

APPLICATION OF GENETIC ALGORITHM

METHODS TO OPTIMIZE FLOWSHOP

SEQUENCING PROBLEM

MOHD FADIL BIN MD SAIRI

UNIVERSITI MALAYSIA PAHANG

ii

SUPERVISOR’S DECLARATION

APPLICATION OF GENETIC ALGORITHM METHODS TO OPTIMIZE FLOWSHOP

SEQUENCING PROBLEM

MOHD FADIL BIN MD SAIRI

A report submitted in partial fulfilment of the requirements

for the award of the degree of

Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI MALAYSIA PAHANG

NOVEMBER 2008

iii

SUPERVISOR’S DECLARATION

We hereby declare that we have checked this project and in our

opinion this project is

satisfactory in terms of scope and quality for the award of the degree of Bachelor of

Mechanical Engineering.

 Signature..

Name of Supervisor: Ms Noraini Bte Mohd Razali

Position: Lecturer

Date:

Signature................................

Name of Panel: Dr. Thet Thet Mon

Position: Lecturer

Date:

iv

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and

summaries which have been duly acknowledged. The thesis has not been accepted

for any degree and is not concurrently submitted for award of other degree.

 Signature...

Name: Mohd Fadil B Md Sairi

ID Number: MA05029

Date:

v

To my beloved Father and Mother

Md Sairi Bin Minhad@Menhad

Suchiah Bte Sathi

vi

ACKNOWLEDGEMENT

 First of all I am grateful to ALLAH S.W.T for blessing me in my final year

project (PSM) with success in achieving my objectives to complete this project.

 Secondly I want to thank to all my family members for supporting me and

giving moral support in completing my project and also throughout my study in

UMP or formerly known as KUKTEM. I also would like to thank my supervisor Pn.

Noraini Bt. Razali and En. Fadzil Faisae Bin AB Rashid for guiding and supervising

me started for my final year project 1 and final year project 2. They have been very

helpful in helping me to finish my final year project. I am really appreciate every

single advises they give in correcting my mistake. I am also thanks them for willing

to help me with my final year project. The credit also goes to Mr. CH Chong for

giving me chance to collect data from his company Nexus Electronic Snd. Bhb. and

give me new experience on how the real company was running. With all the

cooperation I obtain from Nexus Electronic Snd. Bhd. I could finish my final tear

project.

 Last but not least I want to thank my entire friend that keep on supporting me

and encouraging me in completing my project. A tone of thanks I wish to all and may

Allah bless you.

vii

ABSTRACT

Application of genetic algorithm method to optimize flow shop sequencing problem

as the title of this project is the study about the method used in order to optimize flow

shop sequencing problem. Genetic algorithm method was one of the methods that

were widely used in solving optimization problem. Genetic algorithm method is

methods that follow the natural concept. Flow shop sequencing problem or also

known as assembly line problem that normally faced by production company. This

project will define the application of genetic algorithm method in solving flow shop

sequencing problem in details and evaluate the strength and weakness of genetic

algorithm method in order to optimize the optimization problem. This project will

focusing on the method used to solve an optimization problem, the limitation of the

method used and the results of solving flow shop sequencing problem using genetic

algorithm method. At the end of this project, we can see the performance of genetic

algorithm method in solving flow shop sequencing problem and types of flow shop

sequencing problems that can be solve through genetic algorithm method. Limitation

of genetic algorithm method also can be shown at the end of this project.

viii

ABSTRAK

Penggunaan kaedah ginetik algoritma dalam mencari nilai optimum bagi masalah

garis pemasangan sebagai tajuk projek ini adalah kajian tentang cara yang digunakan

untuk mencari jawapan yang terbaik bagi masalah bahagian pemasangan. Kaedah

ginetik algoritma adalah salah satu cara yang teleh digunakan secara meluas untuk

menyelesaikan masalah bagi mendapatkan nilai yang optimum. Kaedah ginetik

algoritma merupakan cara penyelesaian mengikut keadaan semulajadi. Masalah

bahagian pemasangan pula selalunya dihadapi oleh syarikat-syarikat pembuatan.

Projek ini akan menjelaskan berkenaan aplikasi ginetik algoritma dalam

menyelesaikan masalah bahagian pemasangan secara terperinci dan mengkaji

kekuatan serta kelemahan ginetik algoritma dalam mencari jawapan yang optimum.

