh of 40 × 60 is employed for every 

conditions. Shown in the three Figures 4.4(a)-(c) are streamlines of the deep cavities for 

K = 1.5, which correspond to Re = 100, 400, 1000, respectively. By observing the 
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figure, it is seen that a series of successive of counter-rotating vortices are formed below 

the moving lid. With increasing Reynolds number, the center of primary vortex begins 

to move downward and will remain at almost a constant depth below the top lid after it 

reach value of Re = 1000 and beyond. A previous study by Patil et al. (2006) using 

original LBM stated that the center of primary vortex remains at constant depth of ly ~ 

0.43 for both K = 1.5 and 4. It is also noted that the flow for square cavity shows similar 

behavior where the center of the primary vortex reaches the geometric center of the 

cavity. 

 

For deep cavity, the center of primary vortex does not reach the geometric center 

of the cavity due to the formation of second primary vortex at higher Reynolds number. 

At low Reynolds numbers, two stationary corner eddies which also known as “Moffatt 

eddies” can be seen at the bottom of the cavity as shown in Figure 4.4. The simulations 

from previous study using original LBM by Patil et al. (2006) is also included for 

comparison with present simulations using CIP-LBM which will be discuss later. 
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Figure 4.4(a): Streamline of deep lid-driven cavity for K = 1.5; Re = 100. 
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Figure 4.4(b): Streamline of deep-lid driven cavity for K = 1.5; Re = 400. 
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Figure 4.4(c): Streamline of deep lid-driven cavity for K = 1.5; Re = 1000. 

 

4.4 STRUCTURE OF VORTICES 

 

 As discuss earlier, simulations involving the lid-driven cavity flow for any 

geometry have common similarity which is the formation of vortices. The vortices will 

produce two kinds of vortices in the terms of primary and corner vortices depending on 

the Reynolds number. 

 

4.4.1 Structure of Primary Vortices 

 

 Primary vortices for lid-driven cavities are formed below the moving lid. The 

number of primary vortices formed is influenced by the aspect ratio of the cavity. For 

cavities having aspect ratios K ≤ 1, single primary vortex is usually formed. In the case 

of deep cavities, where aspect ratio K > Kcr, a train of counter-rotating primary vortices 
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is formed as shown in Figure 4.4(a)-(c). It can seen in Figure 4.4(a)-(c) that, two 

primary vortices are formed with the first primary vortex formed directly below the 

moving lid and the second primary vortex are located below the first primary vortex.  

 

For Re =100 as in Figure 4.4(a), the center of first primary vortex is located near 

the lid. The second primary vortex can be seen begin to developed. The second primary 

vortex is the results of two corner vortices that have coalesce together. As Reynolds 

number increase, the structure of primary vortices will also undergoes changes. In 

Figure 4.4(b), the lid-driven cavity is under the effect of Re = 400. The first primary 

vortex appears to shift downward situated at one third of cavity from the top moving lid. 

This is caused by the decreased viscous forces at higher Reynolds number. The center 

of second primary vortex can be located very close to the mid-plane. Based on Figure 

4.4(c) which is for Re = 1000, the center of the first primary vortex remains at almost 

constant depth. As for the second primary vortex, it can be seen to be drifting towards 

the left wall.  

 

Another observation can also be made regarding to the size of the primary 

vortices. As Reynolds number increases, the size of the primary vortices can be seen to 

be shrinking. The size of the first primary vortex shrinks at Reynolds number of 100 to 

400, whereas the second primary vortex shrinks at Reynolds number of 400 to 1000. 

The effect of shrinking is cause by the decreased viscous forces at higher Reynolds 

number. 

 

4.4.2 Structure of Corner Vortices 

 

 The corner vortices are usually occurred at the bottom of the cavity. When 

aspect ratio attained certain critical value, the corner vortices would coalesce together 

resulting to the formation of the second primary as shown in Figure 4.4(a). Shown in 

Figure 4.5 are the streamlines and vorticity contours carried out by Patil et al. (2006) for 

deep cavity flow. From the Figure 4.5(a), it can be seen that there are two visible corner 

vortices formed at low Reynolds number which is Re = 50. When Reynolds number 

increase to Re = 3200, the corner vortices can be clearly seen again at the bottom of the 
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cavity. As for the corner vortices asymmetry, it can be observed that the right side 

corner vortex is much bigger compared to the left side of the corner vortex. 

