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ABSTRACT 

 

Application of genetic algorithm method to optimize flow shop sequencing problem 

as the title of this project is the study about the method used in order to optimize flow 

shop sequencing problem. Genetic algorithm method was one of the methods that 

were widely used in solving optimization problem. Genetic algorithm method is 

methods that follow the natural concept. Flow shop sequencing problem or also 

known as assembly line problem that normally faced by production company. This 

project will define the application of genetic algorithm method in solving flow shop 

sequencing problem in details and evaluate the strength and weakness of genetic 

algorithm method in order to optimize the optimization problem. This project will 

focusing on the method used to solve an optimization problem, the limitation of the 

method used and the results of solving flow shop sequencing problem using genetic 

algorithm method. At the end of this project, we can see the performance of genetic 

algorithm method in solving flow shop sequencing problem and types of flow shop 

sequencing problems that can be solve through genetic algorithm method. Limitation 

of genetic algorithm method also can be shown at the end of this project. 
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ABSTRAK 

 

Penggunaan kaedah ginetik algoritma dalam mencari nilai optimum bagi masalah 

garis pemasangan sebagai tajuk projek ini adalah kajian tentang cara yang digunakan 

untuk mencari jawapan yang terbaik bagi masalah bahagian pemasangan. Kaedah 

ginetik algoritma adalah salah satu cara yang teleh digunakan secara meluas untuk 

menyelesaikan masalah bagi mendapatkan nilai yang optimum. Kaedah ginetik 

algoritma merupakan cara penyelesaian mengikut keadaan semulajadi. Masalah 

bahagian pemasangan pula selalunya dihadapi  oleh syarikat-syarikat pembuatan. 

Projek ini akan menjelaskan berkenaan aplikasi ginetik algoritma dalam 

menyelesaikan masalah bahagian pemasangan secara terperinci dan mengkaji 

kekuatan serta kelemahan ginetik algoritma dalam mencari jawapan yang optimum. 

Secara keseluruhannya projek ini akan membincangkan dengan lebih mendalam 

berkenaan prestasi ginetik algoritma dalam menyelesaikan masalah bahagian 

pemasangan. Projek ini akan memfokuskan kepada cara yang digunakan untuk 

mendapatkan nilai optimum, mencari kelemahan kaedah ginetik algoritma dalam 

mendapatkan nilai optimum dan hasil penyelesaian masalah bahagian pemasangan. 

Pada pengakhiran projek ini, kita akan dapat melihat prestasi kaedah ginetik 

algoritma dalam mencari nilai optimum bagi masalah mendapatkan nilai optimum 

dalam bahagian pemasangan dan jenis-jenis masalah bahagian pemasangan yang 

dapat diselesakan menggunakanginetik algoritma. Kelemahan-kelemahan kaedah 

ginetik algoritma juga dapat dilihat pada pengakhiran projek ini.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 RESEARCH BACKGROUND  

 

 A flow shop is characterized by unidirectional flow of work with a variety of 

jobs being processed sequentially in a one –pass manner. A job shop, in the other 

hand, involves processing of several machines without any series structure. In the 

past 40 years extensive research has been done on both flow shop and job shop 

problems. A job shop is thus a collection of operation to be performed on an item or 

unit with relevent  technological constraints. Often the operation must be done on all 

jobs in the same order. The machines are assumed to be set up in a series and such a 

processing enviroment is referred to as flow shop ( Baker, 1974). In many 

manufacturing and assembly facilities a number operations need to be done on every 

job. Flow shop sequencing problems (FSP) has been very well studied in the field of 

combinatorial optimization. A combinatorial optimization problem is either 

maximization problem or minimization problem with an associated set of instances 

(Stutzle 1998). Normally, it is the problem faced by the manager in business 

operation. As a manager, they need to make a decision to each activity that will make 

profit to the company.  

 

Flow shop sequencing problems is similar to traveling saleseman problems 

(TSP). The first paper on flow shop sequencing problem was published by Johnson 

in year 1954 (Colin, 1995). The flow shop sequencing problems is generally 

described as follows. There  are m machines and n jobs, each job consists of m 

operations, and each operation requires a different machine. n jobs have to be 

processed in the same sequence on m machines. The majority of the research effort 
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during the past 30 years has been devoted to pure deterministic flow shop sequencing 

problem. Such a problem is usually labeled as n/m/F/cmax, which means n-number of 

job/m-number of machine/F-flow shop/ cmax-maximum flow time (Colin 1995). 

 

Traveling salesman problems (TSP) is one of the most widely studied 

problems in combinatorial optimization (Chatterjee et. al, 1995). The idea of TSP is 

to find a tour of a given number of cities, visiting each city exactly once and 

returning to the starting city where the length of this tour is minimized. Flow shop 

sequencing problems is similar to TSP where the no of cities represent the no of 

machines and length of tour represent time taken to produce a certain product.  

 

1.2 PROBLEM STATEMENTS 

 

Modern production factories, which want to obtain high profits, usually 

maximize their productivity. The latter goal can be achieved, among others, by 

optimal or almost optimal scheduling of jobs in production process. In this thesis, it 

explains about the method used to solve the optimization problems (GA method). 

The objective function is to minimize maximum completion time (makespan). 

 

In sequencing problem, it can be divided into two categories that are job shop 

and assembly line or flow shop. Job shop was sequencing problem that produce a 

product in a small quantity based on the demand while the assembly line was the 

sequencing problem that produce the product in a large quantity. This thesis will 

focus on assembly line problems. 

  

Genetic algorithm method was one of the tools used to solve optimization 

problems. Each of the method such as tabu search, neural networks and genetic 

algorithms should have the limitation for solving optimization problems. Therefore 

this thesis will focus on finding the limitation of genetic algorithm toolbox in solving 

optimization problems. 
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1.3 RESEARCH OBJECTIVES 

  

 The research objectives are: 

 Apply matlab (genetic algorithm tool) to determine the sequence of jobs in 

order to minimize the maximum flow time which is called makespan. 

 To determine the limitation of genetic algorithm toolbox in solving flow shop 

sequencing problems. 

 

1.4 RESEARCH SCOPES 

 

Genetic algorithms (GAs) are intelligent random search strategies which have 

been used successfully to find near optimal solutions to many complex problems. 

Implementation of GA in solving problems often overlooks certain information 

available in a particular problem. Making use of this information may need 

modification of the coding of the search space and of the operators constituting GA. 

This is a problem specific task. This thesis hopes to address this issue with regard to 

solving the permutation flow shop problem. From the time onwards, this will refer as 

the flow shop problem, since it consider only the permutation flow shops. A 

permutation flow shop is a job processing facility which consists of several machines 

and several jobs to be processed on the machines.. The questions pose in order to 

implement the improved search heuristic can be extended easily to a host of 

scheduling problems with single and multi-objective optimization criteria. 

 

Flow shops are useful tools in modeling manufacturing processes. In a 

permutation flow shop all jobs follow the same machine or processing order. Flow 

shop refers to the fact that job processing is not interrupted once started. Our 

objective is to find a sequence for the jobs so that the makespan or the completion 

time is minimized. It is well known that this is a difficult problem to solve in a 

reasonable amount of time.  
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1.5  RESEARCH METHODOLOGY 

 

This research is conducted under three main steps. The first step is the 

literature review. In literature review, the previous method that used to solve flow 

shop sequencing problems are modeled and simulated to ensure the algorithm are 

working as reported in scientific literatures. Then, the existing algorithms limitations 

are identified. 

