

ARDUINO-BASED TEMPERATURE MONITOR-

ING AND CONTROL VIA CAN BUS

MOHAMMAD HUZAIFAH BIN CHE MANAF

UNIVERSITI MALAYSIA PAHANG

ii

ARDUINO-BASED TEMPERATURE MONITORING AND CONTROL VIA CAN

BUS

MOHAMMAD HUZAIFAH BIN CHE MANAF

This thesis is submitted as partial fulfilment of the requirements for the award of the

Bachelor of Electrical Engineering (Hons.) (Electronics)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

DECEMBER 2016

iii

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter page 2 from

the organization with the period and reasons for confidentiality or restriction.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : MUHAMMAD HUZAIFAH BIN CHE MANAF

Date of Birth : 920504115621

Title : ARDUINO BASED TEMPERATURE MONITORING AND

 CONTROL VIA CAN BUS

Academic Session : 2016/2017

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official Se-

cret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the organi-

zation where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserve the right as follows:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies for the purpose

of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 huzaifah

 (Student’s Signature)

920504115621

New IC/Passport Number

Date: 30
th
 DECEMBER 2016

 (Supervisor’s Signature)

MAZIYAH BINTI MAT NOH

Name of Supervisor

Date: 30
th
 DECEMBER 2016

iv

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate

in terms of scope and quality for the award of the degree of the Bachelor Degree of

Electrical Engineering (Hons.) (Electronics).

Signature :

Name of Supervisor : MAZIYAH BINTI MAT NOH

Position : LECTURER OF ELECTRICAL & ELECTRONICS

ENGINEERING

Date : 30
th

 DECEMBER 2016

v

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries

which have been duly acknowledged. The thesis has not been accepted for any degree and

is not concurrently submitted for award of other degree.

Signature : huzaifah

Name : MOHAMMAD HUZAIFAH BIN CHE MANAF

ID Number : EA11098

Date : 30
th

 DECEMBER 2016

vi

ACKNOWLEDGMENTS

It is a pleasure to thank many people who made this thesis possible. I would like

to take this opportunity to express my gratitude and sincere thanks to my supervisor

Madam Maziyah Binti Mat Noh for her guidance, insight, and support he has provided

throughout the course of this work. I learned about the great role of self-learning and the

constant drive for understanding emerging technologies, and a passion for knowledge.

My special thanks go to research scholars, friends and juniors at Universiti Ma-

laysia Pahang for their encouragement and help throughout the course. I would like to

thank all faculty members and staff of the Falcuty of Electrical and Electronics Engi-

neering, Universiti Malaysia Pahang for their extreme help throughout course.

Finally, I am forever indebted to my parents for their love, understanding, end-

less patience and encouragement when it was most required.

vii

ABSTRACT

This project presents the Arduino-based Temperature Monitoring and Control

via CAN Bus. Controller Area Network (CAN) bus that is designed to allow microcon-

trollers and other electronic devices to communicate with each other within a vehicle

without a host computer. It was originally designed for multiplex electrical wiring with-

in automobile, but also used in many other contexts. The desired temperature is ob-

tained by controlling the ON and OFF states of the heater and fan. The temperature is

controlled using Arduino Uno that is interfaced with the plant using CAN Bus that pro-

vides the communication between Arduino and LCD display.

viii

ABSTRAK

Projek ini membentangkan Pemantauan suhu berasaskan Arduino dan Kawalan

melalui CAN Bus. Rangkaian kawasan pengawal (CAN) bas yang direka untuk mem-

benarkan microcontrol-Lers dan peranti elektronik lain untuk berkomunikasi antara satu

sama lain di dalam kenderaan dengan keluar komputer hos. Ia pada asalnya direka un-

tuk pendawaian elektrik multipleks dalam kereta, tetapi juga digunakan dalam pelbagai

konteks yang lain. suhu yang dikehendaki diperoleh dengan mengawal ON dan OFF

negeri pemanas dan kipas. suhu adalah con-troll menggunakan Arduino Uno yang

berantara muka dengan kilang menggunakan CAN Bus yang pro-vides komunikasi an-

tara Arduino dan paparan LCD.