Secara keseluruhannya projek ini akan membincangkan dengan lebih mendalam

berkenaan prestasi ginetik algoritma dalam menyelesaikan masalah bahagian

pemasangan. Projek ini akan memfokuskan kepada cara yang digunakan untuk

mendapatkan nilai optimum, mencari kelemahan kaedah ginetik algoritma dalam

mendapatkan nilai optimum dan hasil penyelesaian masalah bahagian pemasangan.

Pada pengakhiran projek ini, kita akan dapat melihat prestasi kaedah ginetik

algoritma dalam mencari nilai optimum bagi masalah mendapatkan nilai optimum

dalam bahagian pemasangan dan jenis-jenis masalah bahagian pemasangan yang

dapat diselesakan menggunakanginetik algoritma. Kelemahan-kelemahan kaedah

ginetik algoritma juga dapat dilihat pada pengakhiran projek ini.

ix

TABLE OF CONTENTS

Page

SUPERVISOR’S DECLARATION iii

STUDENT’S DECLARATION iv

ACKNOWLEDGEMENTS vi

ABSTRACT vii

ABSTRAK viii

TABLE OF CONTENTS ix

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF SYMBOLS xiv

LIST OF ABBREVIATIONS xv

CHAPTER 1 INTRODUCTION

1.1 Research Background 1

1.2 Problem Statements 2

1.3 Research Objectives 3

1.4 Research Scopes 3

1.5 Research Methodology 4

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 5

2.2 Flow Shop Sequencing Problem 6

2.2.1 Sequencing flow shop objective 7

2.3 Travelling Salesman Problem 7

2.4 Genetic Algorithm 8

 2.4.1 Encoding 8

 2.4.2 Evaluation 9

 2.4.3 Crossover 9

x

 2.4.4 Mutation 9

 2.4.5 Decoding 9

2.5 Chromosome Represent in Genetic Algorithm 10

2.5.1 Binary representation 10

2.6 Simple Problem 12

2.7 Genetic Algorithm in Sequencing Flow shop 15

 2.7.1 Initialization 16

 2.7.2 Representation 16

 2.7.3 Evaluation and selection 17

 2.7.4 Generation of new offspring 17

 CHAPTER 3 METHODOLOGY

3.1 Introduction 19

3.2 Project Flow Chart 20

3.3 Problem Identification 20

3.4 Genetic Algorithm Method 21

 3.4.1 Encoding process 21

 3.4.2 Evaluation process 21

 3.4.3 Crossover process 21

 3.4.4 Mutation process 22

 3.4.5 Decoding process 22

3.5 Genetic Algorithm Method Flow Chart 22

CHAPTER 4 RESULT AND DISCUSSIONS

4.1 Introduction 24

4.2 Genetic Algorithm and Direct Search Toolbox 24

 4.2.1 Genetic algorithm tools 25

 4.2.1.1 Population size 26

 4.2.1.2 Crossover fraction 26

 4.2.1.3 Mutation fraction 27

 4.2.1.4 Fitness function 27

xi

 4.2.2 Displaying, monitoring and outputting results 27

4.3 Case Study І: Nexus Electronic Sdn. Bhd. 29

 4.3.1 Numerical Experiment Results for Case study І: 33

Nexus Electronic Sdn. Bhd.

