SEISMIC PERFORMANCE OF STAIRCASE UNDER EARTHQUAKE LOADING

NORSHAKILA BINTI ABDUL WAHAB

B. ENG (HONS.) CIVIL ENGINEERING

UNIVERSITI MALAYSIA PAHANG
SEISMIC PERFORMANCE OF STAIRCASE UNDER EARTHQUAKE LOADING

NORSHAKILA BINTI ABDUL WAHAB

A thesis submitted in fulfillment of the requirement for award of the degree of

B.ENG (HONS.) CIVIL ENGINEERING

Faculty of Civil Engineering & Earth Resources

UNIVERSITI MALAYSIA PAHANG

DECEMBER 2016
SUPERVISOR’S DECLARATION

“I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in term of scope and quality for the award of degree of Bachelor of Civil Engineering”

Signature :
Name of Supervisor : IR SAFFUAN BIN WAN AHMAD
Position : SENIOR LECTURER
Date :
STUDENT’S DECLARATION

“I declare that this thesis entitles “Seismic Performance of Staircase Under Earthquake Loading” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not currently submitted in candidature of any other degree.”

Signature : ..
Name of Supervisor : NORSHAKILA BINTI ABDUL WAHAB
Date :
Dedicated to my parents,
For their loves and devotions,
Making me be who I am today.
ACKNOWLEDGEMENT

Alhamdulillah. Thanks to Allah SWT, the most gracious and most merciful, whom with Him willing giving me strength to complete this Final Year Project.

Special thanks to my beloved family, my parents, my brothers and sisters because of their courage and support during the period of completing the thesis. Support and motivates keep me motivated and alive to complete and produce a high quality of thesis.

To my supervisor, Ir. Saffuan bin Wan Ahmad, special thanks for all the guidance, motivation and supports, thanks for the time spend with me, idea and courage. The supervision and support that he gave truly help the progression and smoothness of the project. With his presents, teaching and guidance, my final year project gone recognize by university.

In addition, I would like to express my gratitude to my panel, Miss Norhaiza binti Ghazali and Dr Cheng Hock Tian to their valuable suggestions and comments on my work as to improve my research outcomes and meet the objectives of this study.

Apart from that, I would like to thank all the lecturers whom have taught me in every semester. They have indeed helped me to reinforce my basic knowledge and theories in this field.

Finally, I would like to express my appreciation to my best colleague mate, Mohamad Badrul Hisyam bin Mohd Yusoff, Nuraamnani binti Rosman, Ain Nadia Nadira binti Marafi, Nurulashikin binti Khalil@Azmi, Nurul Atirah binti Mohd Zihat and Auni Fasihah binti Hussin and all my final year project teammates as they are always shared with me their knowledge in completing the study. Thanks for being with me through my ups and downs. Thanks for the support, courage and assist me on writing and so on.

Once again, thanks to all of you.
TABLE OF CONTENTS

SUPERVISOR’S DECLARATION
STUDENTS DECLARATION
ACKNOWLEDGEMENTS
ABSTRACT
ABSTRAK
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF SYMBOLS

CHAPTER 1 INTRODUCTION

1.1 BACKGROUND OF STUDY
1.2 PROBLEM STATEMENT
1.3 OBJECTIVES OF THE STUDY
1.4 SCOPE OF STUDY
1.5 IMPORTANCE OF STUDY

CHAPTER 2 LITERATURE REVIEW

2.1 THEORITICAL BACKGROUND: EARTHQUAKE
2.2 TYPES OF EARTHQUAKE
2.3 SEISMIC WAVES
2.4 EARTHQUAKE MEASUREMENT PARAMETERS
2.4.1 Magnitude