ix

TABLE OF CONTENTS

 Page

SUPERVISOR’S DECLARATION ii

STUDENT’S DECLARATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION

1.1 Background 1

1.2 Problem Statement 1

1.3 Project Objective 2

1.4 Scope of The Project 2

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 3

2.2 CAN Bus 3

2.3 A Zigbee Based Temperature Monitoring System 4

2.4

2.5

Arduino Based Can Protocol Implementation In

Vechicle Control System

Monitoring and Controlling of Temperature Using

Hardware Description & Operation

 4

5

CHAPTER 3 METHODOLOGY

3.1

3.2

3.3

Introduction

Flow Chart

Block Diagram

 6

8

9

x

3.4 System Design 8

 3.4.1 Microcontroller 10

 3.4.2 CAN Bus Shield 11

 3.4.3

3.4.4

3.4.5

3.4.6

3.4.7

3.4.8

3.4.9

3.4.10

Display

DS18B20 Temperature Sensor

LM35 Temperature Sensor

Controller and Transceiver

Relay

Heater

Potentiometer

USB Fan

12

12

13

14

16

16

17

17

3.5 Prototype Circuit System Design 18

3.6 Software Development and Coding 18

3.7 Hardware Simulation 21

CHAPTER 4 RESULTS AND ANALYSIS

4.1 Introduction 24

4.2

4.3

4.4

Fan

DC Water Pump

Analysis

 25

28

31

CHAPTER 5 CONCLUSION AND RECOMMENDA-

TION

5.1 Conclusions 32

5.2 Recommendation 32

REFERENCES 33

APPENDICES 34

A Appendix A 34

B Appendix B 39

C Appendix C 40

xi

LIST OF TABLES

Table No. Title Page

4.1 The result by using Fan (distance 18cm) 26

4.2 The result by using Fan (distance 7cm) 26

4.3 The result by using Water Pump (5V) 29

4.4 The result by using Water Pump (9V) 29

xii

LIST OF FIGURES

Figure No. Title Page

3.1 Flow chart of the study 8

3.2. Block diagram of implemented system 9

3.3.1 Arduino UNO board 10

3.3.2 CAN-Bus Shield 11

3.3.3 LCD Display 2x16 12

3.3.4 DS18B20 Temperature sensor 13

3.3.5 LM35 Temperature sensor 14

3.3.6 MCP2515 Controller 15

3.3.7 MCP2551 Transceiver 15

3.3.8 Relay 16

3.3.9 Heating element 16

3.3.10 Potentiometer 10kΩ 17

3.3.11 Fan 17

3.4 Prototype hardware design 18

3.5 Hooked up between Arduino Uno and CAN Bus Shield 23

3.6

4.1

4.2

4.3

4.4

4.5

CAN Receiver Flow Chart

Example of Data Read by Sensor

The Fan hardware setup

Graph (distance 18cm)

Graph (distance 7cm)

The DC water pump hardware setup

23

24

25

27

27

28

xiii

4.6

4.7

5.1

Graph (5V)

Graph (9V)

Integrate Software and Hardware

30

30

39

xiv

LIST OF SYMBOLS

Ω Ohm

℃ Celsius

mV Millivolt

V Volt

xv

LIST OF ABBREVIATIONS

CAN Controller Area Network

MSCAN Motorola Scalable Controller Area Network

LM35 Linear Monolithic 35

ADC Analog to Digital Converter

LCD Liquid Crystal Display

PWM Pulse Width Modulation

IDE Integrated Development Environment

RFI Radio Frequency Interference

GSM

DC

Global System for Mobile

Direct Current

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Controller Area Network (CAN) was initially created by German automotive system

supplier Robert Bosch in the mid-1980s for automotive applications as a method for

enabling robust serial communication. Thereafter, CAN was standardized as ISO-11898

and ISO-11519, establishing itself as the standard protocol for in-vehicle networking in

the auto industry. By networking the electronics in vehicles with CAN, however, they

could be controlled from a central point. By this it could increase the functionality, add

modularity, and makes diagnostic process more efficient. CAN bus can transfer the se-

rial data one by one. CAN bus subsystems are accessible via the control unit on the

standard termination, split termination, biased split termination. This project involves

the implementation of Arduino board and sensor on CAN protocol. The sensor and

hardware must follow or compatible with CAN protocol after integrating both software

and hardware.

1.2 PROBLEM STATEMENT

Temperature is one of the very important parameters that need be monitored before

unnecessary event occurs. Therefore there is a need to design temperature control sys-

tem to avoid unnecessary event to occur.

2

1.3 PROJECT OBJECTIVES

The main objective is to design and built the temperature control system that

will:

(i) Display the current temperature.

(ii) Control the temperature to be at the desired temperature.

1.4 SCOPE OF THE PROJECT

This project is focused on the design of the water temperature monitoring and

control system. The scope of the project are:

(i) To design and fabricate the temperature monitoring and control system

using Arduino microcontroller as main controller.

(ii) Software development on Arduino microcontroller and sensor using

CAN Bus.

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

In this chapter the past working researches based on CAN Bus system are re-

viewed. The reviews are concentrated on the design techniques for implementation of

CAN Bus for data monitoring and taking an appropriate decision based on the data in

the control system. Based on the reviewed then was used to achieve the objective of this

project works.