 4.3.2 Analysis of Numerical Experiment Results for Case 33

Study І: Nexus Electronic Sdn Bhd

4.4 Case Study ІІ: Process flow shop without precedence constraint 34

 4.4.1 Numerical Experiment Results for Case Study ІІ:

process flow shop without precedence constraint 35

problem

 4.4.2 Analysis of Numerical Experiment Results for

Case Study ІІ: Process Flow Shop without 37

precedence constraint problem

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Research Summary 39

5.2 Research Conclusions 40

5.3 Recommendations 41

REFERENCES 42

APPENDICES 44

xii

LIST OF TABLES

Table No. Page

2.1 Binary number representation 12

2.2 The initial randomly generated population of chromosomes 13

4.1 Genetic algorithm toolbox 25

4.2 Processing and transition time for transformer production 31

4.3 Processing and transition time for toroid production 32

4.4 Comparison table for the possible solution 35

xiii

LIST OF FIGURES

Figure No. Page

2.1 Classification of sequencing problem 6

2.2 Roulette wheel 14

3.1 Overall process flow chart 20

3.2 Genetic algorithm procedures for FSP 23

4.1 Overview of genetic algorithm toolbox 28

4.2 Transformer 29

4.3 Toroid 30

4.4 Precedence constraint for case study І 30

4.5 Process flow shop without precedence constraint 34

4.6 Performance graph 36

4.7 Results after running genetic algorithm toolbox 37

xiv

LIST OF SYMBOLS

m Number of machine

n Number of job

F Flow shop

cmax Maximum flow time

xv

LIST OF ABBREVIATIONS

GA Genetic Algorithm

FSP Flow Shop Sequencing Problem

TSP Travelling Salesman Problem

CPU Central processing unit

RAM Random-access memory

OQC Outgoing quality control

QC Quality control

CHAPTER 1

INTRODUCTION

1.1 RESEARCH BACKGROUND

 A flow shop is characterized by unidirectional flow of work with a variety of

jobs being processed sequentially in a one –pass manner. A job shop, in the other

hand, involves processing of several machines without any series structure. In the

past 40 years extensive research has been done on both flow shop and job shop

problems. A job shop is thus a collection of operation to be performed on an item or

unit with relevent technological constraints. Often the operation must be done on all

jobs in the same order. The machines are assumed to be set up in a series and such a

processing enviroment is referred to as flow shop (Baker, 1974). In many

manufacturing and assembly facilities a number operations need to be done on every

job. Flow shop sequencing problems (FSP) has been very well studied in the field of

combinatorial optimization. A combinatorial optimization problem is either

maximization problem or minimization problem with an associated set of instances

(Stutzle 1998). Normally, it is the problem faced by the manager in business

operation. As a manager, they need to make a decision to each activity that will make

profit to the company.

Flow shop sequencing problems is similar to traveling saleseman problems

(TSP). The first paper on flow shop sequencing problem was published by Johnson

in year 1954 (Colin, 1995). The flow shop sequencing problems is generally

described as follows. There are m machines and n jobs, each job consists of m

operations, and each operation requires a different machine. n jobs have to be

processed in the same sequence on m machines. The majority of the research effort

2

during the past 30 years has been devoted to pure deterministic flow shop sequencing

problem. Such a problem is usually labeled as n/m/F/cmax, which means n-number of

job/m-number of machine/F-flow shop/ cmax-maximum flow time (Colin 1995).

Traveling salesman problems (TSP) is one of the most widely studied

problems in combinatorial optimization (Chatterjee et. al, 1995). The idea of TSP is

to find a tour of a given number of cities, visiting each city exactly once and

returning to the starting city where the length of this tour is minimized. Flow shop

sequencing problems is similar to TSP where the no of cities represent the no of

machines and length of tour represent time taken to produce a certain product.

1.2 PROBLEM STATEMENTS

Modern production factories, which want to obtain high profits, usually

maximize their productivity. The latter goal can be achieved, among others, by

optimal or almost optimal scheduling of jobs in production process. In this thesis, it

explains about the method used to solve the optimization problems (GA method).

The objective function is to minimize maximum completion time (makespan).

In sequencing problem, it can be divided into two categories that are job shop

and assembly line or flow shop. Job shop was sequencing problem that produce a

product in a small quantity based on the demand while the assembly line was the

sequencing problem that produce the product in a large quantity. This thesis will

focus on assembly line problems.

Genetic algorithm method was one of the tools used to solve optimization

problems. Each of the method such as tabu search, neural networks and genetic

algorithms should have the limitation for solving optimization problems. Therefore

this thesis will focus on finding the limitation of genetic algorithm toolbox in solving

optimization problems.

3

1.3 RESEARCH OBJECTIVES

 The research objectives are:

 Apply matlab (genetic algorithm tool) to determine the sequence of jobs in

order to minimize the maximum flow time which is called makespan.

 To determine the limitation of genetic algorithm toolbox in solving flow shop

sequencing problems.

1.4 RESEARCH SCOPES

Genetic algorithms (GAs) are intelligent random search strategies which have

been used successfully to find near optimal solutions to many complex problems.