 

4.4.3 Comparison of Physical Details 

 

 The details of the streamlines for present simulations of deep cavity flow are 

compared with streamlines from previous simulations of deep cavity flow done by Patil 

et al. (2006). The streamlines however, are compared for deep cavities with aspect ratio 

K = 1.5 as shown in Figure 4.4 and 4.5. In the discussion earlier, comparison of the x-

component of velocity, u, at the mid-plane with result by Patil et al. (2006) for K = 2 

were discussed. 

 

 From the streamlines shown, the simulations using CIP-LBM for deep cavities 

in Figure 4.4(a)-(c) are qualitatively in good agreement with previous study in Figure 

4.5(a)-(d). In Figure 4.5(a), a single primary vortex is formed accompanied by two 

corner vortices. The corner vortices can be clearly seen separated from each other. As 

Reynolds number increases, the two corner vortices merged to form the second primary 

vortex in Figure 4.4(a). In both Figure 4.4(b) and Figure 4.5(b), the center of primary 

vortex is seen to be in similar position and no corner visible. Figure 4.4(c) and Figure 

4.5(c) also shows the center of second primary vortex drifts towards the left wall. At 

higher Reynolds number such as 3200, the corner vortices are clearly visible to have 

formed at the bottom of the cavity. 
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Figure 4.5: Streamlines (top row) and vorticity (bottom row) contours for deep-cavity 

flow by Patil et al. (2006) with aspect ratio K = 1.5. Re = (a) 50, (b) 400, (c) 1000, (d) 

3200. 

 

4.5 VELOCITY PROFILE 

 

 Analysis of maximum horizontal velocity and maximum vertical velocity are 

done for the study. Details of the velocity profile in both axes are shown in Figure 4.6 

and Figure 4.7. 
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Figure 4.6: Profile of x-component velocity, u, through mid-plane at Re = 100, 400, and 

1000. 

 

 Figure 4.6 shown is for profile of u velocity at the vertical center of geometry. 

Based on the figure, the profile shows similar trend for x-component u velocity for each 

Reynolds number. 
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Figure 4.7: Profile of y-component velocity, v, through mid-plane at Re = 100, 400, and 

1000. 

 

 Figure 4.7 shown is for profile of v velocity at the horizontal center of geometry. 

Based on the figure, the profile also shows similar trend for the y-component v velocity 

for each Reynolds number. 
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CHAPTER 5 

 

 

CONCLUSION AND RECOMMENDATIONS 

 

 

5.1 CONCLUSIONS 

 

 In the first chapter, background for the study is introduced regarding to fluid 

dynamics. Constant development of computer technologies has provided solution to 

fluid problems through computational or numerical method, with example of one of the 

essential tools is the Computational Fluid Dynamics (CFD). Another class of 

computational technique known as lattice Boltzmann method is also been introduced as 

well as the problem regarding to the conventional lattice Boltzmann method. Using the 

deep lid-driven cavity as the standard benchmark problem, the lid-driven flow for deep 

cavities was investigated by using CIP-LBM simulations. 

 

 The second chapter is introduces to the theory of LBM and its development from 

the literature review. In literature review, the advantages and disadvantages of several 

computational techniques and the development along with LBM are discussed. In this 

chapter, the lid-driven cavity was introduced. The initial condition and boundary 

condition for lid-driven cavity was discussed. The theory of CIP was also discussed in 

the same chapter. The method was reviewed and used to solve the one dimensional 

advection equation as well as the extended two dimensional advection equations. 

 

 Chapter three explained the methodology involved for the simulations. The 

algorithm used for the simulation is mentioned for CIP-LBM scheme. This chapter 

discussed the steps or flow of the study and the required tools used for the simulation. 
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 Results for the simulation are shown in chapter four. The numerical simulation 

for Poiseuille flow using the isothermal lattice Boltzmann model was performed and the 

results are discussed. In the same chapter, the results for the main case study, which is 

simulation for deep lid-driven cavity using CIP-LBM scheme, are shown and discussed. 

The streamlines and velocity profiles are shown from the simulation.  

 

Based on the results of the simulation, the physical detail of CIP-LBM scheme 

for the simulated deep lid shows qualitatively in good agreement with original LBM. 

The meshing used in CIP-LBM scheme for all Reynolds number is less than the original 

LBM because of the third order spatial accuracy. It is also capable to capture the 

velocity profile near the wall for high Reynolds number. The flow structure for the 

primary vortex below the top moving lid does not affected much by the cavity depth, 

but shows drastic changes with Reynolds number.  

