Mohd Azreen Mohd Anffm Js a semor lec tu rer
111 UmversJtL Tekno logt
Malaysia He obtamed h1s first degree
m Ct v tl
Engmeermg from
UruversJtJ
Malaysta
m
2001 before Jomm g
the
cons rrucnon
mdustry tor tew
year~
before optm g
to
he a le c tu rer
m
C: •v •l
r:n~:<~l
i e ld m
Malays 1an
p ol ytcmc
After c ompletion
of ht s master stud y m
2007
fo m
Umv e rsJtl
Teknolog~ Malay~1a
he
purs u e d
for
doctorate sru dym
th e
s am c unLv c r s Lty
and
gra duat e d
m
2014 A t
prese nt h e
is
activel y tnvn lv c d
m r esearch o f
geo pu lym er
um~rete ~ont·u nmg l
av; u l a hle
I'.
ash~
Nur
!'ar hayu Anflin ts a
dc t ur er
111 Umvcrs JtL M a la ys m
Pa han g
She
com ple ted
Bachelor Mas ters and PhD from
Umvc rslti
Tcknolog1 Malaysta
a nd she has mote
than15
pubhca tt o n s pub h s hed She has been m v o lv c d
m
mul tshc tplm~ry research
projec ts m d tffe r en tfie lds sm ce2010 She
has	num bers of award
wmrung research
produc t a nd has vanous patented
trademarl<
M a lays tan construct ton mdu stry Her
ass octil ed
professiOnal
memhershtp
mdudes Co n crete S o oety
Malaysta
(CSM) and
Ro ad ofEngmecnng Malaysta
(REM)
Nor
Ha~anah
Abdul Shukor
L tm
1~
a PhD g r aduat.-d
~tud.-nt
f r om
O e partm e nt
of S tru c tur e a nd
Maten~ls
Umversi.J
eknologl
Malaysia. S h e
c omplet e d B a ch elo r
a nd
Ma s t ers
m
hie t
is
am ong
th e
A
SEAN
t op
umv crs ti.J es b ase d o n
Q S unt vers tt y
rankmg t cl e a sed
111 2 014 Sh e
h as
more t h a n 1 5
pubh cat10 n s p ubli shed whtlc
com pl c tmg h e r
Ph O s ludt cs
Sh e
has
be e n m v o lv e d
m
mul t dtsctplm~ry
resea rch
projec ts
m
d tffe r en
cent
fie lds
s m ce 2010 She
h as
de vel oped num ber of aw ar d
~mrung
resea rch
produc ts that have been pa ten t ed
t r a demar ked
M a lay sta
c ons t r u ct ton
du stry H er
ass o ctil ed
profes5tonal
memb e rs h p
m cl ud es
l a y sta (CSM) and
Roard ofEngmeenng
M~laysta
(REM)
POFA CONCRETE
THEORY AND APPLICATION

MOHD WARID HUSSIN
KHAIRUNISA MUTHUSAMY
MOHD AZREEN MOHD ARIFFIN
NUR FARHAYU ARIFFIN
NOR HASANAH ABDUL SHUKOR LIM

Publisher
Universiti Malaysia Pahang
Kuantan
2016
TABLE OF CONTENTS

PREFACE vii
ACKNOWLEDGEMENT ix

CHAPTER 1: STRENGTH PERFORMANCE OF POFA CONCRETE
1.0 Introduction 1
1.1 Problem Statement 2
1.2 Gap of Knowledge 2
1.3 Palm Oil Fuel Ash in Normal Concrete 2
 1.3.1 Properties of POFA 2
 1.3.2 Effect of Ash Content on Compressive Strength 5
 1.3.3 Effect of Curing Period 5
 1.3.4 Effect of Curing Regime 6
 1.3.5 Flexural and Textile Splitting Strength 8
1.4 Conclusions 10
References 11