Implementation of GA in solving problems often overlooks certain information

available in a particular problem. Making use of this information may need

modification of the coding of the search space and of the operators constituting GA.

This is a problem specific task. This thesis hopes to address this issue with regard to

solving the permutation flow shop problem. From the time onwards, this will refer as

the flow shop problem, since it consider only the permutation flow shops. A

permutation flow shop is a job processing facility which consists of several machines

and several jobs to be processed on the machines.. The questions pose in order to

implement the improved search heuristic can be extended easily to a host of

scheduling problems with single and multi-objective optimization criteria.

Flow shops are useful tools in modeling manufacturing processes. In a

permutation flow shop all jobs follow the same machine or processing order. Flow

shop refers to the fact that job processing is not interrupted once started. Our

objective is to find a sequence for the jobs so that the makespan or the completion

time is minimized. It is well known that this is a difficult problem to solve in a

reasonable amount of time.

4

1.5 RESEARCH METHODOLOGY

This research is conducted under three main steps. The first step is the

literature review. In literature review, the previous method that used to solve flow

shop sequencing problems are modeled and simulated to ensure the algorithm are

working as reported in scientific literatures. Then, the existing algorithms limitations

are identified.

From the previous limitations method, a new sequencing problem is

developed as the purpose solution to optimize the flow shop sequencing problem. In

order to prove that genetic algorithm was one of the methods that could solve flow

shop sequencing problem, various kind of problem will be perform. The results of

the performance will be analyst as the final step of this research.

Numerical experiment of flow shop sequencing problems is performed using

the following setup:

 MATLAB Version 7.0

 Acer aspire 4520 notebook

 1.7 Gigahertz of CPU

 1.5 Gigabyte of RAM

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter explain the flow shop sequencing problems in general. This

chapter also contain about previous research on flow shop sequencing problem.

There was also an explanation to the genetic algorithm (GA) method and the steps

that we need to follow to solve the problem using GA method. In the end of this

chapter, it discuss about the method used (GA method) to solve the flow shop

sequencing problems.

6

2.2 FLOW SHOP SEQUENCING PROBLEM

Figure 2.1 Classification of sequencing problem

Source taken from

J. E. Day and M. P. Hottenstein, “Review of Sequencing Research,”Nav. Res. Logist.

Quart., vol. 17, pp. 11–39, 1970.

Figure 2.1 show the classification of sequencing problem. Flow shop

sequencing problems has been very well studied in the field of combinatorial

optimization. The idea of flow shop sequencing problems have begin since year 1954

when Johnson published the first paper of flow shop sequencing problem. Since then,

this problem has held the attention of many researchers. The flow shop sequencing

problems are generally described as follows. There are m machines and n jobs, each

job consists of m operations, and each operation requires a different machine. The

flow shop sequencing problem may be classified into three following categories:

 Deterministic flow shop problem

 Stochastic flow shop problem

 Fuzzy flow shop problem

Deterministic problems assume that fixed processing times of jobs are known. In

the stochastic cases, processing times vary according to chosen probability

distribution. In fuzzy decision context, a fuzzy due date is assigned to each to

7

represent the grade of satisfaction of decision makers for the completion time of the

job.

2.2.1 Sequencing flow shop objective.

The flow shop sequencing problem involves the determination of the order of

processing jobs over machines to meet a desired objective while all jobs have the

same machine sequence. Normally most of the desired objectives have been devoted

to makespan minimization and the flow time minimization. Practically, by

minimization the makespan will lead to the minimization of the total production run,

while minimization of flow time leads to stable or even utilization of resources, rapid

turn-around of jobs and the minimization of in-process inventory. These clearly show

that both objectives can be used to reduce cost significantly (Gupta and Dudek

1971). In sequencing flow shop the problems depends on the number of machine,

number of jobs, the flow shop and the maximum flow time that was fixed by the

company. Therefore, there is various kind of problem can be made up.

2.3 TRAVELLING SALESMAN PROBLEM (TSP).

Travelling salesman problem (TSP) is one of the most widely studied in

combinatorial optimization (Chatterjee et. al, 1995). The idea of TSP is to find a tour

of a given number of cities, visiting each city exactly once and returning to the

starting city where the length of this tour is minimized. Flow shop sequencing

problems (FSP) or also known as assembly line problems actually followed the

concept of TSP. There was only a few different between TSP and FSP problems.