 

The simulations for the deep lid-driven cavity have been produced and were well 

captured. The results were obtained and simulation had been run on the specified scope. 

Overall, the objective of the study has been well achieved. 

 

5.2 RECOMMENDATIONS FOR FUTURE STUDIES 

 

 Based on the finding in the present, here are some recommendations for 

improvement in future studies: 

 

a) In order to fully understand the present study, a simulation for shallow lid-

driven cavity flow using CIP-LBM scheme should be done and compare 

with the CIP-LBM scheme simulation of deep lid-driven cavity. 

b) Extend the simulation of present study of using CIP-LBM scheme to three 

dimensional flows. 
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APPENDICES 

 

A. MAIN PROGRAM SOURCE CODE 

 
!*************************************************************************!                 
! CIP lattice Boltzman       ! 
! Cavity flow        ! 
! By: Nor Azwadi Bin Che Sidik                                ! 
! PhD. Open environment system, Keio University, Japan   ! 
! 24 jan 2005                                  !            
! Edited: 01 Aug 2008                                    ! 
!*************************************************************************! 
 
  program cavity 
 
  implicit real*8 (a-h,o-z) 
  parameter (ij = 100, kkk = 8) 
  common /var1/ f(0:ij,0:ij,0:kkk),feq(0:ij,0:ij,0:kkk)   
  common /var2/ cx(0:kkk),cy(0:kkk),w(0:kkk)    
  common /var3/ u(ij,ij),v(ij,ij),u2(0:ij,0:ij),vel(0:ij,0:ij) 
  common /var4/ rho(ij,ij),p(ij,ij)    
  common /var5/ tmp(0:ij,0:ij,0:kkk),ff(0:ij,0:ij,0:kkk) 
  common /var6/ 
fn(0:ij,0:ij,0:kkk),gx(0:ij,0:ij,0:kkk),gy(0:ij,0:ij,0:kkk),gxn(0:ij,0:ij,0:kkk),gyn(0:i
j,0:ij,0:kkk) 
  common /con1/ uinit,re,delt 
  common /con2/ lx,ly 
  common /con3/ ntin,nstep     
  common /con4/ pi,tau,rhoint,delx,dely,delx2,dely2,rtau,xnyu     
  integer lx,ly,ntin,nstep,i,j,k,l 
  integer ::unit, ierror 
  character (len=6)::filename 
 
  pi = atan(1.0d0)*4.0d0 
 
  write (6,*) 'input time steps number for display' 
  read  (5,*) ntin 
  write (6,*) ntin 
 
  write (6,*) 'input lattice number for x-direction' 
  read  (5,*) lx 
  write (6,*) lx 
 
  write (6,*) 'input lattice number for y-direction' 
  read  (5,*) ly 
  write (6,*) ly 
 
  write (6,*) 'input delta t' 
  read  (5,*) delt 
  write (6,*) delt 
 
  write (6,*) 'input reynolds number' 
  read  (5,*) re 
  write (6,*) re 
 
  write (6,*) 'input initial density' 
  read  (5,*) rhoint 
  write (6,*) rhoint 
 
  write (6,*) 'input upper wall speed ' 
  read  (5,*) uinit 
  write (6,*) uinit 
 
!  xnyu = lx*uinit/re 
!  tau =   !3*xnyu + 0.5 
   
  write (6,*) 'calculation start' 
 
  call initial 
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  do nstep = 1, 1000000 
 
  call calculation 
 
  call output 
   
   
   
  if (mod(nstep,ntin) .eq. 0) then 
   write(*,10)     
10   format ('time step   u(x=1/2(lx))    v(y=1/2(ly))') 
   write (*,20) 
20   format ('=========   =============    =============') 
   write(*,30) nstep, u((lx+1)/2,(ly+1)/2),v((lx+1)/2,(ly+1)/2) 
30   format (I6,6X,E11.4,6X,E11.4,/) 
   write(*,40) lx,ly 
40   format ('mesh   = ',i6,' x ',i6) 
   write(*,50) re 
50   format ('Rey Nu = ',F6.1) 
   write(*,70) uinit 
70          format ('uinit  = ',E8.2) 
!   write(*,*) velmaxn1 - velmaxn 
  end if 
 
 
 