 

From the previous limitations method, a new sequencing problem is 

developed as the purpose solution to optimize the flow shop sequencing problem. In 

order to prove that genetic algorithm was one of the methods that could solve flow 

shop sequencing problem, various kind of problem will be perform.  The results of 

the performance will be analyst as the final step of this research.  

 

Numerical experiment of flow shop sequencing problems is performed using 

the following setup: 

 MATLAB Version 7.0 

 Acer aspire 4520 notebook 

 1.7 Gigahertz of CPU 

 1.5 Gigabyte of RAM 



 

 

 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

This chapter explain the flow shop sequencing problems in general. This 

chapter also contain about previous research on flow shop sequencing problem. 

There was also an explanation to the genetic algorithm (GA) method and the steps 

that we need to follow to solve the problem using GA method. In the end of this 

chapter, it discuss about the method used (GA method) to solve the flow shop 

sequencing problems. 
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2.2 FLOW SHOP SEQUENCING PROBLEM 

 

 

 

Figure 2.1 Classification of sequencing problem 

Source taken from 

J. E. Day and M. P. Hottenstein, “Review of Sequencing Research,”Nav. Res. Logist. 

Quart., vol. 17, pp. 11–39, 1970. 

 

Figure 2.1 show the classification of sequencing problem. Flow shop 

sequencing problems has been very well studied in the field of combinatorial 

optimization. The idea of flow shop sequencing problems have begin since year 1954 

when Johnson published the first paper of flow shop sequencing problem. Since then, 

this problem has held the attention of many researchers. The flow shop sequencing 

problems are generally described as follows. There  are m machines and n jobs, each 

job consists of m operations, and each operation requires a different machine. The 

flow shop sequencing problem may be classified into three following categories: 

 Deterministic flow shop problem 

 Stochastic flow shop problem  

 Fuzzy flow shop problem 

 

Deterministic problems assume that fixed processing times of jobs are known. In 

the stochastic cases, processing times vary according to chosen probability 

distribution. In fuzzy decision context, a fuzzy due date is assigned to each to 



7 

 

 

represent the grade of satisfaction of decision makers for the completion time of the 

job.  

 

2.2.1 Sequencing flow shop objective. 

 

The flow shop sequencing problem involves the determination of the order of 

processing jobs over machines to meet a desired objective while all jobs have the 

same machine sequence. Normally most of the desired objectives have been devoted 

to makespan minimization and the flow time minimization. Practically, by 

minimization the makespan will lead to the minimization of the total production run, 

while minimization of flow time leads to stable or even utilization of resources, rapid 

turn-around of jobs and the minimization of in-process inventory. These clearly show 

that both objectives can be used to reduce cost significantly (Gupta and Dudek 

1971). In sequencing flow shop the problems depends on the number of machine, 

number of jobs, the flow shop and the maximum flow time that was fixed by the 

company. Therefore, there is various kind of problem can be made up. 

 

2.3 TRAVELLING SALESMAN PROBLEM (TSP). 

 

Travelling salesman problem (TSP) is one of the most widely studied in 

combinatorial optimization (Chatterjee et. al, 1995). The idea of TSP is to find a tour 

of a given number of cities, visiting each city exactly once and returning to the 

starting city where the length of this tour is minimized. Flow shop sequencing 

problems (FSP) or also known as assembly line problems actually followed the 

concept of TSP. There was only a few different between TSP and FSP problems.  

 

For TSP, the problems focus on finding the shortest length in order to 

minimize the time taken for the whole city visited. While for FSP, the problems 

focus on finding the best sequence in assembly line in order to minimize the time 

taken to produce a product. The different for TSP and FSP only on the problems that 

want to be solve.  
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TSP represent by the number of city visited while for TSP, the problems 

represent by the number of machine used in the assembly line. There is also one 

major different between TSP and FSP. The assembly line problems actually end at 

the last process or machine and it is different with TSP where the length was taken 

until the salesman return to the starting point.      

 

2.4 GENETIC ALGORITHM.  

 

Genetic Algorithm (GA) is an optimization technique, based on natural 

evolution. It was introduced by John Holland in 1975 (Othman 2002). This technique 

copied the biological theory, where the concept of “survival of the fittest” exits. GA 

provides a method of searching which does not need to explore every possible 

solution in the feasible region to obtain a good result (Othman 2002). 

 

In nature, the fittest individuals are most likely to survive and mate. 

Therefore the next generation should be fitter and healthier because they were bred 

from healthy parents. This same idea is applied to a problem by first “guessing” 

solution and then combining the fittest solutions to create a new generation. The 

genetic algorithm consist five steps, that is: 

1. Encoding  

2. Evaluation  

3. Crossover 

4. Mutation 

5. Decoding 

 

2.4.1 Encoding 

 

A suitable encoding is found for the solution to a problem so that each 

possible solution has a unique encoding and the encoding is some form of string. 

Many possible solution need to be encoded to create a population. The traditional 

way to represent a solution is with a string of zeroes (0) and ones (1). However 

genetic algorithms are not restricted to this encoding (Chatterjee et.al 1996). 
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2.4.2 Evaluation  

 

 The fitness of each individual in the population is then computed; this is how 

well the individual fits the problem and whether it is near the optimum compared to 

other individuals in the population. This fitness is used to find the individual‟s 

probability of crossover. Evaluation function is used to decide how good a 

chromosome is. This function is also known as objective function (Bryant 2001). 

 

2.4.3 Crossover  

 

Crossover is where the two individuals are recombined to create new 

individuals which are copied into the new generation. Not every chromosome is used 

in crossover. The evaluation function gives each chromosome a „score‟ which is used 

to decide the chromosome‟s probability of crossover. The chromosome is chosen to 

crossover randomly and the chromosomes with the highest scores are more likely to 

be chosen.  

 

2.4.4 Mutation   

 

Mutation, which is rare in nature, represents a change in gene. It may lead to 

a significant improvement in fitness, but more often has rather more harmful results. 

Mutation is used to avoid getting trapped in a local optimum. The chromosome is 

naturally near the local optimum and very far from the global optimum (possible 

solution) due to the randomness process. Some individuals are chosen randomly to 

be mutated and then a mutation point is randomly chosen. Mutation causes the 

character in the corresponding position of the string changed (Negnevitsky 2002). 

 

2.4.5 Decoding  

 

On all the four processes are done, a new generation has been formed and the 

process is repeated until some stopping criteria have been reached. At this point the 

individual who is closest to the optimum is decoded and the process is complete 

(Bryant 2000).     
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2.5 CHROMOSOME REPRESENTATION IN GA.  

 

In genetic algorithms, each individual that is a member of the population 

represents a potential solution to the problem. This solution information is coded in 

the associated chromosome of that individual. A chromosome is a string of gene 

positions, where each gene position holds an allele value that constitutes a part of the 

solution to the problem. Allele value at a gene position represents an element from a 

finite alphabet. This alphabet depends on the nature of the problem. There are 

number of possible chromosome representations, due to vast variety of problem 

types. However there are two representation types which are most commonly used: 

binary representation and permutation representation (Bryant 2000). In genetic 

algorithms method, binary representation method is the most commonly used in 

chromosome representation (Bjarnadottir 2004). 