2.2 THE CAN-BUS

The Controller Area Network (CAN) is a serial, asynchronous, multi-master

communication protocol for connecting electronic control modules in automotive and

industrial applications[1]. CAN was designed for automotive applications needing high

levels of data integrity and data rates of up to 1 Mbit/s. In this project Controller Area

Network protocol is implemented using on chip Motorola Scalable Controller Area

Network (MSCAN) of MC9S12DP256B 16-bit Microcontroller. This paper presents

“Monitoring of Temperature using LM35 based on Controller Area Network architec-

ture” .The system is constituted of two CAN nodes, each CAN node is formed by a

transceiver MCP2551 and MCP2515 controller.

4

2.3 A ZIGBEE BASED TEMPERATURE MONITORING SYSTEM

In this paper, the design and development of a Zigbee based smart non-invasive

temperature monitoring device is developed and reported in this paper. The system can

be used to monitor temperature parameters[2]. The system consists of a sensor device, a

temperature sensor which is integrated with a Zigbee module to transmit the data meas-

ured by the sensor. The data is received by a Zigbee module at the receiver end which

monitors the values and if the value falls below a threshold the computer sends an alarm

through Zigbee module. This sets off an alarm, allowing help to be provided to the user.

The device is powered by battery for outdoor use. The device can be easily adapted to

monitor air conditioning systems. The low cost of the device will help to lower the cost.

A prototype of the device was fabricated and extensively tested that provide a good re-

sults.

2.4 ARDUINO BASED CAN PROTOCOL IMPLEMENTATION IN

VECHICLE CONTROL SYSTEM

The main purposes of present automobiles are being developed by more of elec-

trical parts for efficient operation[3]. Generally a vehicle was built with an analogue

driver-vehicle interface for indicating various vehicle statuses like speed, fuel level,

Engine temperature etc. This paper presents the development and implementation of a

digital driving system for a semi-autonomous vehicle to improve the driver-vehicle in-

terface and having Intelligent Braking System (IBS). The advantages of CAN bus based

network over traditional point to point schemes will offer better flexibility and ex-

pandability for future technology insertions. It uses an ARDUINO based data acquisi-

tion system that uses analogue to digital converter (ADC) to bring all control data from

analogue to digital format and visualize through the LCD. The communication module

used in this project is embedded networking by CAN which has efficient data transfer.

It also takes feedback of vehicle conditions like vehicle speed, engine temperature etc.,

and controlled by the main controller.

5

2.5 MONITORING AND CONTROLLING OF TEMPERATURE USING

HARDWARE DESCRIPTION & OPERATION

CAN is a message arranged wide cost component. Utilizing would we be able to

can make piece to square association or hub to hub association. We can send the infor-

mation from one hub to other hub utilizing can transport. Utilizing would we be able to

can send the information through casings. We are having information outline, augment-

ed information outline, remote edge, blunder outline etc. If we need to send the infor-

mation from one hub other we can utilize information outline, since can is an offbeat

correspondence so information must be placed in begin bit and stop bit. Information

outline contains SOF, ARBITRATION (IDENTIFIER+RTR) FIELD, DLC, DATA

(MAX 8 BYTES), CRC, ACK, EOF[4].

The module is intended for temperature checking and controlling in view of the

CAN convention. It manages the temperature changes that happen in any procedure in

Industry. The LM35 arrangement are exactness coordinated circuit temperature sensors,

whose yield voltage is straightly corresponding to the Celsius (Centigrade) temperature.

The Temperature changes are measured by the inbuilt ADC and transmitted to the next

hub utilizing the CAN Bus. At that point other hub will show the outcome on the LCD.

What's more, in light of the temperature control move is makes put in the temperature

hub. At first fundamental hub sends demand to every one of the hubs, in the wake of

getting the edge these sub hubs analyzes the identifier, if the identifier coordinates then,

the relating sub hub sends the information to the primary hub and after that principle

hub will show information on LCD. In this manner the correspondence between hubs

will be finished

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

This chapter explain the methodology of the project. Research methodology

gives a procedure and assist the researcher to perform the study detailed especially

techniques, equipment, task and software interfacing to achieve objective within the

scope of the project. The main objective methodology is to ensure the smoothness of the

working procedure is completed within the estimated time frame. There are six phases

in this project:

Phase I: Literature review,

(i) Internet information.

(ii) Books.

(iii) Papers and journal.

(iv) Discussion with lectures and supervisor.

Phase II: Design and develop the system,

(i) Learn how to use Arduino as selected program to develop and compati-

ble with a CAN.

(ii) Draft the project and its flow chart.

(iii) Design and fabricate the system.

7

Phase III: Simulation of software and hardware.