! if (mod(nstep,ntin) .eq.0) then 
!  do i = 0,lx 
!   do j = 0,ly 
!    vel(i,j) = (u(i,j)**2 + v(i,j)**2)**0.5 
!   end do 
!  end do 
! 
!  velmaxn = abs(vel(1,1)) 
!!  do i = 0,lx 
!   do j = 0,ly 
!    if(abs(vel(i,j)) .gt. velmaxn)  velmaxn = vel(i,j) 
!   end do 
!  end do 
 
! endif 
 
! if (mod(nstep,ntin) .eq.1) then 
!  do i = 0,lx 
!   do j = 0,ly 
!    vel(i,j) = (u(i,j)**2 + v(i,j)**2)**0.5 
!   end do 
!  end do 
 
!  velmaxn1 = abs(vel(1,1)) 
!  do i = 0,lx 
!   do j = 0,ly 
!    if(abs(vel(i,j)) .gt. velmaxn1)  velmaxn1 = vel(i,j) 
!   end do 
!  end do 
 
 
! endif 
  
    
!***** if converge*****::! 
!  if (abs(velmaxn1 - velmaxn) .le. 1.0e-8 )  then  
!  
!  write(*,*)'solution converge' 
 
!  if (mod(nstep,ntin) .eq.0) then 
!  do i = 0,lx 
!   do j = 0,ly 
!    write (*,*) u(i,j)/uinit, v(i,j)/uinit 
!   end do 
!  end do          
! endif 
  
 unit =29 
 filename ='CIPLBM400' 
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 open (unit=29,file='velocity',status='replace',action='write',iostat=ierror) 
 write(29,*) 'output result (end of iteration)' 
 write(29,*) 'Reynolds =',Re 
 write(29,*)'mesh=',lx,' x ',ly 
 write(29,*)'tau=',tau 
 write(29,*) 'time step=', nstep 
 write(29,*)'v velocity at the horizontal center geometry' 
 do i = 1,lx 
  write(29,*) v(i,(ly+1)/2)/uinit 
 end do 
 !********************************************************** 
 write(29,*) 
 write(29,*) 
 write(29,*) 'u velocity at the vertical center geometry' 
 do j = 1,ly  
  write(29,*) u((lx+1)/2,j)/uinit 
 end do  
  
! go to 1000 
!  end if 
   
   
   
   
  end do 
 
 write(*,*)'end of iteration' 
 unit =29 
 filename ='CIPLBM400' 
 open (unit=29,file='velocity',status='replace',action='write',iostat=ierror) 
 write(29,*) 'output result (end of iteration)' 
 write(29,*) 'Reynolds =',Re 
 write(29,*)'mesh=',lx,' x ',ly 
 write(29,*)'tau=',tau 
 write(29,*) 'time step=', nstep 
 write(29,*)'v velocity at the horizontal center geometry' 
 do i = 1,lx 
  write(29,*) v(i,(ly+1)/2)/uinit 
 end do 
 !********************************************************** 
 write(29,*) 
 write(29,*) 
 write(29,*) 'u velocity at the vertical center geometry' 
 do j = 1,ly  
  write(29,*) u((lx+1)/2,j)/uinit 
 end do 
  
 
   
1000  stop 
   
 
  end 
 
  !!! 
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B. SUBROUTINE INITIAL SOURCE CODE 

 
!=================================================================================
 subroutine initial 
!================================================================================= 
  implicit real*8 (a-h,o-z) 
  parameter (ij = 100, kkk = 8) 
  common /var1/ f(0:ij,0:ij,0:kkk),feq(0:ij,0:ij,0:kkk)   
  common /var2/ cx(0:kkk),cy(0:kkk),w(0:kkk)    
  common /var3/ u(ij,ij),v(ij,ij),u2(0:ij,0:ij),vel(0:ij,0:ij) 
  common /var4/ rho(ij,ij),p(ij,ij)    
  common /var5/ tmp(0:ij,0:ij,0:kkk),ff(0:ij,0:ij,0:kkk) 
  common /var6/ 
fn(0:ij,0:ij,0:kkk),gx(0:ij,0:ij,0:kkk),gy(0:ij,0:ij,0:kkk),gxn(0:ij,0:ij,0:kkk),gyn(0:i
j,0:ij,0:kkk) 
  common /con1/ uinit,re,delt 
  common /con2/ lx,ly 
  common /con3/ ntin,nstep     
  common /con4/ pi,tau,rhoint,delx,dely,delx2,dely2,rtau,xnyu     
  integer lx,ly,ntin,nstep,i,j,k,l 
  integer ::unit, ierror 
  character (len=6)::filename 
 
  delx = 1.0 
  dely = 1.0 
  dely2 = dely*dely 
  delx2 = delx*delx 
  tau = 3.0*uinit*(lx-1)/re - delt*0.5 
  rtau = 1.0/tau 
  write (6,*) 'tau = ',tau , 'rtau = ',rtau 
 