 

2.5.1 Binary Representation 

 

In binary representation, the finite alphabet domain which allele at each gene 

position takes its value from is the set {0, 1}. An example of problem to minimize 

the function of = 3x
3
 + 4x

2
 – 7x +1 over the integers in set {0, 1, …, 15}. The binary 

number for the integer set was represented in table figure 2.1. The possible solution 

for the problem are obviously just numbers, so the representation is simple the binary 

form of each number. For example, the binary representation of 8 and 14 are 1000 

and 1110 respectively. For initial chromosomes (1000 and 1110) which represent 

value 8 and 14, the evaluation are perform by calculating the fitness function above. 

 f (8) = 3(8
3
) + 4(8

2
) – 7(8) + 1 

         = 1737 

 f (14) = 3(14
3
) + 4(14

2
) – 7(14) + 1   

           = 8919 

 

Obviously 8 is better solution than 14 (since f (8) is lower than f (14)) and 

would therefore have a lower fitness. The initial chromosomes then are being re-

generated by using simple crossover. 

  P1 = 1000 
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  P2 = 1110  

 

Then the crossover point is randomly chosen. In this example, the crossover 

point is after the second gene. 

  P1 = 10 00 

  P2 = 11 10 

 

The genes are switched after the crossover point and give the new offspring 

as follow: 

   P1 = 1010 = 10 

  P2 = 1100 = 12 

 

Therefore the new offspring are 10 and 12. This number will be evaluated as 

above. These procedures are continuous to evaluate and re-generate new offspring 

until a termination criteria is satisfied (Bjarnadottir 2004). 
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Table 2.1: Binary number representation 

 

  

2.6 SIMPLE PROBLEM 

 

An explanation through an example as shown below was presented in order 

to get better understanding in genetic algorithm (GA) method. Let try to find the 

maximum value of the function (12x – x
2
).  Thus, chromosome can be build with 

only 4 genes. As stated in the project scope, suppose that the crossover probability pc 

equal 0.7, mutation probability pm equals 0.001 and the chromosome population N is 

6. 

 

The next step is to calculate the fitness of each individual chromosome. We 

take 5, 3, 10, 7, 1 and 9 as the possible answer to the problem. The results are shown 

in table 2.2. In order to improve it, the initial population is modified by using 

selection, crossover and mutation, the genetic operators.  

Real number                                                Binary number 

0                                                                       0000 

1                                                                       0001 

2                                                                       0010 

3                                                                       0011 

4                                                                       0100 

5                                                                       0101 

6                                                                       0110 

7                                                                       0110 

8                                                                       1000 

9                                                                       1001 

10                                                                      1010 

11                                                                      1011 

12                                                                      1100 

13                                                                      1101 

14                                                                      1110 

15                                                                      1111 
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In natural selection, only the fittest species can survive, breed, and thereby 

pass their genes on to the next generation. GAs uses the similar approach, but unlike 

nature, the size of the chromosome remains unchanged from generation to the next. 

  

Table 2.2: The initial randomly generated population of chromosomes 

 

Chromosome    Chromosome        Decoded           Chromosome         Fitness 

Label                string                integer                 fitness                ratio (%) 

 

X1                    0101                      5                          35                      22.6 

X2                    0011                      3                          27                      17.4 

X3                    1101                     10                         20                      13.0 

X4                    0111                      7                          35                      22.6 

X5                   1001                      9                          27                      17.4 

          X6                    0001                      1                          11                       7.0 

                       Total                      30                        155                      100 

 

The values of chromosome fitness in the third column in table 2.2 were 

determine by change the value of x in the function (12x – x
2
) with decoded integer 

for each chromosome. The fitness ratio in the last column in table 2.2 determines the 

chromosome‟s chance to be selected for mating. The values of the fitness ratio were 

determined by dividing the value of the chromosome fitness for each chromosome 

with the total value of chromosome fitness. Thus, the chromosome X1 and X4 stands 

a higher change to be selected while chromosome X6 has a very low probability to 

be selected. As a result, the chromosome with average fitness improves from one 

generation to the next.  

 

One of the most commonly used chromosome selection techniques is the 

roulette wheel selection (Davis, 1991). Figure 2.2 illustrates the roulette wheel as an 

example. As shown in figure 2.1, each chromosome is given a slice of a circular 

roulette wheel. The area of the slice within the wheel equal to the fitness ratio value 

(see table 2.2). To select the chromosome for mating, a random number is generated 

in interval [0, 100]. It is like spinning a roulette wheel where each chromosome has a 
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segment on the wheel based on the fitness ratio. The roulette wheel is spun, and 

when the arrow comes to rest on the segments, the corresponding chromosome is 

selected for mating. The roulette would be spun six times because we have an initial 

population of six chromosomes. 

 

 

 

Figure 2.2: Roulette wheel 

 

Once a pair or parents is selected, the crossover operator is applied. First the 

crossover operator randomly chooses a crossover point where two parents 

chromosomes „break‟ and then exchanges the chromosome part after that point. As a 

result two new offspring are created. The process will continue with the other two 

pairs of parent chromosomes. Finally, six new offspring will create. A value of 0.7 

for the crossover probability generally produces good results.  

 

A mutation process will take over after the crossover finish. The mutation 

operator flips a randomly selected gene in a chromosome. Mutation can occur at any 

gene in a chromosome with some probability. The mutation probability is quite small 

in nature, and is keep quite low for gas, typically in the range 0.001 to 0.01 as stated 

before in project scope. 
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The process from evaluation of the fitness function until the mutation process 

will be repeated several times. The numbers of cycles depend on the performance of 

the computer. Genetic algorithm (GA) method does not provide an exact solution to 

the problem. It will produce several solutions near to the exact solution. The final 

answer to the problem depends on the objective that has been set and it is up to us to 

choose the suitable solution based on the objective. 

 

2.7 GENETIC ALGORITHM IN SEQUENCING FLOW SHOP 

 

In genetic algorithm method, the encoding, crossover and mutation process 

will give different forms. The different forms of crossover and mutation process in 

genetic algorithm method can be combined to give various genetic algorithms that 

can be used to solve the flow shop sequencing problem. 

 

The first step in applying GA to a particular problem is to convert the feasible 

solutions of that problem into a string type structure called chromosome. In order to 

find the optimal solution of a problem, standard GA starts from a set of assumed or 

randomly generated solution (chromosome) called initial population and evolve 

different but better set of solution (chromosome) over sequence of generation. In 

each generation the objective function (fitness measuring criterion) determines the 

suitability of each chromosome and based on the values, some of them are selected 

for reproduction. The number of copies reproduced by an individual parent is 

expected to be directly proportional to its fitness value, thereby embodying the 

natural selection procedure, to some extent. The procedure thus selects the better 

(highly fitted) chromosomes while the worse chromosome are eliminated. Genetic 

operators such as crossover and mutation are applied to these (reproduced) 

chromosomes and new chromosomes (offspring) are generated. These new 

chromosomes constitute the next generation. This iteration continues until some 

termination criterion is satisfied (Srikanth and Saxena 2004). 