(i) Decide which software to use based on the discussion with the supervi-

sor.

(ii) Learn the programming language.

(iii) Develop the program for the fabricated system in phase II.

Phase IV: Integration of phase II and III and test whether the system achieve the objec-

tive of the project.

Phase V: Result Analysis

(i) Collect the data.

(ii) Analysis the data.

Phase VI: Thesis Writing.

8

3.2 FLOW CHART

Figure 3.1 shows the flow chart of the overall outline for methodology chapter.

Figure 3.1 Flow chart of the study

9

3.3 BLOCK DIAGRAM

Figure 3.2 shows the block diagram of the implemented system

Figure 3.2 Block diagram of implemented system

3.4 SYSTEM DESIGN

 In this project, two temperature sensor have been used. The reading was taken

from both sensors to compare the reading accuracy between the sensors. The sensor

used was LM35 and DS18B20. The Arduino Uno acting as a microcontroller for the

system and for display, LCD 2x16 is used to display temperature reading. The heater

and fan is used to control the output (temperature) of the system.

10

3.4.1 Microcontroller

The Arduino Uno is acted as a microcontroller. The Uno is a microcontroller

board based on the ATmega328P. It has 14 digital input/output pins (of which 6 can be

used as PWM outputs), 6 analogue inputs, a 16 MHz quartz crystal, a USB connection,

power jack, an ICSP header and a reset button. It contains everything needed to support

the microcontroller; simply connect it to a computer with a USB cable or power it with

an AC-to-DC adapter or battery to get started. This prevent the microcontroller from

damage if the given voltage is higher than the normal voltage.

"Uno" means one in Italian and was chosen to mark the release of Arduino

Software (IDE) 1.0. The Uno board and version 1.0 of Arduino Software (IDE) is the

reference versions of Arduino, now evolved to newer releases. The Uno board is the

first in a series of USB Arduino boards, and the reference model for the Arduino plat-

form; for an extensive list of current, past or outdated boards seethe Arduino index of

boards.

Figure 3.3.1 Arduino UNO board

11

3.4.2 CAN-BUS Shield

The CAN-BUS is a common industrial bus because of its long travel distance,

medium communication speed and high reliability. It is commonly found on modern

machine tools and as an automotive diagnostic bus. This CAN-BUS Shield adopts

MCP2515 CAN Bus controller with Serial Peripheral Interface (SPI) interface and

MCP2551 CAN transceiver to give Arduino/ Seeeduino CAN-BUS capability. The Se-

rial Peripheral Interface (SPI) bus is a synchronous serial communication interface spec-

ification used for short distance communication, primarily in embedded systems. With

an OBD-II converter cable added on and the OBD-II library imported and B&B’s intel-

ligent Streamers extract and translate the complex OBDII data from the vehicle bus and

convert them into easy-to-use parameters, allowing Telematics Service Providers to

focus on developing best of class applications., the diagnostic device or data logger, can

be built on the board.

Figure 3.3.2 CAN-Bus Shield

12

3.4.3 Display

In this project Serial LCD (2x16) is used to display the current temperature of

water. Now, with only 3 pins from the microcontroller, message can be displayed on the

LCD screen. With comparing to parallel LCD which required at least 6 pins of I/O, this

LCD offer more cost effective solution. The LCD display is two lines by 16 characters

and provides basic text wrapping so that the text looks right on the display. In addition,

the Serial LCD also provides full control over all of its advanced LCD features, allow-

ing you to move the cursor anywhere on the display with a single instruction and turn

the display on and off in any configuration.

Figure 3.3.3 LCD Display 2x16

3.4.4 DS18B20 Temperature Sensor

Temperature sensor selected for this project is required to be with compatible

with CAN protocol. This low cost temperature sensing module provide easy to use sen-

sor. The DS18B20 temperature sensor provide 9-bit to 12-bit Celsius measurement with

the alarm function non-volatile user programmable upper and lower trigger points. This

sensor communicates over a 1-Wire bus that require only one data line for communica-

tion with central microprocessor. Also it able to derive power directly from the data line

by eliminating the need for an external power supply.

DS18B20 has a unique 64-bit serial code, allows multiple DS18B20 to function

on the same 1-Wire bus. It is simple way one microprocessor to control many sensors

distributed over large area.