CHAPTER 2: PROPERTIES OF POFA CEMENT BASED AERATED CONCRETE
2.0 Introduction 13
2.1 Problem Statement 13
2.2 Gap of Knowledge 14
2.3 Properties of Aerated Concrete 15
 2.3.1 Effect of POFA Content 15
 2.3.2 Mechanical Properties 16
 2.3.3 Durability Properties 19
 2.3.3.1 Acid Resistance 19
 2.3.3.2 Sulphate Resistance 20
2.4 Conclusions 23
References 24

CHAPTER 3: MECHANICAL PROPERTIES OF OPS LIGHTWEIGHT AGGREGATES CONCRETE
3.0 Introduction 27
3.1 Problem Statement 27
3.2 Gap of Knowledge 28
3.3 Mechanical Properties 28
 3.3.1 Effect of POFA Replacement Level 28
 3.3.2 Compressive Strength 30
 3.3.3 Flexural Strength 32
 3.3.4 Modulus of Elasticity 34
3.4 Conclusion 36
References 37
CHAPTER 4: DURABILITY OF POFA CONCRETE AGAINST SULPHATE AND ACIDIC ENVIRONMENT
4.0 Introduction 39
4.1 Problem Statement 40
4.2 Gap of Knowledge 40
4.3 Mix Design 40
4.4 Durability of POFA Concrete 41
 4.4.1 Sulphate Resistance 41
 4.4.1.1 Mass Change 41
 4.4.1.2 Residual Strength 42
 4.4.2 Acid Resistance 43
 4.4.3 Effect of POFA on Expansion 45
4.5 Conclusions 47
References 48

CHAPTER 5: PROPERTIES OF MORTAR CONTAINING NANO PALM OIL FUEL ASH
5.0 Introduction 51
5.1 Problem Statement 51
5.2 Gap of Knowledge 52
5.3 Nano Palm Oil Fuel Ash 52
5.4 Nano Palm Oil Fuel Ash in Mortar 53
 5.4.1 Chemical and Physical Properties 53
 5.4.2 Morphology and Microstructure 55
 5.4.3 Flow Test 56
 5.4.4 Compressive Strength 56
 5.4.5 Splitting Tensile Strength 57
 5.4.6 Flexural Strength 58
 5.4.7 Drying Shrinkage 59
5.5 Conclusions 60
References 61

CHAPTER 6: PROPERTIES OF BLENDED ASH GEOPOLYMER CONCRETE
6.0 Introduction 63
6.1 Gap of Knowledge 64
6.2 Significance Research 64
6.3 Properties of Geopolymer Concrete 65
 6.3.1 Mechanical Properties 65
 6.3.2 Resistance against Sulfuric Acid 66
6.4 Conclusions 69
References 70
PREFACE

It is without doubt that the inclusion of siliceous admixtures as an essential component of concrete mixture imparts significant enhancement to the basic characteristics of the resulting concrete, both in its fresh and hardened states. The use of pozzolanic materials in concrete is expected to increase as the incorporation of these materials such as fly ash (FA), silica fume and natural pozzolans in concrete, contributes to the enhancement of quality of concrete in terms of its strength and durability. In addition, the incorporation of pozzolanic materials also contributes to the reduction in bleeding, improves workability, reduces heat of hydration, increases the resistance to aggressive chemical attack and minimizes the environmental pollution.

A series of research programmes has been initiated in the Faculty of Civil Engineering of the Universiti Teknologi Malaysia (UTM) to examine various aspects of strength and durability of blended cement concrete since the early nineties. Established in the year 2001, the Faculty of Civil Engineering and Earth Resources of Universiti Malaysia Pahang (UMP) also joined the research league to discover the potential of waste materials for the development of modern sustainable concrete which is in tandem with the Malaysian government policy to implement green technology in the local construction industry. Amongst the features of concrete that were considered significant to the construction sector were the performance behaviour of Palm Oil Fuel Ash (POFA) concrete in marine exposure, the development of high strength concrete using Timber Industrial Ash (TIA) and the application of slag cement based grout for concrete repair in tropical climate. The development of green lightweight aggregates concrete containing waste materials also offers attractive solution to the industry in managing environmental polluting wastes and in-house made lightweight concrete for more economical structural design.