 

The fitness function plays an important rule in genetic algorithms because it 

is used to decide the quality of a particular chromosome. Generally, different types of 
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problems use different fitness functions. There are five assumptions for this kind of 

problem to be modeled in general. The assumption as follow: 

 The operation processing times on the machines are known, fixed and some 

of them may be zero if some job is not processed on a machine. 

 Set-up times are included in the processing times and they are independent of 

the job position in the sequence of jobs, 

 At a time, every job is processed on only one machine and every machine 

processed only one job. 

 The job operations on the machine may not be preempted. 

 

In general there are four steps to be followed when implementing genetic 

algorithm (GA) for flow shop sequencing problem FSP). 

1. = initialization 

2. = representation 

3. = evaluation and selection 

4. = generating new offspring 

 

2.7.1 Initialization  

 

Initialization step consists of establishing initial chromosomes and parameter 

setting such as probability of crossover and mutation. The number of generation also 

is set here as termination criteria for algorithm. The traditional method of generating 

an initial population is to randomly sample the search space. By initializing the first 

population with entirely random solutions, the GA receives a complete freedom to 

evolve any solutions that will fulfill the problem specification. The GA can create 

novel and potentially unconventional solution (Kim et. Al 1996). 

 

2.7.2 Representation  

 

Representation plays an important role in searching optimal solution. It is 

very important in GA because it will affect the entire results of algorithm. 

Representation means how the chromosome is encoded. It is important to ensure that 

the chromosome represents the actual problem that needs to be simulated. An 
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important issue that effects the chromosome representation is how fast it can be 

repaired and comes out with feasible chromosome (Rekiek 2001). Apart from 

benefits of speeding up execution time, which is the main reason heuristic method 

are used, fast excess to repair chromosome can heavily affects speed of generation to 

optimal solution. (Rekiek 2001). As stated by Othman (2002), it os difficult to 

achieve optimal solution if the chromosome representation is not suitable. A poorly 

designed chromosome representation can be useless and should be abandoned in 

favor of other steps in genetic algorithm (Rekiek 2001, Othman 2002). 

 

2.7.3 Evaluation and selection 

 

Evaluation of chromosome is performed by applying a fitness function to 

each chromosome. It measured the quality of chromosomes. The fitness values then 

influence the selection of chromosomes to be re-generated. When selection is 

performed, the best individual is eventually selected to completely take over the 

population. Selection of chromosomes is the guidance for GA to generate better 

solution (Carter 2004). 

 

2.7.4 Generation of new offspring 

 

The selection mechanism does not introduce any new chromosome for 

consideration. It just copied some solutions to form an intermediate population. The 

second step of evaluation cycle is recombination, which will introduce new 

chromosome into population. This is done by genetic operators: crossover and 

mutation (Rekiek 2001).  

 

The simple version of this operator inherits individuals as they are. The most 

popular one is the crossover where two individuals are selected and are mated 

(crossed-over) in order to produce offspring (Zhang and Yassine 2004). Information 

is extracted from the parents and is used to create offspring. The aim of crossover is 

to produce new solutions in region of search space where successful ones have 

already been found. Mutation introduces random changes to chromosomes. It is a 

mechanism that has only a small change of occurring. This does not mean that the 
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mutation operator is useless. Indeed, in absence of diversity, the crossover would 

again fall into the trap of non-representative sampling, because the progeny would be 

identical to the parents. The mutation also creates new points containing some of the 

gene from parent chromosome (Moon et. al 2002).                                

 



 

 

 

 

 

CHAPTER 3 

 

 

METHODOLOGY 

 

 

3.1 INTRODUCTION 

  

This chapter is focused on the methodology process. Before the problem can 

be solve using genetic algorithm method, there will be steps that must be follow. In 

this chapter, all the important steps to solve the problem are stated. The flow of the 

project from the beginning until the end of the project is also stated.  
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3.2 PROJECT FLOW CHART  

 

 

 

Figure 3.1 Overall process flow chart 

 

3.3 PROBLEM IDENTIFICATION (step 1) 

 

A problem related to sequencing flow shop will be identified before a further 

movement can be made. During this process, data collection will be made from the 

real situation such as the data from the company or collecting data from the thesis 
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that have been studied in literature review. The data taken then will be evaluate, in 

order to used the genetic algorithm method. 

 

3.4 GENETIC ALGORITHM METHOD (step 2) 

 

In genetic algorithm method, there are five steps that must be followed before 

final solution can be evaluated. The steps in genetic algorithm are as stated below: 

1. Encoding 

2. Evaluation 

3. Crossover 

4. Mutation 

5. Decoding  

 

3.4.1 Encoding process 

 

The data that have been collected will go through the encoding process before 

it can be solve. Encoding process was the most important part in genetic algorithm 

method. This process was also the most difficult process in genetic algorithm. In 

encoding process we need to convert the real problem that is the data collected into 

computer language. 

 

3.4.2 Evaluation process  

 

The fitness of each individual in the population is then computed. In 

evaluation process the evolution function is used to decide how good a chromosome 

that represents a possible solution to the problem. This function is also known as 

objective function (Bryant 2001) 

 

3.4.3 Crossover process 

 

The crossover process is where the two individuals are recombined to create 

new individuals which are copied into the new generation. The crossover probability 

was set in the range of 0.5 to 0.7 and normally 0.7 will be selected as the crossover 
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probability. The crossover process will provide new offspring that represents a better 

solution to the problem. 

 

3.4.4 Mutation process 

 

The chromosome is naturally near the local optimum and very far from the 

global optimum (possible solution) due to the randomness process. Therefore, 

mutation process will take place to prevent the chromosome near the local optimum. 

The probability for mutation process was set in the range of 0.001 to 0.01. 

 

3.4.5 Decoding process 

 

The process will be repeated from steps one to step four several times based 

on the performance the computer before decoding process take place. Decoding 

process was the final process in genetic algorithm method. In this process, the 

possible solution will be converted from computer language into a better 

understanding language (real situation). The possible solution will be selected from 

the solutions given from the genetic algorithm method based on the objective of the 

project. 

 

3.5 GENETIC ALGORITHM METHOD FLOW CHART (step 3) 

 

Figure 3.2 in the next page represent the overall computer process for genetic 

algorithm method: 
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Figure 3.2 Genetic Algorithm Procedures for FSP 
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CHAPTER 4 

 

 

NUMERICAL EXPERIMENT 

 

 

4.1 INTRODUCTION 

 

Chapter 4 is dealing with numerical experiment of flow shop sequencing 

problem. This chapter started with experiment setup, finding the real case study and 

then numerical experiment results. Genetic algorithm toolbox in math lab 

programming is used to run the experiment. Genetic algorithm toolbox was design to 

solve optimization problems without writing the programming for each problem that 

want to solve. 

 

4.2 GENETIC ALGORITHM AND DIRECT SEARCH TOOLBOX 

 

Genetic Algorithm and Direct Search Toolbox extends the optimization 

capabilities in MATLAB and Optimization Toolbox with tools for using genetic 

algorithms, simulated annealing, and direct search. These algorithms can be used for 

problems that are difficult to solve with traditional optimization techniques, 

including problems that are not well defined or are difficult to model mathematically. 