  !setup physical data! 
  cx(0) = 0.0d0 
  cy(0) = 0.0d0 
 
  do k = 1,8 
   w(k) = sqrt (2.0d0) 
   if(mod(k,2) .eq. 1) w(k) = 1.0d0 
    cx(k) = w(k)*cos((k-1)*pi/4.0d0) 
    cy(k) = w(k)*sin((k-1)*pi/4.0d0)  
  end do 
 
  do i = 1,lx 
   do j = 1,ly 
    rho(i,j) = rhoint 
 
    if (j.eq.ly) then 
     u(i,j) = uinit 
     v(i,j) = 0.0 
    else 
     u(i,j) = 0.0 
     v(i,j) = 0.0 
    end if 
 
   end do 
  end do 
 
 
  !setup up function! 
 
  call equilibrium 
 
  do i = 0,lx+1 
   do j = 0,ly+1 
    do k = 0,8 
     f(i,j,k) = feq(i,j,k) 
     gx(i,j,k) =0.0 
     gy(i,j,k) =0.0 
    end do 
   end do 
  end do 
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  return 
  end 
 
  !!!!! 
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C. SUBROUTINE EQUILIBRIUM SOURCE CODE 

 
!=========================================================================== 

subroutine equilibrium 
!=========================================================================== 
  implicit real*8 (a-h,o-z) 
  parameter (ij = 100, kkk = 8) 
  common /var1/ f(0:ij,0:ij,0:kkk),feq(0:ij,0:ij,0:kkk)   
  common /var2/ cx(0:kkk),cy(0:kkk),w(0:kkk)    
  common /var3/ u(ij,ij),v(ij,ij),u2(0:ij,0:ij),vel(0:ij,0:ij) 
  common /var4/ rho(ij,ij),p(ij,ij)    
  common /var5/ tmp(0:ij,0:ij,0:kkk),ff(0:ij,0:ij,0:kkk) 
  common /var6/ 
fn(0:ij,0:ij,0:kkk),gx(0:ij,0:ij,0:kkk),gy(0:ij,0:ij,0:kkk),gxn(0:ij,0:ij,0:kkk),gyn(0:i
j,0:ij,0:kkk) 
  common /con1/ uinit,re,delt 
  common /con2/ lx,ly 
  common /con3/ ntin,nstep     
  common /con4/ pi,tau,rhoint,delx,dely,delx2,dely2,rtau,xnyu     
  integer lx,ly,ntin,nstep,i,j,k,l 
  integer ::unit, ierror 
  character (len=6)::filename 
   
  do i = 1,lx 
   do j = 1,ly 
   u2(i,j) = u(i,j)**2 + v(i,j)**2 
   feq(i,j,0) = rho(i,j)*(1.0 - 3.0/2.0*u2(i,j))*4.0/9.0 
   do l = 1,4 
    k = l*2    ; dir = cx(k)*u(i,j) + cy(k)*v(i,j) 
    feq(i,j,k) = rho(i,j)*(1. + 3.*dir + 9./2.*dir**2 - 
3./2.*u2(i,j))/36. 
    k = l*2 - 1; dir = cx(k)*u(i,j) + cy(k)*v(i,j) 
    feq(i,j,k) = rho(i,j)*(1. + 3.*dir + 9./2.*dir**2 - 
3./2.*u2(i,j))/9. 
   end do 

       end do 
 end do 

 
  return 
  end 
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D. SUBROUTINE CALCULATION SOURCE CODE 

 
!=============================================================================== 
  subroutine calculation 
!=============================================================================== 
  implicit real*8 (a-h,o-z) 
  parameter (ij = 100, kkk = 8) 
  common /var1/ f(0:ij,0:ij,0:kkk),feq(0:ij,0:ij,0:kkk)   
  common /var2/ cx(0:kkk),cy(0:kkk),w(0:kkk)    
  common /var3/ u(ij,ij),v(ij,ij),u2(0:ij,0:ij),vel(0:ij,0:ij) 
  common /var4/ rho(ij,ij),p(ij,ij)    
  common /var5/ tmp(0:ij,0:ij,0:kkk),ff(0:ij,0:ij,0:kkk) 
  common /var6/ 
fn(0:ij,0:ij,0:kkk),gx(0:ij,0:ij,0:kkk),gy(0:ij,0:ij,0:kkk),gxn(0:ij,0:ij,0:kkk),gyn(0:i
j,0:ij,0:kkk) 
  common /con1/ uinit,re,delt 
  common /con2/ lx,ly 
  common /con3/ ntin,nstep     
  common /con4/ pi,tau,rhoint,delx,dely,delx2,dely2,rtau,xnyu     
  integer lx,ly,ntin,nstep,i,j,k,l 
  integer ::unit, ierror 
  character (len=6)::filename 
   