13

Figure 3.3.4 DS18B20 Temperature sensor

3.4.5 LM35 Temperature Sensor

The LM35 are accuracy integrated circuit temperature device with a yield volt-

age strictly relative to the centigrade temperature. The sensor offer the following high-

lights:

 Directly calibrated in Celsius

 + 10-mV/°C scale factor

 0.5°C Ensured accuracy at 25°C

 Range -55°C to 150°C

 Suitable remote application

 Low cost

 4V to 30V operates

 Current drain is less than 60 micro ampere

 Low self-heating

 Non-linearity only ±¼°C Typical

 Output impedance is low, 0.1 ohm for 1 mili ampere load

14

Figure 3.3.5 LM35 temperature sensor

3.4.6 CAN Controller and Transceiver

The controller utilized for this project is MCP2515. The controller is a second

generation remain solitary CAN controller. The pin and capacity good with the

MCP2510 furthermore incorporates overhauled highlights like speedier throughput,

information byte channelling, and bolster for time-activated protocol. The elements of

the chip are:

 18-pin bundle

 Simple SPI interface to any MCU

 One-shot mode guarantees message transmission is endeavoured only once

 Data byte filtering

 Start-of-Frame (SOF) yield

 Low-power CMOS Technology

15

Figure 3.3.6 MCP2515 Controller

The MCP2551 is chosen to work with the controller. This controller is a fast

CAN transceiver, fault tolerant gadget that serves as the interface between a CAN con-

vention controller and the bus physical. The MCP2551 gives differential transmit and

get capacity for the CAN convention controller and is completely perfect with the ISO-

11898 standard, including 24V necessities. It will work at paces of up to 1 Mb/s. The

components of MCP2551 are:

 Slope control input

 Supports 1 Mb/s operation

 Implements ISO-11898 standard physical layer prerequisites

 Suitable for 12V and 24V frameworks

 Externally-controlled slope for diminished RFI discharges

 Permanent predominant recognize

 Low current standby operation

 High clamour invulnerability because of differential bus execution

Figure 3.3.7 MCP2551 Transceiver

16

3.4.7 Relay

The relay is used in the design system. The relay is used to activate and deacti-

vate the heater and fan. The fan and heater is activated or deactivated depending on cur-

rent temperature whether is lower or higher than the threshold temperature.

Figures 3.3.8: Relay

3.4.8 Heater

 The heater is used to heat up water until the desired or threshold temperature is

achieved. Once the desired temperature is achieved, then the relay will deactivate the

heater. The process will continue as long as the system is active mode (ON)..

17

Figure 3.3.9: heating element

3.4.9 Potentiometer 10kΩ

The 10kΩ potentiometer is used to vary the desired temperature. By varying the

value of the resistance, we can test whether or not the system react accordingly.

Figure 3.3.10: Potentiometer

3.4.10 USB Fan

The USB fan acting as cooling system. The relay will activate the fan when the

current temperature is higher than the desired temperature. The fan continues to be at

active state until the desired temperature is achieved and relay deactivates the fan.

18

Figure 3.3.11: Fan

3.5 PROTOTYPE CIRCUIT SYSTEM DESIGN

Figure 3.4 show the final fabricated hardware that involve all components and

devices needed in this project.

Figure 3.4: Prototype hardware design

19

3.6 SOFTWARE DEVELOPMENT AND CODING

 Assembly code is used for speed, compactness or because some function are

easier to assembler than in higher level language. Using a high level language will result

faster program development. The microcontroller has an easy interface to assembly lan-

guage. In C program assembler code may be embedded anywhere. The open source

Arduino Software (IDE) is use to write code and enables to load program in Arduino

Uno R3 board. The Arduino language use is C/C++. This is overall source code for the

project is shown in Appendix A.

 This is sample coding of part by part for the project:

(i) LCD

#include <LiquidCrystal_I2C.h>

#define I2C_ADDR 0x27 //Define I2C Address where the PCF8574A is

#define BACKLIGHT_PIN 3

#define En_pin 2

#define Rw_pin 1

#define Rs_pin 0

#define D4_pin 4

#define D5_pin 5

#define D6_pin 6

#define D7_pin 7

LiquidCrystal_I2C lcd(I2C_ADDR,

En_pin,Rw_pin,Rs_pin,D4_pin,D5_pin,D6_pin,D7_pin);

(ii) Sensor LM35

#include <Wire.h>

float temp; //Define the temp float variable

int sensor = 1; // sensor middle pin on analog pin 1

20

float desiredTemp;

float TempMin = 20;

float TempMax = 70;

void loop()

{

 temp = analogRead(sensor); //assigning the analog output to temp

 temp = temp * 0.48828125; //converting volts to degrees celsius ----- 0.48828125

= [(5V*1000)/1024]10

 lcd.setCursor(8,0); //move the cursor to position 8 on row 1

 lcd.print(temp); //print the temperature in Celsius

// read the input on analog pin 0:

 int sensorValue = analogRead(A2);

 // Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V):

 float voltage = sensorValue * (100.0 / 1023.0);

 float desiredTemp = voltage;

 // print out the value you read:

 Serial.print("Desired Temperature = ");

 Serial.println(desiredTemp);

}

(iii) Sensor DS18B20

#include <OneWire.h>

#include <DallasTemperature.h>

#define ONE_WIRE_BUS 2

// Setup a oneWire instance to communicate with any OneWire devices (not just Max-

im/Dallas temperature ICs)

OneWire oneWire(ONE_WIRE_BUS);

21

// Pass our oneWire reference to Dallas Temperature.