It also can be used when computation of the objective function is discontinuous, 

highly nonlinear, stochastic, or has unreliable or undefined derivatives. Genetic 

Algorithm and Direct Search Toolbox complements other optimization methods to 

help find good starting points. Traditional optimization techniques then can be used 

to refine the solution. 

 

Toolbox functions, accessible through a graphical user interface (GUI) or the 

MATLAB command line, are written in the open MATLAB language. This means 

http://www.mathworks.com/products/optimization/
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that the algorithms can be inspected, modify the source code, and created custom 

functions by own self. The Genetic Algorithm Tool is a graphical user interface that 

enables to use the genetic algorithm without working at the command line. 

 

4.2.1 Genetic Algorithm Toolbox 

 

The genetic algorithms solve optimization problems by mimicking the 

principles of biological evolution, repeatedly modifying a population of individual 

points using rules modeled on gene combinations in biological reproduction. Due to 

its random nature, the genetic algorithm improves chances of finding a global 

solution. 

 

The Genetic Algorithm and Direct Search Toolbox provide the following 

standard algorithm options. 

 

Table 4.1: Overview of genetic algorithm toolbox 

 

Step Algorithm Option 

Creation Uniform  

Fitness scaling Rank-based, proportional, top (truncation), linear scaling, shift 

Selection Roulette, stochastic uniform selection (SUS), tournament, uniform 

Crossover Arithmetic, heuristic, intermediate, scattered, single-point, two-point 

Mutation Adaptive feasible, Gaussian, uniform 

Plotting Best fitness, best individual, distance among individuals, expectation of 

individuals, range, diversity of population, selection index, stopping 

conditions  

 

Genetic algorithm method using genetic algorithm toolbox provide user to 

key in the data based on the objective of the problems. All the data that need to be 

key-in in the toolbox was stated as below: 

 Population size  
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 Crossover fraction  

 Mutation fraction 

 Fitness function 

 

4.2.1.1 Population size 

 

The population size was the part where the user can set how large the process 

of solving the problems before the user gets the exact solution. It determines how 

many round of process solving using genetic algorithm technique starting from 

crossover until mutation process. The greater number of population size will provide 

the solution that almost the exact answer. As stated before in chapter 2, genetic 

algorithm method cannot give an exact solution to the problem.  

 

Genetic algorithm methods only provide the solution that almost the exact 

solution. To be able to get the solution that nearer the exact solution, a greater 

number of population sizes were suggested. Normally the user will used 100 as a 

population size to solve the problem. 

 

4.2.1.2 Crossover fraction 

 

Crossover fraction was the percentage that definite which chromosomes are 

selected to mate each other to produce new generation of chromosome. The 

chromosome that was produce contains genes or in other words the possible answer 

of the problems. The greater number of crossover fraction will increase the 

percentage of the chromosome to be selected. Based on the previous researcher that 

is Moon, 0.6 was set as the crossover fraction. 

 

4.2.1.3 Mutation fraction 

 

Crossover fraction was the percentage that the user set for the new generation 

of chromosome to be selected for mutation process. The new generation of 

chromosome that was produced from crossover process will continue the genetic 

algorithm technique with mutation process. The mutation process will modified the 
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selected chromosome in order to determine the nearest answer with the exact 

solution. Normally the percentage of the chromosome to be selected for mutation 

process is small. Therefore, the user should set the small number for the mutation 

fraction. 0.2 was set as the mutation fraction to solve the problems in this thesis 

based on the previous researcher Moon.  

 

4.2.1.4 Fitness function 

 

The fitness function represents the problem that the users want to solve. 

Therefore, it was the most important part before the problem can be solve. In fitness 

function section, it converts the problem into mathematical equation. It is depends on 

the user how to convert the problem into the mathematical equation.  

 

For this section, the creativity of the user to convert the problem was the most 

important things. If the user cannot convert the problems into mathematical equation, 

the process of solving problem cannot continue.   

 

4.2.2 Displaying, Monitoring, and Outputting Results 

 

The toolbox includes a number of plotting functions for visualizing the 

optimization problems. These visualizations give  live feedback about the problem 

solving, enabling the user to make modifications while executing. Specific plotting 

functions are provided for both the genetic algorithm and direct search algorithms. 

The plotting functions include function value, score histogram, genealogy, and 

fitness value, mesh size, and function evaluations. Multiple plots also can be showing 

altogether in a graph or select specific plots for closer examination. 

 

The genetic algorithm toolbox is provided in matlab software version 7.0. 

The toolbox can be called out by typing „gatool‟ in mathlab workspace. An example 

of genetic algorithm toolbox was given in figure 4.1 
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Figure 4.1: Genetic algorithm toolbox 

 

4.3 CASE STUDY І: NEXUS ELECTRONIC SDN. BHD. 

 

The case study І was taken from the real situation of optimization problem. 

The data was taken from an electronic company, Nexus Electronic Snd Bhd , Jaya 

Gading, Kuantan. The general manager of the company was Mr. CH Chong and 

technical director was Mr. Ismail b Md Dom. Nexus Electronic Sdn Bhd produces 
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various types of transformer and toroid. They produce 5000-6000 transformers and 

1000-1200 toroid per day with 115 workers. The picture of the transformer and 

toroid were given in figure 4.2 and figure 4.3 All the product that was produce was 

then send to Nemic-Lamdar that acts as nexus main customer. The objective of case 

study І is to find the fastest time to produce their product therefore the company can 

maximize their production per day. 

.   

 

 

Figure 4.2: Transformer 
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Figure 4.3: Toroid 

 

The precedence diagram for toroid production was same with the precedence 

diagram for transformer production. Therefore the precedence diagram in figure 4.4 

below represents precedence for both products 

. 

 

 

Figure 4.4: Precedence constraint for case study І: Nexus Electronic Sdn Bhd 

The transition time for case study І: Nexus Electronic Sdn Bhd is given in 

table 4.2 for transformer production and table 4.3 for toroid production. 
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Table 4.2: Processing and transition time for transformer production 
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FIRST 
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63 
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- - - - - - - - 
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20 
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ASSEMBLY 
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Table 4.3: Processing and transition time for toroid production 

 

TASK 
O

Q
A

 

W
IN

D
IN

G
 

F
IR

S
T

 A
S

S
E

N
B

L
Y

 

A
T

E
 

S
E

C
O

N
D

 A
S

S
E

M
B

L
Y

 

T
O

U
C

H
 U

P
 

V
A

R
N

IS
H

 

F
IN

A
L

 T
O

U
C

H
 U

P
 

Q
C

 

P
A

C
K

IN
G

  

P
R

E
- 

P
R

E
P

A
R

A
T

IO
N

 

PRE-

PREPARATOIN 

15     

(s) 
- - - - - - - - - - 

WINDING - 
850 

(s) 
- - - - - - - - - 

FIRST 

ASSENBLY 
- - 

50 

(s) 
- - - - - - - - 

ATE - - - 
14(

s) 
- - - - - - - 

SECOND 

ASSEMBLY 
- - - - 

45 

(s) 
- - - - - - 

TOUCH UP - - - - - 
65 

(s) 
- - - - - 

VARNISH - - - - - - 
2700

(s) 
- - - - 

FINAL TOUCH 

UP 
- - - - - - - 

50 

(s) 
- - - 

QC - - - - - - - - 
30 

(s) 
- - 

PACKING  - - - - - - - - - 
8      

(s) 
- 

OQA - - - - - - - - - - 
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4.3.1 Numerical Experiment Results for Case Study І: Nexus Electronic Sdn 

Bhd 

 

There are no results to display for case study І: Nexus Electronic Sdn Bhd . 