For TSP, the problems focus on finding the shortest length in order to

minimize the time taken for the whole city visited. While for FSP, the problems

focus on finding the best sequence in assembly line in order to minimize the time

taken to produce a product. The different for TSP and FSP only on the problems that

want to be solve.

8

TSP represent by the number of city visited while for TSP, the problems

represent by the number of machine used in the assembly line. There is also one

major different between TSP and FSP. The assembly line problems actually end at

the last process or machine and it is different with TSP where the length was taken

until the salesman return to the starting point.

2.4 GENETIC ALGORITHM.

Genetic Algorithm (GA) is an optimization technique, based on natural

evolution. It was introduced by John Holland in 1975 (Othman 2002). This technique

copied the biological theory, where the concept of “survival of the fittest” exits. GA

provides a method of searching which does not need to explore every possible

solution in the feasible region to obtain a good result (Othman 2002).

In nature, the fittest individuals are most likely to survive and mate.

Therefore the next generation should be fitter and healthier because they were bred

from healthy parents. This same idea is applied to a problem by first “guessing”

solution and then combining the fittest solutions to create a new generation. The

genetic algorithm consist five steps, that is:

1. Encoding

2. Evaluation

3. Crossover

4. Mutation

5. Decoding

2.4.1 Encoding

A suitable encoding is found for the solution to a problem so that each

possible solution has a unique encoding and the encoding is some form of string.

Many possible solution need to be encoded to create a population. The traditional

way to represent a solution is with a string of zeroes (0) and ones (1). However

genetic algorithms are not restricted to this encoding (Chatterjee et.al 1996).

9

2.4.2 Evaluation

 The fitness of each individual in the population is then computed; this is how

well the individual fits the problem and whether it is near the optimum compared to

other individuals in the population. This fitness is used to find the individual‟s

probability of crossover. Evaluation function is used to decide how good a

chromosome is. This function is also known as objective function (Bryant 2001).

2.4.3 Crossover

Crossover is where the two individuals are recombined to create new

individuals which are copied into the new generation. Not every chromosome is used

in crossover. The evaluation function gives each chromosome a „score‟ which is used

to decide the chromosome‟s probability of crossover. The chromosome is chosen to

crossover randomly and the chromosomes with the highest scores are more likely to

be chosen.

2.4.4 Mutation

Mutation, which is rare in nature, represents a change in gene. It may lead to

a significant improvement in fitness, but more often has rather more harmful results.

Mutation is used to avoid getting trapped in a local optimum. The chromosome is

naturally near the local optimum and very far from the global optimum (possible

solution) due to the randomness process. Some individuals are chosen randomly to

be mutated and then a mutation point is randomly chosen. Mutation causes the

character in the corresponding position of the string changed (Negnevitsky 2002).

2.4.5 Decoding

On all the four processes are done, a new generation has been formed and the

process is repeated until some stopping criteria have been reached. At this point the

individual who is closest to the optimum is decoded and the process is complete

(Bryant 2000).

10

2.5 CHROMOSOME REPRESENTATION IN GA.

In genetic algorithms, each individual that is a member of the population

represents a potential solution to the problem. This solution information is coded in

the associated chromosome of that individual. A chromosome is a string of gene

positions, where each gene position holds an allele value that constitutes a part of the

solution to the problem. Allele value at a gene position represents an element from a

finite alphabet. This alphabet depends on the nature of the problem. There are

number of possible chromosome representations, due to vast variety of problem

types. However there are two representation types which are most commonly used:

binary representation and permutation representation (Bryant 2000). In genetic

algorithms method, binary representation method is the most commonly used in

chromosome representation (Bjarnadottir 2004).

2.5.1 Binary Representation

In binary representation, the finite alphabet domain which allele at each gene

position takes its value from is the set {0, 1}. An example of problem to minimize

the function of = 3x
3
 + 4x

2
 – 7x +1 over the integers in set {0, 1, …, 15}. The binary

number for the integer set was represented in table figure 2.1. The possible solution

for the problem are obviously just numbers, so the representation is simple the binary

form of each number. For example, the binary representation of 8 and 14 are 1000

and 1110 respectively. For initial chromosomes (1000 and 1110) which represent

value 8 and 14, the evaluation are perform by calculating the fitness function above.

 f (8) = 3(8
3
) + 4(8

2
) – 7(8) + 1

 = 1737

 f (14) = 3(14
3
) + 4(14

2
) – 7(14) + 1

 = 8919

Obviously 8 is better solution than 14 (since f (8) is lower than f (14)) and

would therefore have a lower fitness. The initial chromosomes then are being re-

generated by using simple crossover.