DallasTemperature sensors(&oneWire);

Void loop ()

{

sensors.requestTemperatures(); // Send the command to get temperatures

 // Serial.print("Temperature for the device 1 (index 0) is: ");

 float x=sensors.getTempCByIndex(0);

// Serial.println(x);

 lcd.setCursor(8,1);

 lcd.print(x);

}

3.7 HARDWARE SIMULATION

 In this section explains how the hardware being simulated. The Figure 3.5 shows

how to hook up the CAN Bus Shield with Arduino Uno. When the module is activated,

the temperature sensors LM35 and DS18B20 sense the water temperature and resultant

temperature reading is displayed on LCD. Before that, the sensors are completely sub-

merged in the water. The first objective project is accomplished which is monitor the

water temperature with LCD via CAN bus.

 The potentiometer is used to set desired temperature. When the system detects

the current temperature is lower than the desired temperature (say current temperature

29 degrees and set temperature 40 degrees), then the heating element (heater) is

switched on automatically. When the heating element increases, the sensor that sensing

the temperature of the heater is increase. When the set temperature is meet (40 degrees)

the heating element automatically switched off. The current temperature is displayed on

LCD. Fan is used for cooling system in this model. The desired temperature is set (say

current temperature 40 degrees and desired temperature 29) the heater will off and the

fan automatically switched on. The fan will off when current temperature is same as

desired temperature. So the second objective to control water temperature based on de-

sired value is accomplished.

22

Using CAN bus we can make block to block connection. We can send the data

from one node to another node using can bus. Also can bus can send the data frames by

frames. The can have data frame, error frame, remote frame and extended data frame.

To send data from one node to other the data frame is use since CAN is an asynchro-

nous communication so the data will be put in start bit and bit stop.

The aim of this project is designed temperature monitoring and controlling based

on the CAN protocol. The LM35 are integrated-circuit temperature sensors whose volt-

age output is linearly proportional to Celsius temperature. The change temperature are

measured and transmitted to other node using CAN Bus. The node will display on the

LCD. And the temperature control action is take place in the temperature node. Main

node sends to all the nodes the request and receiving frame sub nodes is compare the

identifier, if identifier is match the sub node sends data to main data and will display

data on LCD. The communication between is done. In this work MCP2551 transceivers

is chosen. The flow chart of CAN receiver is explain in Figure 3.6.

The CAN Controller stores received bits one by one from the bus until entire

message is available. The CAN Controller then fetched by the host (usually after the

CAN has triggered an interrupt). The host processor stores transmit message into CAN

Controller, which transmit the bits serially into the bus. In this project MCP2515 con-

troller is chosen.

23

Figure 3.5: Hooked up between Arduino Uno and CAN Bus Shield

Figure 3.6: CAN Receiver Flow Chart

CHAPTER 4

RESULT AND ANALYSIS

4.1 INTRODUCTION

This chapter explains the results between two sensors reading that are obtained from

two different cooling systems. The cooling systems are fan and dc motor water pump. The

data were taken for 2 litres of water to decrease the temperature by minute using two differ-

ent methods. Then, the data obtained from the two different sensors are analysed and com-

pared. The finalised result of data are compared to the lab thermometer and which sensor is

more accurate temperature reading is obtained. Figure 4.1 shows the example of data read

by the sensors.

Figure 4.1 Example of Data Read by Sensor

25

4.2 FAN

 The fan was used to cooling down water temperature. The two different distance

between the fan and water were used that is 18 cm and 7cm.The sensor are fully sub-

merged in the water. The figure 4.1 shows the setup of hardware. bef how to setup the

hardware. Before collecting the data, the water temperature is set to 40°C and stopwatch

is used to set time. The temperature reading is taken every 5 minute of the time interval

for five times. Figure 4.3 and 4.4 show the graph from the data obtained from the sen-

sors.