 

4.3.2 Analysis of Numerical Experiment Results for Case Study І: Nexus 

Electronic Sdn Bhd 

 

There are no results to display for case study І: Nexus Electronic Sdn Bhd 

because the limitation of genetic algorithm method using genetic algorithm toolbox. 

Each optimization method will have the limitation in solving the problems. The same 

reason goes to genetic algorithm method using genetic algorithm tool 

. 

Because of the limitation for each method developed various type of solving 

method has been proposed. In the field of optimization problem, various methods 

have been developed such as neural network, tabu search and genetic algorithms. All 

of the optimization method will have the limitation and method used is depends on 

type of problem to optimize. 

 

From the precedence diagram in case study І: Nexus Electronic Sdn Bhd it 

showed that each job must be done by following the sequence given. As an example, 

to be able to do winding process pre-preparation process must be done first. It is 

same goes to ATE process that must complete the winding process before it can be 

perform. To be able to produce a complete transformer or toroid, it must follow the 

sequence from pre-preparation until outgoing quality assurance by following the 

sequence given as shown in figure 4.1.  

 

From case study І: Nexus Electronic Sdn Bhd , it clearly showed the 

limitation of genetic algorithm method using genetic algorithm toolbox. As it is 

shown in case study І: Nexus Electronic Sdn Bhd , the problem that consists of 

process that must perform by following the sequence cannot be solving in genetic 

algorithm toolbox.  
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4.4 CASE STUDY ІІ: PROCESS FLOW SHOP WITHOUT PRECEDENCE 

CONSTRAINT PROBLEM (TSP CONCEPT).  

                   

Case study ІІ was focused on the process flow shop without precedence 

constraint. Flow shop sequencing or assembly line problems without precedence 

constraint were similar with traveling salesman problem (TSP). As stated in chapter 

2, TSP concept deal with the distance take between the city visited but for assembly 

line it deals with the time taken between each machine. A simple problem was 

illustrated in figure 4.5 to represent the process flow shop without precedence 

constraint problem. 

 

 

 

Figure 4.5: Process flow shop without precedence constraint 

 

Figure 4.5 represent the process flow shop without precedence constraint 

problem. The number 1, 2, 3, 4, 5 and 6 as shown in figure 4.5 represent the number 

of machine used in an assembly line problem. The problem was not restricted to start 

at a certain machine and end at certain machine because it was the problem without 

precedence constraint. Therefore, the process of solving the problem can be starting 

at any machine as long as all the machines were used. As an example, the assembly 

line process can start at machine number 5, 4, 1, 6, 3 and end at machine number 2. 

1 

5 
6 

2 
4 

3 
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The main objective of this problem was to determine the best sequence that can 

produce the minimum transition time. By minimizing the transition time, the number 

of product can be increase in a certain time. The time taken for transition time from 

each machine was assumed as constant in order for the problem to be able to solve 

using genetic algorithm toolbox.  

 

4.4.1 Numerical Experiment Results for Case Study ІІ: Process flow shop 

without precedence constraint problem 

 

The results for case study ІІ are shown in table 4.4, figure 4.6 and figure 4.7. 

 

Table 4.4 Comparison table for the possible solution 

 

No. of 

machine 

Possible solution 

Weight 1       Weight 2       Weight 3       Weight 4        Weight 5  

      1                0.13154          0.17859         0.17853          0.1317             0.53953 

      2                0.23991          0.1014           0.32356          0.00371           0.00569 

      3                0.2313            0.32285         0.02599          0.57006           0.14117 

      4                0.02233          0.07679         0.32633          0.28427           0.22039 

      5                0.06098          0.27845         0.1134            0.27721           0.19877 

     6                 0.012672        0.1247           0.19187          0.40851           0.22841 

Best fitness     0.8128            1.0828           1.1587             1.6755              1.334 
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Figure 4.6: Performance graph 
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Figure 4.7: Results after running genetic algorithm toolbox 

 

4.4.2 Analysis of Numerical Experiment Results for Case Study ІІ: Process 

Flow Shop without precedence constraint problem 

 

From the problem given, there were several possible sequences that can be 

constructing.  In order to give a clear view on how the best sequence was selected, 

comparison between five possible sequences have been made. Table 4.4 shows the 

comparison for the possible solution that can minimize the transition time. The 

Results  
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transition time for each machine was assumed as constant. Therefore, all the numbers 

that shown in table 4.5 in the possible solution column represented as weight for 

transition time for each machine starting from machine number 1 until machine 

number 6. 

 

Five different kind of analysis has been done using genetic algorithm toolbox 

and the result was as shown in table 4.5. From the results given in table 4.5, there 

were five different sequences that can be constructed based on the results. The 

sequences were constructed based on the orientation from the lowest number of 

weight until the highest number of weight. This is because by performing the fastest 

process first, the production time can be minimizing by reducing the wasting time 

from the longest process. 

 

The sequence for weight 1 was 6, 4, 5, 1, 3, and 2. For weight 2, the sequence 

was 4, 2, 6, 1, 5, and 3. It was followed by weight 3 with the sequence 3, 5, 1, 6, 2, 

and 4. For weight 4 and weight 5 the sequence was 2, 1, 5, 4, 6, 3 and 2, 3, 5, 4, 6, 1.  

 

The best sequence was determined by selecting the lowest fitness function 

value. Therefore, weight 1 was selected as the best answer for the case study ІІ with 

0.8128 as fitness value as shown in table 4.4. The fitness function was calculated by 

adding all the weight for each machine. As a result of the analysis, 6, 4, 5, 1, 3, and 2 

sequence was selected as the best sequence that can minimize the transition time. 

 

The performance graph for the best sequence that is the sequence for weight 1 

was shown in figure 4.6. The value of the fitness function can be determined from 

the graph given in figure 4.6. The value of the fitness function was selected by 

selecting the value at the graph that has been constant. The graph has been constant 

starting from the 15
th

 generation until 20
th

 generation as shown in figure 4.6. 

Therefore the best fitness value was 0.8128. The value for the weight for each 

machine can be collected from the genetic algorithm toolbox after the analysis has 

been done. The weight value for machine 1 was 0.13154 followed by machine 2, 

0.23991, machine 3, 0.2313, machine 4, 0.02233, machine 5, 0.06098 and machine 6, 

0.12672. All the value was shown in figure 4.7. 



 

 

 

 

 

CHAPTER 5 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter summarizes and concludes the research which related to the 

research objectives. Then, several recommendations for further research works are 

presented. 