2.5 CAUSES OF EARTHQUAKE

2.5.1 Fault

2.6 EARTHQUAKE LOADS

2.7 PREVIOUS FINDINGS

2.8 RATIONALE AND RELEVANCE OF STUDY

CHAPTER 3 METHODOLOGY

3.1 INTRODUCTION

3.2 INFORMATION AND DATA COLLECTION

3.2.1 Staircase Structure

3.2.2 SAP2000 Program Version 15

3.2.2.1 Modelling

3.2.2.2 Loading

3.2.2.3 Analysis

3.3 LOAD DESCRIPTION

3.3.1 Dead Load and Live Load

3.3.2 Earthquake Load

3.4 SAP2000 COMPUTATIONAL PROGRAM

3.4.1 Steps in SAP2000 Modelling and Analysis

CHAPTER 4 RESULTS AND DISCUSSION

4.1 INTRODUCTION
4.2 STAIRCASE STRUCTURES MODELLING

4.3 STAIRCASE ANALYSIS

4.3.1 Free vibration Analysis

4.3.2 Dead Load and Live Load

4.4 VIRTUAL WORK DIAGRAMS

4.5 TIME HISTORY ANALYSIS

4.6 RESPONSE SPECTRUM ANALYSIS (RSA)

4.7 SUMMARY OF ANALYSIS

4.7.1 Time Period

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

5.2 RECOMMENDATIONS

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.4.1</td>
<td>Scale of magnitude earthquake</td>
<td>21</td>
</tr>
<tr>
<td>2.4.4.2</td>
<td>Earthquake magnitude class</td>
<td>22</td>
</tr>
<tr>
<td>4.7.1.1</td>
<td>Analysis of staircase design</td>
<td>72</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>Typical staircase which supported on slabs</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Stairs which steps are supported on the two girders</td>
<td>3</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Stairs with free-standing landings</td>
<td>4</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Typical helical stairs</td>
<td>4</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Tectonic earthquake</td>
<td>11</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Volcanic earthquake</td>
<td>13</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Collapse earthquake</td>
<td>14</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Kumamoto’s collapse earthquake</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Types of seismic waves</td>
<td>16</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Body waves</td>
<td>17</td>
</tr>
<tr>
<td>2.4.1.1</td>
<td>Modified Mercalli Intensity Scale</td>
<td>21</td>
</tr>
<tr>
<td>2.4.1.2</td>
<td>Seismograph Recorded Indian Ocean Earthquake</td>
<td>22</td>
</tr>
<tr>
<td>2.5.1.1</td>
<td>Types of inter-plate boundaries</td>
<td>24</td>
</tr>
<tr>
<td>2.5.1.2</td>
<td>Elastic strain build-up and brittle rupture</td>
<td>25</td>
</tr>
<tr>
<td>2.5.1.3</td>
<td>Types of faults</td>
<td>26</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Structure design concept for earthquake</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of study</td>
<td>30</td>
</tr>
<tr>
<td>3.2.1.1</td>
<td>Stair AutoCAD drawing</td>
<td>31</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>SAP2000 software</td>
<td>32</td>
</tr>
</tbody>
</table>
4.3.1.1 Mode shape 1 with period of 0.23737 and Mode shape 2 with period of 0.23666

4.3.1.2 Mode shape 3 with period of 0.23596 and Mode shape 4 with period of 0.14220

4.3.1.3 Mode shape 5 with period of 0.10809 and Mode shape 6 with period of 0.10269

4.3.1.4 Mode shape 7 with period of 0.10247 and Mode shape 8 with period of 0.10225

4.3.1.5 Mode shape 9 with period of 0.09451 and Mode shape 10 with period of 0.09422

4.3.1.6 Mode shape 11 with period of 0.09390 and Mode shape 12 with period of 0.09299

4.3.1.7 Staircase modal period and frequencies

4.4.1 Virtual Work Diagram of staircase

4.5.1 Joint displacement vs U1

4.5.2 Joint displacement vs U2

4.5.3 Joint acceleration vs U1

4.5.4 Joint acceleration vs U2

4.6.1 Response spectrum analysis for x and y direction in term of time period

4.6.2 Response spectrum analysis for x and y direction
in term of frequency

71-72
LIST OF FORMULAE

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1</td>
<td>Frequency formulae</td>
<td>41</td>
</tr>
</tbody>
</table>

LIST OF SYMBOLS

- kN: Kilo Newton
- kNm: Kilo Newton meter
- mm: Millimeter
- mm²: Millimeter square

LIST OF ABBREVIATIONS

- RC: Reinforced Concrete
- EC2: EuroCode 2
- EC8: EuroCode 8
- 3D: Three Dimension
- 2D: Two Dimension
- C: Concrete