 P1 = 1000

11

 P2 = 1110

Then the crossover point is randomly chosen. In this example, the crossover

point is after the second gene.

 P1 = 10 00

 P2 = 11 10

The genes are switched after the crossover point and give the new offspring

as follow:

 P1 = 1010 = 10

 P2 = 1100 = 12

Therefore the new offspring are 10 and 12. This number will be evaluated as

above. These procedures are continuous to evaluate and re-generate new offspring

until a termination criteria is satisfied (Bjarnadottir 2004).

12

Table 2.1: Binary number representation

2.6 SIMPLE PROBLEM

An explanation through an example as shown below was presented in order

to get better understanding in genetic algorithm (GA) method. Let try to find the

maximum value of the function (12x – x
2
). Thus, chromosome can be build with

only 4 genes. As stated in the project scope, suppose that the crossover probability pc

equal 0.7, mutation probability pm equals 0.001 and the chromosome population N is

6.

The next step is to calculate the fitness of each individual chromosome. We

take 5, 3, 10, 7, 1 and 9 as the possible answer to the problem. The results are shown

in table 2.2. In order to improve it, the initial population is modified by using

selection, crossover and mutation, the genetic operators.

Real number Binary number

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0110

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

13

In natural selection, only the fittest species can survive, breed, and thereby

pass their genes on to the next generation. GAs uses the similar approach, but unlike

nature, the size of the chromosome remains unchanged from generation to the next.

Table 2.2: The initial randomly generated population of chromosomes

Chromosome Chromosome Decoded Chromosome Fitness

Label string integer fitness ratio (%)

X1 0101 5 35 22.6

X2 0011 3 27 17.4

X3 1101 10 20 13.0

X4 0111 7 35 22.6

X5 1001 9 27 17.4

 X6 0001 1 11 7.0

 Total 30 155 100

The values of chromosome fitness in the third column in table 2.2 were

determine by change the value of x in the function (12x – x
2
) with decoded integer

for each chromosome. The fitness ratio in the last column in table 2.2 determines the

chromosome‟s chance to be selected for mating. The values of the fitness ratio were

determined by dividing the value of the chromosome fitness for each chromosome

with the total value of chromosome fitness. Thus, the chromosome X1 and X4 stands

a higher change to be selected while chromosome X6 has a very low probability to

be selected. As a result, the chromosome with average fitness improves from one

generation to the next.

One of the most commonly used chromosome selection techniques is the

roulette wheel selection (Davis, 1991). Figure 2.2 illustrates the roulette wheel as an

example. As shown in figure 2.1, each chromosome is given a slice of a circular

roulette wheel. The area of the slice within the wheel equal to the fitness ratio value

(see table 2.2). To select the chromosome for mating, a random number is generated

in interval [0, 100]. It is like spinning a roulette wheel where each chromosome has a

14

segment on the wheel based on the fitness ratio. The roulette wheel is spun, and

when the arrow comes to rest on the segments, the corresponding chromosome is

selected for mating. The roulette would be spun six times because we have an initial

population of six chromosomes.

Figure 2.2: Roulette wheel

Once a pair or parents is selected, the crossover operator is applied. First the

crossover operator randomly chooses a crossover point where two parents

chromosomes „break‟ and then exchanges the chromosome part after that point. As a

result two new offspring are created. The process will continue with the other two

pairs of parent chromosomes. Finally, six new offspring will create. A value of 0.7

for the crossover probability generally produces good results.

A mutation process will take over after the crossover finish. The mutation

operator flips a randomly selected gene in a chromosome. Mutation can occur at any

gene in a chromosome with some probability. The mutation probability is quite small

in nature, and is keep quite low for gas, typically in the range 0.001 to 0.01 as stated

before in project scope.