!  write (*,*) 'call calculation' 
   
  call equilibrium 
 
  call adv 
 
!  call collision 
 
  return 
  end 
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E. SUBROUTINE ADVECTION SOURCE CODE 

 
!===============================================================================  
 subroutine adv 
!=============================================================================== 
  implicit real*8 (a-h,o-z) 
  parameter (ij = 100, kkk = 8) 
  common /var1/ f(0:ij,0:ij,0:kkk),feq(0:ij,0:ij,0:kkk)   
  common /var2/ cx(0:kkk),cy(0:kkk),w(0:kkk)    
  common /var3/ u(ij,ij),v(ij,ij),u2(0:ij,0:ij),vel(0:ij,0:ij) 
  common /var4/ rho(ij,ij),p(ij,ij)    
  common /var5/ tmp(0:ij,0:ij,0:kkk),ff(0:ij,0:ij,0:kkk) 
  common /var6/ 
fn(0:ij,0:ij,0:kkk),gx(0:ij,0:ij,0:kkk),gy(0:ij,0:ij,0:kkk),gxn(0:ij,0:ij,0:kkk),gyn(0:i
j,0:ij,0:kkk) 
  common /con1/ uinit,re,delt 
  common /con2/ lx,ly 
  common /con3/ ntin,nstep     
  common /con4/ pi,tau,rhoint,delx,dely,delx2,dely2,rtau,xnyu     
  integer lx,ly,ntin,nstep,i,j,k,l 
  integer ::unit, ierror 
  character (len=6)::filename 
   
!  write (*,*) 'call calculation2' 
 
  total = 0.0 
  if (nstep .ne. 1) then 
  do j = 1,ly 
   do k = 0,8 
 
    f(0,j,k) = 2.0*f(1,j,k) - f(2,j,k) 
    f(lx+1,j,k) = 2.0*f(lx,j,k) - f(lx-1,j,k) 
   end do 
  end do 
 
  do i = 1,lx 
   do k = 0,8 
    f(i,0,k) = 2.0*f(i,1,k) - f(i,2,k) 
    f(i,ly+1,k) = 2.0*f(i,ly,k) - f(i,ly-1,k) 
   end do 
  end do 
 
  do k = 0,8 
   f(0,0,k) = 2.0*f(1,1,k) - f(2,2,k) 
   f(0,ly+1,k) = 2.0*f(1,ly,k) - f(2,ly-1,k) 
   f(lx+1,0,k) = 2.0*f(lx,1,k) - f(lx-1,2,k) 
   f(lx+1,ly+1,k) = 2.0*f(lx,ly,k) - f(lx-1,ly-1,k) 
  end do 
  end if 
 
!  write (*,*) 'call calculation3' 
 
  do i = 1,lx 
   do j = 1,ly 
    do k = 0,8 
     xx = -cx(k)*delt 
     yy = -cy(k)*delt 
 
     zx = sign(1.0,cx(k)) 
     zy = sign(1.0,cy(k)) 
 
     iup = i-int(zx) 
     jup = j-int(zy) 
 
     a1 = ((gx(iup,j,k) + gx(i,j,k))*delx*zx - 
2.0*(f(i,j,k) - f(iup,j,k)))/(delx**3*zx) 
     e1 = (3.0*(f(iup,j,k) - f(i,j,k)) + (gx(iup,j,k) + 
2.*gx(i,j,k))*delx*zx)/(delx*delx) 
     b1 = ((gy(i,jup,k) + gy(i,j,k))*dely*zy - 
2.0*(f(i,j,k) - f(i,jup,k)))/(dely**3*zy) 
     f1 = (3.0*(f(i,jup,k) - f(i,j,k)) + (gy(i,jup,k) + 
2.0*gy(i,j,k))*dely*zy)/dely**2 
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!     tmp = f(i,j,k) - f(i,jup,k) - f(iup,j,k) + 
f(iup,jup,k) !!!! cuba check gx, gy, gxn, dan gyn sebab tak define dia punya initial 
value 
 