Figure 4.2: The fan hardware setup

26

Table 4.1: The Result by Using Fan (distance 18cm)

Table 4.2: The Result by using Fan (distance 7cm)

Amount of time to cooling down temperture (minutes) LM35 (°C) DS18B20 (°C)

0 42.53 41.88

5 39.57 38.13

10 36.62 35.81

15 35.16 34.75

20 34.18 33.63

25 32.63 32.63

Amount of time to cooling down temperture (minutes) LM35 (°C) DS18B20 (°C)

0 42.88 41.19

2 41.03 39.88

4 39.22 38.12

6 37.91 36.54

34.88 34.88 34.88

27

Figure 4.3: Graph (distance 18cm)

Figure 4.4: Graph (distance 7cm)

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30

Te
m

p
er

tu
re

 (
ce

lc
iu

s)

Amount of time to cooling down (minutes)

Temperture reading of two different sensor

LM35 (°C)

DS18B20 (°C)

28

4.3 DC WATER PUMP

 The DC water pump was used as cooling water temperature. The output voltage

DC water pump was 5V and 9V. The figure 4.5 below showed how to setup the hard-

ware including water pump. The temperature reading taken for 2 minute each passed.

Set the temperature to 40 degree. The table 4.3 and 4.4 below show the result and figure

4.6, figure 4.7showed the graph result.

Figure 4.5: The DC water pump hardware setup

29

Table 4.3: The Result by using water pump (5V)

Table 4.4: The Result by using water pump (9V)

Amount of time to cooling down temperture (minutes) LM35 (°C) DS18B20 (°C)

0 41.55 40.88

5 38.78 37.13

10 35.12 34.56

15 33.95 33.11

20 32.19 31.06

25 31.36 30.44

Amount of time to cooling down temperture (minutes) LM35 (°C) DS18B20 (°C)

0 42.88 41.19

2 39.21 38.06

4 35.33 34.12

6 32.51 31.63

8 29.56 29.03

30

Figure 4.6: Graph (5V)

Figure 4.7: Graph (9V)

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10

T
em

p
er

tu
re

 (
ce

lc
iu

s)

Amount of time to cooling down (minutes)

Temperature reading of two different sensor

LM35 (°C)

DS18B20 (°C)

31

4.4 ANALYSIS

 From the analysed data obtained from the temperature sensors, the temperature

sensor DS18B20 is more accurate reading compare to the temperature sensor LM35.

This is because LM35 is commonly used in to measure temperature in open area and not

to measure the water temperature. The LM35 cannot be submerged into the water. In

this project, LM35 was modified so that it can be submerged into the water. The

DS18B20 specifically created to measured water temperature. Moreover, the DS18B20

is easier to handle or use than LM35.The DC water pump is more suitable to use as

cooling system than using fan because it take less time to decrease water temperature

than the fan.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATION

5.1 CONCLUSIONS

 This chapter presents the design of water temperature monitoring and control

system based on CAN Bus protocol. The implementation of CAN Bus for water tem-

perature monitoring and controlling system was successfully compeleted. The system is

able to monitor the current temperature and also able to control the temperature to be at

the desired temperature that is set by the user. The same idea can be applied to monitor

under water robot monitoring system, vehicle power window, monitoring tire pressure

and in automotive system engine management. This idea leads to decentralization of

control system in car industry. This system can be extended to industrial car production.

Mainly in decentralization the Arduino Microcontroller as control mechanism. There

are mny potential future implementations of CAN Bus for industrial control system

such as Arduino, and PLC (programmable logic controller).

5.2 RECOMMENDATION

 There are still several improvements can be pursued in the future. This project is

concerned on monitoring and control the temperature. This can be extended by connect-

ing GSM module to the circuit. With GSM module technology we able monitor the

temperature remotely place by sending the message. The example in industrial area,

when machine crosses set temperature, the system will inform the control room manag-

er/personnel by sending the message or make a call to the person in charge that will

avoid damage the machine. Also the system will automatically disconnect the machine

using GSM technology.

33

REFERENCES

[1] Mercendes-Benz, “Controller Area Network,” 2002.

[2] S. S. Patil, S. S. Sarade, and S. V Chavan, “Zigbee Based Sensor Networks for

Temperature Monitoring and Controlling,” 2013.

[3] S. Shanmathi, P. C. Kamalanathan, S. M. Ramesh, S. Valarmathy, and B. Preethi,

“Arduino Based Can Protocol Implementation In Vechicle Control System,”

2014.

[4] I. Engineering, A. Pradesh, I. Engineering, A. Pradesh, C. Engineering, and A.

Pradesh, “Monitoring and Controlling of Temperature Using Hardware

Description & Operation,” vol. 2, no. 6, pp. 61–68, 2014.

[5] Maxim Integrated 2008 DS18B20 Programmable Resolution 1-Wire Digital

Thermometer System 92 1–22.

[6] Controller T, Network A, Can E and Can T Advanced PIC18 Projects — CAN

Bus Projects.

[7] Toolset C 2001 CAN-bus project Using the CANbus Toolset TM software and

the and the SELECONTROL®MAS automation system.