 

 

5.1 RESEARCH SUMMARY 

 

In this research, few problems of genetic algorithm method and flow shop 

sequencing problem or assembly line problem was highlighted. One of the problems 

is how to apply genetic algorithm method. Genetic algorithm method was an 

optimization method that can solve variable kind of optimization problems. There are 

two different ways on how to apply genetic algorithm method in order to solve 

combinatorial optimization problems.  

 

The first way to apply genetic algorithm method is by using the genetic 

algorithm toolbox where this research was focus on. Genetic algorithm toolbox was 

designed to help the user find the solution in the simple way. However the genetic 

algorithm toolbox has a limitation on what types of problems that can be solve. One 

of these research objectives is to determine the limitation of genetic algorithm 

toolbox. This research has successfully found the limitation of genetic algorithm 

toolbox.  

 

The second ways of applying genetic algorithm method is by constructing 

new algorithm or writing programming based on assembly line problem. Various 

kind of assembly line problem such as assembly line with precedence constraint 
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problem or an assembly line without precedence constraint problem can be solving. 

The way on how to write the programming depends on the creativity by following a 

certain command. 

 

Flow shop sequencing problems (FSP) also know as an assembly line 

problem. FSP problems have been well studied in the field of combinatorial 

optimization. The problems were an optimization problems that normally faced by 

the company that produced product based on an assembly production. There were 

various kinds of ways to solve optimization problems such as tabu search, neural 

networks and genetic algorithm. 

 

In order to determine the limitation of genetic algorithm toolbox, the real data 

was collected from the real case study that is in case study І. Numerical experiment 

was performed based the data collected using genetic algorithm toolbox. As a result 

of the numerical experiment, it shows that the genetic algorithm toolbox cannot be 

used in order to solve real case study. 

  

The real case study shows the problem with precedence constraint with 

processing and transition time on each machine used. This kind of optimization 

problem cannot be solving using genetic algorithm toolbox because of the genetic 

algorithm toolbox limitation. Therefore, case study ІІ was constructed in order to see 

the performance of genetic algorithm toolbox. The result for genetic algorithm 

toolbox performance was given in chapter 4. 

 

5.2 RESEARCH CONCLUSIONS 

 

In relation to the research objectives; 

1. The research had successfully determined the limitation of genetic algorithm 

toolbox. There was two limitation of genetic algorithm toolbox: 

a. Genetic algorithm toolbox only can solve flow shop sequencing 

problem without precedence constraint 

b. The transition time from each machine must be assumed as constant 

in order to solve the problem using genetic algorithm toolbox.  
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2. The genetic algorithm toolbox had successfully being implemented to the 

modified assembly line sequencing problem. 

 

From this research, the significant contribution is that the genetic algorithm 

toolbox is enabling to learn genetic algorithm method to solve modification of flow 

shop sequencing problem in the easier way before learn to solve flow shop 

sequencing problem by typing the programming 

. 

5.3 RECOMMENDATIONS 

 

Several recommendation for future study on solving flow shop sequencing 

problem or also known as an assembly line problem by using genetic algorithm 

method are proposed. The first recommendation is genetic algorithm toolbox only 

suitable to solve the assembly line without precedence constraint. The transition time 

also need to be assuming as constant in order for the problem to be solving using 

genetic algorithm toolbox.  

 

Another recommendation is learn to write the programming in order to solve 

variable type of assembly line problems. Learning to write programming will give a 

huge benefit. Various types of assembly line problems such as problems with 

precedence diagram with transition time can be solve. It only depends on creativity 

to manipulate the programming command to meet the problem.    
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APPENDIX A  

Gantt chart 

 

Gantt chart for FYP 1 

Project 

activities 

Weeks 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Literature  

study 
              

Identify problem 

statement 
              

Define objective and 

scope of study 
              

Detailed  

methodology 
              

Proposal 

preparation 
              

Presentation  

preparation 
              

FYP 1 

presentation 
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Gantt chart for FYP 2 

 

Project activities 

Weeks 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Identify new 

problem 
                

Analyze the 

problem 
                

Report writing                 

Presentation 

preparation 
                

FYP 2 preparation                 

Supervisor and 

panel approval 
                

Report submission                 
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APPENDIX B 

Example of Genetic Algorithm toolbox problem solving 

( Rastrigin‟s function)  

 

To get better understanding about genetic algorithm method using genetic algorithm 

tool, an equation called rastrigin‟s function is used as case study ІІ. Rastrigin's 

function ( ) is often used to 

test the genetic algorithm. Therefore it will surely help to get better understanding 

about genetic algorithm method using genetic algorithm tool. The objective of case 

study ІІ is to find the minimum of Rastrigin‟s function using genetic algorithm 

method using genetic algorithm tool.  

Rastrigin's function is often used to test the genetic algorithm, because its many local 

minima make it difficult for standard, gradient-based methods to find the global 

minimum 

As proposed by Moon, the parameters are as follows. 

 Total number of generation, ngener = 20 

 Population size, P = 10 

 Probability of crossover, P c = 0.6 

 Probability of mutation, Pm = 0.2 

Numerical Experiment Results for Case Study ІІ: Rastrigin’s function                                         

 

The results for Case Study ІІ is shown in figure 4.2. 
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Figure 4.2: Plot of Fitness Value versus Generation and The distance Between 

Individuals for Case Study ІІ:  Rastrigin‟s function  

 

Analysis of Numerical Experiment Results for Case Study ІІ: Rastrigin’s 

function   

The best fitness value for case study Case Study ІІ: Rastrigin‟s function is 

0.90244 with the mean fitness 2.8372 as shown in the figure 4.2 above. The final 

point for this case study was 0.0185 and 0.06531 that stands for the value of case x1 

and x2.  
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APPENDIX C 

M-file for case study ІІ 

M-file 1 

1) function y= my_fun(x) 

2) y =x(1)+x(2)+x(3)+x(4)+x(5)+x(6); 

 

M-file 2 

1) function y= my_fun(x) 

2) y =x(2)+x(3)+x(4)+x(5)+x(6)+x(1); 

 

M-file 3 

1) function y= my_fun(x) 

2) y =x(3)+x(4)+x(5)+x(6)+x(1)+x(2); 

 

M-file 4 

1) function y= my_fun(x) 

2) y =x(4)+x(5)+x(6)+x(1)+x(2)+x(3); 

 

M-file 5 

1) function y= my_fun(x) 

2) y =x(5)+x(6)+x(1)+x(2)+x(3)+x(4); 
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APPENDIX D 

Example of programming code 

Main program 

function GA_FSP 

clear 

  

disp('=======================================================') 

disp('Genetic algorithm for Flow shop sequencing problem with precedence') 

disp('=======================================================') 

  

%pause 

tic; 

num=6; %no of machine 

  

disp('') 

fprintf(1,'num=%.0f;  no of machine\n',num); 

disp('') 

  

rand('seed',1.4929e+009); 

machine_location=(rand(num,2)); 

  

figure 

plot(machine_location(:,1),machine_location(:,2),'.r','markersize',25) 

hold on 

  

for i=1:num; 

    text(machine_location(i,1)+0.02,machine_location(i,2),sprintf('%g',i)); 

end 

  

%disp('Hit any key to plot all available connection between the machine.') 