!     tmq = gy(iup,j,k) - gy(i,j,k) 
 
     d1 = ( - (f(i,j,k) - f(i,jup,k) - f(iup,j,k) + 
f(iup,jup,k)) - (gy(iup,j,k) - gy(i,j,k))*dely*zy)/(delx*dely**2*zx) 
     c1 = ( - (f(i,j,k) - f(i,jup,k) - f(iup,j,k) + 
f(iup,jup,k)) - (gx(i,jup,k) - gx(i,j,k))*delx*zx)/(delx**2*dely*zy) 
     g1 = ( - (gy(iup,j,k) - gy(i,j,k)) + 
c1*delx*delx)/(delx*zx) 
 
     fn(i,j,k) = ((a1*xx+c1*yy+e1)*xx + g1*yy + 
gx(i,j,k))*xx + ((b1*yy+d1*xx+f1)*yy + gy(i,j,k))*yy + f(i,j,k) 
     gxn(i,j,k) = (3.0*a1*xx + 2.0*(c1*yy+e1))*xx + 
(d1*yy+g1)*yy+gx(i,j,k) 
     gyn(i,j,k) = (3.0*b1*yy + 2.0*(d1*xx+f1))*yy + 
(c1*xx+g1)*xx+gy(i,j,k) 
    end do 
   end do 
  end do 
 
 do i = 1,lx 
   do j = 1,ly 
    do k = 0,8 
     f(i,j,k) = fn(i,j,k) 
     gx(i,j,k) = gxn(i,j,k) 
     gy(i,j,k) = gyn(i,j,k) 
    end do 
   end do 
  end do 
 
  do i = 1,lx 
   do j = 1,ly 
    do k = 0,8 
     fn(i,j,k) = f(i,j,k)-delt*rtau*(f(i,j,k)-
feq(i,j,k)) 
     if (i .eq. lx) then 
     gxn(i,j,k) = gx(i,j,k)-delt*rtau*(gx(i,j,k)- 
0.5*(3*feq(i,j,k)-4*feq(i-1,j,k)+feq(i-2,j,k))) 
     elseif (i .eq. 1) then 
     gxn(i,j,k) = gx(i,j,k)-delt*rtau*(gx(i,j,k)- 0.5*(-
3*feq(i,j,k)+4*feq(i+1,j,k)-feq(i+2,j,k))) 
     else 
     gxn(i,j,k) = gx(i,j,k)-delt*rtau*(gx(i,j,k)- 
0.5*(feq(i+1,j,k)-feq(i-1,j,k))) 
     end if 
 
     if (j .eq. ly) then 
     gyn(i,j,k) = gy(i,j,k)-delt*rtau*(gy(i,j,k)- 
0.5*(3*feq(i,j,k)-4*feq(i,j-1,k)+feq(i,j-2,k))) 
     elseif (j .eq. 1) then 
     gyn(i,j,k) = gy(i,j,k)-delt*rtau*(gy(i,j,k)- 0.5*(-
3*feq(i,j,k)+4*feq(i,j+1,k)-feq(i,j+2,k))) 
     else 
     gyn(i,j,k) = gy(i,j,k)-delt*rtau*(gy(i,j,k)- 
0.5*(feq(i,j+1,k)-feq(i,j-1,k))) 
     end if 
    end do 
   end do 
  end do 
 
!  write (*,*) 'call calculation5' 
 
  do i = 1,lx 
   do j = 1,ly 
    do k = 0,8 
     f(i,j,k) = fn(i,j,k) 
     gx(i,j,k) = gxn(i,j,k) 
     gy(i,j,k) = gyn(i,j,k) 
     if (f(i,j,k) <= 0 ) then 
     write (*,*) ' error' 
     end if 
     total = total + f(i,j,k) 
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    end do 
   end do 
  end do 
  if ( mod(nstep,ntin) == 0) then 
  write (*,60) total 
60  format ('total  = ',F8.2,//) 
  end if 
!  write (*,*) 'call calculation4' 
 
  return 
  end 
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F. SUBROUTINE OUTPUT SOURCE CODE 