[8] Anon 2015 Final Design Report : CAN Lighting System

[9] Mazran E, Redzuan A M, Badrul H A, Adie M K and Amat A B Security

System Using CAN Bus . 3–7

34

APPENDIX A

#include <Wire.h>

#include <LCD.h>

#include <LiquidCrystal_I2C.h>

#include <Canbus.h>

#include <OneWire.h>

#include <DallasTemperature.h>

#include <SPI.h>

#include <mcp_can.h>

INT32U canId = 0x000;

#define I2C_ADDR 0x27 //Define I2C Address where the PCF8574A is

#define BACKLIGHT_PIN 3

#define En_pin 2

#define Rw_pin 1

#define Rs_pin 0

#define D4_pin 4

#define D5_pin 5

#define D6_pin 6

#define D7_pin 7

#define ONE_WIRE_BUS 2

#define fan1 7 // Set FAN pin on digital pin 7

#define relay 6 // Set Relay digital pin 6

//define variables for the LM35 temperature sensor

35

float temp; //Define the temp float variable

int sensor = 1; // sensor middle pin on analog pin 1

float desiredTemp;

float TempMin = 20;

float TempMax = 70;

//CAN BUS SHIELD

unsigned char len = 0;

unsigned char buff[8];

char str[20];

const int SPI_CS_PIN = 10; // select your can shield pin

MCP_CAN CAN (SPI_CS_PIN); //CS pin is set

// Setup a oneWire instance to communicate with any OneWire devices (not just Max-

im/Dallas temperature ICs)

OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.

DallasTemperature sensors(&oneWire);

//Initialise the LCD

LiquidCrystal_I2C lcd(I2C_ADDR,

En_pin,Rw_pin,Rs_pin,D4_pin,D5_pin,D6_pin,D7_pin);

void setup()

 {

 Serial.begin(115200);

36

 Serial.println("CAN-Bus ");

 pinMode(fan1, OUTPUT);

 pinMode(relay, OUTPUT);

 sensors.begin();

if(Canbus.init(CANSPEED_500)) /* Initialise MCP2515 CAN controller at the speci-

fied speed */

 {

 Serial.println("CAN Initialise ok");

 }

else

 {

 Serial.println("Can't initialise CAN");

 Serial.println("Initialise CAN BUS Shield again");

 delay(500);

 }

 lcd.begin (16,2); //Define the LCD as 16 column by 2 rows

 //Switch on the backlight

 lcd.setBacklightPin(BACKLIGHT_PIN,POSITIVE);

 lcd.setBacklight(HIGH);

 //goto first column (column 0) and first line (Line 0)

 lcd.setCursor(0,0);

 //Print at cursor Location

 lcd.print("LM35 C = ");

 lcd.setCursor(0,1);

37

 lcd.print("DS18 C = ");

 }

void loop()

{

 temp = analogRead(sensor); //assigning the analog output to temp

 temp = temp * 0.48828125; //converting volts to degrees celsius ----- 0.48828125

= [(5V*1000)/1024]10

 lcd.setCursor(8,0); //move the cursor to position 8 on row 1

 lcd.print(temp); //print the temperature in Celsius

// read the input on analog pin 0:

 int sensorValue = analogRead(A2);

 // Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V):

 float voltage = sensorValue * (100.0 / 1023.0);

 float desiredTemp = voltage;

 // print out the value you read:

 Serial.print("Desired Temperature = ");

 Serial.println(desiredTemp);

sensors.requestTemperatures(); // Send the command to get temperatures

 // Serial.print("Temperature for the device 1 (index 0) is: ");

 float x=sensors.getTempCByIndex(0);

// Serial.println(x);

 lcd.setCursor(8,1);

 lcd.print(x);

 if (x < desiredTemp)

38

 {

 digitalWrite (fan1,0);

 digitalWrite(relay,1);

 }

 if (x > desiredTemp)

 {

 digitalWrite (fan1,1);

 digitalWrite(relay,0);

 }

 //wait 5 seconds

 delay(1000);

}

39

APPENDIX B

Figure 5.1: Integrate Software and Hardware

40

APPENDIX C

GANTT CHART FOR PSM 1

GANTT CHART FOR PSM 2

Activities

w
e

e
k

 1

w
e

e
k

 2

w
e

e
k

 3

w
e

e
k

 4

w
e

e
k

 5

w
e

e
k

 6

w
e

e
k

 7

w
e

e
k

 8

w
e

e
k

 9

w
e

e
k

 1
0

w
e

e
k

 1
1

w
e

e
k

 1
2

w
e

e
k

 1
3

w
e

e
k

 1
4

Hardware design finalization

Hardware Construction

Hardware system testing and modifying

Software design finalization

Software system Development (Programming)

Software system testing and debugging

Prototype testing, modifying and finalization

Thesis wiriting