%pause 

  

for n=1:num 

    for i=1:num 

        plot([machine_location(n,1) machine_location(i,1)],[machine_location(n,2) 

machine_location(i,2)]) 

    end 

end 

  

%data of procwssing time (in this case it is time) 

processing_time=[0 7 5 6 10 9 

    7 0 14 6 10 8 

    5 14 0 16 16 10 

    6 6 16 0 10 6 

    10 10 16 10 0 12 

    9 8 10 6 12 0]; 
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nind=10;  % size of chromosome population 

ngenes=num;  % Number og genes in a chromosome 

Pc=0.6;   % Crossover probability 

Pm=0.2;   % Mutation probability 

ngener=20; % Number of generatons 

n_show=5;  % Number of generations between showing the progress 

  

disp('') 

fprintf(1,'nind=%.0f;  size of the chromosome population\n',nind); 

fprintf(1,'Pc=%.1f;  Crossover probability\n',Pc); 

fprintf(1,'Pm=%.3f;  Mutation probability\n',Pm); 

fprintf(1,'ngener=%.0f;  Number of generation\n',ngener); 

fprintf(1,'n_show=%.0f;  Number of generation between showing the 

progress\n',n_show); 

disp('') 

  

fprintf(1,'Hit any key to generate a population of %.0f chromosomes.\n',nind); 

  

chrom=[]; 

  

for k=1:nind 

    chrom(k,:)=randperm(20); 

end 

'chrom'; 

  

rout=[chrom chrom(:,1)]; 

  

for f=1:nind 

     

    brout=rout(f,:); 

    routerepair5; 

     

    routtemp(f,:)=newroute; 

end 

'routtemp'; 

rout=[routtemp routtemp(:,1)]; 

  

% Calcutate the chromosome fitness 

ObjV=evalObjFun(rout,city_distance,nind,ngenes); 

best=min(ObjV); 

ave=mean(ObjV); 

  

[a b]=min(ObjV); 

chrom(b,:) 

rout(b,:) 

  

figure('name','The best rout found in the iniial population'); 

plot(machine_location(:,1),machine_location(:,2),'.r','markersize',25) 
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title([The total processing time:',num2str(a)']; 

hold on 

     

for i=1:ngenes; 

    text(machine_location(i,1)+0.02,machine_location(i,2),sprintf('%g',i)); 

     plot([machine_location(rout(b,i),1) 

machine_location(rout(b,(i+1)),1)],[machine_location(rout(b,i),2)  

        machine_location(rout(b,(i+1)),2)]) 

end 

hold 

  

disp('') 

  

ncross=0; 

ccount=0; 

for m=1:(ngener/n_show) 

    for i=1:n_show 

         

        % Fitness evaluation 

        fitness=(1./ObjV)'; 

         

        % Roulette wheel selection 

        numsel=round(nind*0.9); % The number of chromosomes to be selected for 

reproduction 

        cumfit=repmat(cumsum(fitness),1,numsel); 

        change=repmat(rand(1,numsel),nind,1)*cumfit(nind,1); 

        [selind,j]=find(change<cumfit & change>=[zero(1,numsel);cumfit(1:nind-1,:)]); 

        newchrom=chrom(selind,:); 

         

        % Crossover 

        points=round(rand(floor(numsel/2),1).*(ngenes-1))+1; 

         

        points=[points round(rand(floor(numsel/2),1).*(ngenes-1))+1]; 

        points=sort((points*(rand(1)<Pc)),2); 

         

        for j=1:length(points(:,1)) 

             

            swap_sect=newchrom(2*j-1*j,points(j,1)+1:points(j,2)); 

            remain_sect=newchrom(2*j-1*j,:); 

            Pa=remain_sect(1,:); 

            Pb=remain_sect(2,:); 

             

            if rand(1)<Pc 

                Cross12; 

            end 

            c1=Pa; 

            c2=Pb; 

             

            remain_sect=[c1;c2]; 



52 

 

 

             

             newchrom; 

            newchrom(2*j-1:2*j)=[remain_sect(1:2,:)]; 

             

            remain_sect=[]; 

        end 

         

        % Mutation 

         

        for i=1:numsel 

            if rand(1)<Pm 

                P=newchrom(i,:); 

                 

                J=20; 

                 

                sel=randint(1,2,[1,20]); 

                PP=P; 

                 

                    PP(sel(1))=P(sel(2)); 

                    PP(sel(2))=P(sel(1)); 

                    newchrom(i,:)=P; 

            end 

        end 

         

        % Creating a new population of chromosomes 

         

        if nind-numsel, % Preserving a part of the parent chromosome population 

            [ans,Index]=sort(fitness); 

             

            chrom=[chrom(Index(numsel+1:nind),:);newchrom]; 

        else % Replacing the entire parent chromosome population with a new one 

            chrom=newchrom; 

        end 

         

        % Fitness calculation 

        rout=[chrom chrom(:,1)]; 

         

        routtemp=[]; 

         

        for f=1:nind 

            brout=rout(f,:); 

            routerepair5; 

            routtemp(f,:)=[newroute]; 

             

        end  

        routtemp; 

        rout=[routtemp routtemp(:,1)]; 

         

        ObjV=evalObjFun(rout,processing_time,nind,ngenes); 



53 

 

 

         

        best=[best min(ObjV)]; 

        ave=[ave mean(ObjV)]; 

        ccount=ccount+1 

        time(ccount)=toc; 

        aan(ccount)=min(ObjV); 

    end 

     

    [a b]=min(ObjV); 

    rout(b,:) 

     

    % Plotting the best rout found in the current population 

    figure('name','The best round found in the current population'); 

    plot(machine_location(:,1),machine_location(:,2),'.r','markersize',25) 

    title(['Generation#',num2str(m*n_show),' The total distance:',num2str(a)]); 

    hold on 

     

    for i=1:ngenes; 

        text(machine_location(i,1)+0.02,machine_location(i,2),sprintf('%g',i)); 

        plot([machine_location(rout(b,i),1) 

machine_location(rout(b,(i+1)),1)],[machine_location(rout(b,i),2) 

            machine_location(rout(b,(i+1)),2)]) 

    end 

    pause(0.2); 

    hold 

    newchrom=[]; 

end 

  

disp('') 

%disp('Hit any key to display the performance graph.') 

%pause 

  

figure('name','Performance graph'); 

plot(0:ngener,best,o:ngener,ave); 

legend('Best','Average',0); 

title(['Pc=,',num2str(Pc),',Pm=',num2str(Pm)]); 

xlabel('Generation'); 

ylabel('Time taken') 

  

figure('name','Performance graph'); 

plot(0:ngener,best); 

legend('Best',0); 

title(['Pc=',num2str(Pc),',Pm=',num2str(Pm)]); 

xlabel('Generation'); 

ylabel('Time taken') 

  

plot(time,aan) 

  

function ObjV=evalObjFun(rout,machine_distance,nind,ngenes) 
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path=0; ObjV=[]; 

for k=1:nind 

    for i=1:ngenes 

        path=path+machine_distance(rout(k,i),rout(k,(i+1))); 

        if i==ngenes 

            path=path+machine_distance(rout(k,i),rout(k,(i+1))); 

        end 

    end 

    ObjV(k)=path;path=0; 

end 

  

  

 

 

 

 

 

 