 
!===================================================================================== 
 subroutine output 
!===================================================================================== 
  implicit real*8 (a-h,o-z) 
  parameter (ij = 100, kkk = 8) 
  common /var1/ f(0:ij,0:ij,0:kkk),feq(0:ij,0:ij,0:kkk)   
  common /var2/ cx(0:kkk),cy(0:kkk),w(0:kkk)    
  common /var3/ u(ij,ij),v(ij,ij),u2(0:ij,0:ij),vel(0:ij,0:ij) 
  common /var4/ rho(ij,ij),p(ij,ij)    
  common /var5/ tmp(0:ij,0:ij,0:kkk),ff(0:ij,0:ij,0:kkk) 
  common /var6/ 
fn(0:ij,0:ij,0:kkk),gx(0:ij,0:ij,0:kkk),gy(0:ij,0:ij,0:kkk),gxn(0:ij,0:ij,0:kkk),gyn(0:i
j,0:ij,0:kkk) 
  common /con1/ uinit,re,delt 
  common /con2/ lx,ly 
  common /con3/ ntin,nstep     
  common /con4/ pi,tau,rhoint,delx,dely,delx2,dely2,rtau,xnyu     
  integer lx,ly,ntin,nstep,i,j,k,l 
  integer ::unit, ierror 
  character (len=6)::filename 
   
  do i = 1,lx 
   do j = 1,ly 
    rho(i,j) = 0.0 
   end do 
  end do 
   
  do i = 2,lx-1 
   do j = 2,ly-1 
    do k = 0,8 
     rho(i,j) = rho(i,j) + f(i,j,k) 
    end do 
   end do 
  end do 
 
  do i = 2,lx-1 
   rho(i,1) = rho(i,2) 
   rho(i,ly) = rho(i,ly-1) 
  end do 
 
  do j = 2,ly-1 
   rho(1,j) = rho(2,j) 
   rho(lx,j) = rho(lx-1,j) 
  end do 
 
  rho(1,1) = rho(2,2) 
  rho(lx,1) = rho(lx-1,2) 
  rho(lx,ly) = rho(lx-1,ly-1) 
  rho(1,ly) = rho(2,ly-1) 
 
  do i= 2,lx-1 
   do j = 2,ly-1 
    u(i,j) = 0.d0 
    v(i,j) = 0.d0 
   end do 
  end do 
 
  do  i = 2, lx-1 
   do j = 2, ly-1 
    do k = 0,8 
     u(i,j) = u(i,j) + f(i,j,k)*cx(k)/rho(i,j) 
     v(i,j) = v(i,j) + f(i,j,k)*cy(k)/rho(i,j) 
    end do 
   end do 
  end do 
   
  return 
  end 
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G. SUBROUTINE COLLISION SOURCE CODE 

 
!===================================================================================== 

subroutine collision 
!===================================================================================== 
  implicit real*8 (a-h,o-z) 
  parameter (ij = 100, kkk = 8) 
  common /var1/ f(0:ij,0:ij,0:kkk),feq(0:ij,0:ij,0:kkk)   
  common /var2/ cx(0:kkk),cy(0:kkk),w(0:kkk)    
  common /var3/ u(ij,ij),v(ij,ij),u2(0:ij,0:ij),vel(0:ij,0:ij) 
  common /var4/ rho(ij,ij),p(ij,ij)    
  common /var5/ tmp(0:ij,0:ij,0:kkk),ff(0:ij,0:ij,0:kkk) 
  common /var6/ 
fn(0:ij,0:ij,0:kkk),gx(0:ij,0:ij,0:kkk),gy(0:ij,0:ij,0:kkk),gxn(0:ij,0:ij,0:kkk),gyn(0:i
j,0:ij,0:kkk) 
  common /con1/ uinit,re,delt 
  common /con2/ lx,ly 
  common /con3/ ntin,nstep     
  common /con4/ pi,tau,rhoint,delx,dely,delx2,dely2,rtau,xnyu     
  integer lx,ly,ntin,nstep,i,j,k,l 
  integer ::unit, ierror 
  character (len=6)::filename 
 
  total = 0.0 
  do i = 1,lx 
   do j = 1,ly 
    do k = 0,8 
     f(i,j,k) = f(i,j,k) - (f(i,j,k) - feq(i,j,k))/tau 
!     if (f(i,j,k) <= 0 ) then 
!     write (*,*) ' error' 
!     end if 
     total = total + f(i,j,k) 
    end do 
   end do 
  end do 
  if ( mod(nstep,ntin) == 0) then 
  write (*,60) total 
60  format ('total  = ',F8.2,//) 
  end if 
 
!===================================================================================== 
 
  return  
  end 
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