WASTE TO WEALTH: OIL PALM MESOCARP AND EMPTY FRUIT BUNCH MIXTURE AS A RAW MATERIAL OF ARTIFICIAL BAIT TO CONTROL SUBTERRANEAN TERMITES

ABDUL SYUKOR BIN ABD RAZAK
SURYATI BINTI SULAIMAN
AIMI ILMAR BIN RAMLI
KHOO LAI PENG

PUBLISHER
UNIVERSITI MALAYSIA PAHANG
WASTE TO WEALTH: OIL PALM MESOCARP AND EMPTY FRUIT BUNCH MIXTURE AS A RAW MATERIAL OF ARTIFICIAL BAIT TO CONTROL SUBTERRANEAN TERMITES

ABDUL SYUKOR BIN ABD RAZAK
SURYATI BINTI SULAIMAN
AIMI ILMAR BIN RAMLI
KHOO LAI PENG
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOL</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xix</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Background of Study</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Objectives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.4 Scope of Study</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.5 Significat of Study</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.1 Palm Oil Production in Malaysia</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.2 Empty Fruit Bunch (EFB)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Properties of EFB</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Potential of EFB</td>
<td>16</td>
</tr>
</tbody>
</table>
2.2.3 Utilisation of EFB 18
2.2.4 Decomposing of EFB 19

2.3 Oil Palm Mesocarp (OPM) Fibre 21

2.4 Termites as Structural Pest 23

2.5 Destructive Types of Termites 27
2.5.1 Subterranean Termites 27
2.5.2 Drywood Termites 28
2.5.3 Dampwood Termites 29
2.5.4 Arboreal Nesters 29

2.6 Termite Management System in Buildings and Structures 30

2.7 Termite and Soil 32

2.8 Termite Pest and Management by Continent 34
2.8.1 Africa 34
2.8.2 Americas 35
2.8.3 Asia 36
2.8.4 Australia 37
2.8.5 Europe 37

2.9 Termite Pest Control System 38
2.9.1 Termite Bait 39
2.9.1.1 Commercialised Termite Bait Products 41
2.9.2 Dust 44
2.9.3 Barrier 44
2.8.3.1 Physical Barriers 44
2.8.3.2 Chemical Barriers 46
2.9.4 Mycopesicides 49

2.10 Classification of Pesticides by Hazard 51
2.11 Imidacloprid 52
2.12 Hexaflumuron 53

2.13 Natural Pesticide, *Derris elliptica* 54
2.13.1 Functional Uses of *Derris elliptica* 57
2.13.2 Ecology and Distribution of *Derris elliptica* 58

2.14 Summary 58
3 METHODOLOGY

3.1 Introduction of Methodology
3.2 Development and Planning of Methodology
3.3 Preparation and Pre-process of Raw EFB and OPM Fibres
3.4 In-situ Field Test
 3.4.1 Preparation of Termite Bait Station
 3.4.1.1 Preparation of EFB Raw Material
 3.4.1.2 Preparation of the Bait Container
 3.4.2 Site Investigation and Site Reconnaissance
 3.4.3 Delivering of Artificial Termite Bait
3.5 Ex-situ Laboratory Test
 3.5.1 Evaluation of Fibres as Raw Material in Artificial Bait for Termites
 3.5.1.1 Preparation of the Paper Roll Samples
 3.5.1.2 Experimental Set-up
 3.5.2 Evaluation of Optimum Concentration of Active Ingredient
 3.5.2.1 Preparation of the Imidacloprid Solution
 3.5.2.2 Experimental Set-up
 3.5.2.3 Evaluation of Samples
3.6 Control and Preservation Techniques

4 RESULT AND DISCUSSION

4.1 Introduction
4.2 In-situ Field Experiment
 4.2.1 Data Analysis
 4.2.2 Field Observation
4.3 Ex-situ Laboratory Experiments
 4.3.1 Evaluation of Fibres as Raw Material in Artificial Termite Bait
 4.3.1.1 Result Analysis
4.3.1.2 Laboratory Observation

4.3.2 Evaluation of Optimum Concentration of Active Ingredient

4.3.2.1 Data Analysis

4.3.2.2 Laboratory Observation

4.4 Summary

5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

5.2 Recommendation

5.2.1 The Overall Methodology

5.2.2 Recommendation for Further Researches

REFERENCES

APPENDICES A-J