As with the diversified use of the waste materials having pozzolanic character, more products are likely to be materialised for use in concrete. Blended cements are cements where there is a partial replacement of ordinary Portland cement (OPC) with an alternative cementitious material. Recently, blended cements, based on industrial and agricultural wastes, are well known for their improved long-term strength and durability. Pozzolanic materials, either naturally occurring or artificially made, have long been in practice since the early civilisation. FA is the most commonly used artificial pozzolans globally. With the increasing demand of concrete with high-performance characteristics, the need for such pozzolanic materials is also getting higher.
This book, however, presents a comprehensive review of the engineering properties of blended cement concrete incorporating POFA in various concrete types for different applications. The results comprise of test data from the past 20 years investigation carried out at UTM Civil Engineering Laboratory. The contribution of experimental results and research findings from researchers of the Faculty of Civil Engineering and Earth Resources, UMP is also included in this book. It was demonstrated that the use of cement replacement materials not only improved workability but also reduce bleeding significantly. Results on compressive strength reveal that it is possible to replace cement by 30% of POFA without any loss of strength, as explained in Chapter 1.0. Chapter 2.0 highlights the engineering properties of aerated concrete containing POFA as cement replacement. The ensuing chapter, Chapter 3.0 focuses on the mechanical properties of oil palm shell lightweight aggregates concrete produced using palm oil fuel ash as a mineral admixture.

Along with the strength, a number of durability performance data of concrete in aggressive chemical environments were also presented and discussed in Chapter 4.0. The more recent topic on blended cement concrete is the inclusion of nano-size material to enhance the concrete performance. Chapter 5.0 of the book discusses the effect of nano POFA as cement replacement in mortar and concrete. One of the key findings of the study is that the incorporation of 20% nano POFA by weight of cement into concrete exhibits better durability properties than OPC concrete. Furthermore, as CO₂ emissions have become a matter of increasing importance in the construction industry, concrete that uses less cement in its production and utilises a greater amount of waste, such as POFA, offers an environmentally viable solution. Moreover, 100% cement free geopolymer concrete, as described in Chapter 6.0, can be produced by using blended ash such as POFA and FA.

Conclusively, all the scientific results presented highlight the role of POFA in the development of sustainable construction material. Therefore, it is hope that this book will inspire the researcher and industries to collaborate in developing a green material “from waste to wealth”.

Prof. Ir. Dr. Mohd Warid Hussin
(Universiti Teknologi Malaysia)
Dr. Khairunisa Bt. Muthusamy
(Universiti Malaysia Pahang)
ACKNOWLEDGEMENT

This book chapter would not be possible to be produced without the cooperation and teamwork between researchers of the Faculty of Civil Engineering and Earth Resources of Universiti Malaysia Pahang (UMP) and Faculty of Civil Engineering of the Universiti Teknologi Malaysia (UTM). The strong support of Deans from both faculties Dr. Mohamad Idris Ali and Prof. Dr. Khairul Anuar Kassim are gratefully acknowledged. The authors would like to extend their gratitude to the research management centres of both Universiti Malaysia Pahang and Universiti Teknologi Malaysia for funding the researches. A word of thanks also goes to the industries especially local palm oil mills for providing palm oil fuel ash to be used in the researches. Words cannot express our gratitude to editor Assoc. Prof. Dr. Mohamed Abdel Kader Ismail of University Curtin Sarawak for his professional advice and assistance during the preparation of this manuscript. Thank you to Mr. Anwar Abdul Majeed for spending his valuable time to proofread and further polish this manuscript. Our appreciation also goes to Assoc. Prof. Dr. Mohd Ghani Awang and Mr. Muhammad Azli Shukri of UMP Publisher for assisting us in publishing this book chapter. Last but not least, we would like to thank our colleagues, lecturers and family members who supported us during the preparation of this book.