15

The process from evaluation of the fitness function until the mutation process

will be repeated several times. The numbers of cycles depend on the performance of

the computer. Genetic algorithm (GA) method does not provide an exact solution to

the problem. It will produce several solutions near to the exact solution. The final

answer to the problem depends on the objective that has been set and it is up to us to

choose the suitable solution based on the objective.

2.7 GENETIC ALGORITHM IN SEQUENCING FLOW SHOP

In genetic algorithm method, the encoding, crossover and mutation process

will give different forms. The different forms of crossover and mutation process in

genetic algorithm method can be combined to give various genetic algorithms that

can be used to solve the flow shop sequencing problem.

The first step in applying GA to a particular problem is to convert the feasible

solutions of that problem into a string type structure called chromosome. In order to

find the optimal solution of a problem, standard GA starts from a set of assumed or

randomly generated solution (chromosome) called initial population and evolve

different but better set of solution (chromosome) over sequence of generation. In

each generation the objective function (fitness measuring criterion) determines the

suitability of each chromosome and based on the values, some of them are selected

for reproduction. The number of copies reproduced by an individual parent is

expected to be directly proportional to its fitness value, thereby embodying the

natural selection procedure, to some extent. The procedure thus selects the better

(highly fitted) chromosomes while the worse chromosome are eliminated. Genetic

operators such as crossover and mutation are applied to these (reproduced)

chromosomes and new chromosomes (offspring) are generated. These new

chromosomes constitute the next generation. This iteration continues until some

termination criterion is satisfied (Srikanth and Saxena 2004).

The fitness function plays an important rule in genetic algorithms because it

is used to decide the quality of a particular chromosome. Generally, different types of

16

problems use different fitness functions. There are five assumptions for this kind of

problem to be modeled in general. The assumption as follow:

 The operation processing times on the machines are known, fixed and some

of them may be zero if some job is not processed on a machine.

 Set-up times are included in the processing times and they are independent of

the job position in the sequence of jobs,

 At a time, every job is processed on only one machine and every machine

processed only one job.

 The job operations on the machine may not be preempted.

In general there are four steps to be followed when implementing genetic

algorithm (GA) for flow shop sequencing problem FSP).

1. = initialization

2. = representation

3. = evaluation and selection

4. = generating new offspring

2.7.1 Initialization

Initialization step consists of establishing initial chromosomes and parameter

setting such as probability of crossover and mutation. The number of generation also

is set here as termination criteria for algorithm. The traditional method of generating

an initial population is to randomly sample the search space. By initializing the first

population with entirely random solutions, the GA receives a complete freedom to

evolve any solutions that will fulfill the problem specification. The GA can create

novel and potentially unconventional solution (Kim et. Al 1996).

2.7.2 Representation

Representation plays an important role in searching optimal solution. It is

very important in GA because it will affect the entire results of algorithm.

Representation means how the chromosome is encoded. It is important to ensure that

the chromosome represents the actual problem that needs to be simulated. An

17

important issue that effects the chromosome representation is how fast it can be

repaired and comes out with feasible chromosome (Rekiek 2001). Apart from

benefits of speeding up execution time, which is the main reason heuristic method

are used, fast excess to repair chromosome can heavily affects speed of generation to

optimal solution. (Rekiek 2001). As stated by Othman (2002), it os difficult to

achieve optimal solution if the chromosome representation is not suitable. A poorly

designed chromosome representation can be useless and should be abandoned in

favor of other steps in genetic algorithm (Rekiek 2001, Othman 2002).

2.7.3 Evaluation and selection

Evaluation of chromosome is performed by applying a fitness function to

each chromosome. It measured the quality of chromosomes. The fitness values then

influence the selection of chromosomes to be re-generated. When selection is

performed, the best individual is eventually selected to completely take over the

population. Selection of chromosomes is the guidance for GA to generate better

solution (Carter 2004).

2.7.4 Generation of new offspring

The selection mechanism does not introduce any new chromosome for

consideration. It just copied some solutions to form an intermediate population. The

second step of evaluation cycle is recombination, which will introduce new

chromosome into population. This is done by genetic operators: crossover and

mutation (Rekiek 2001).

The simple version of this operator inherits individuals as they are. The most

popular one is the crossover where two individuals are selected and are mated

(crossed-over) in order to produce offspring (Zhang and Yassine 2004). Information

is extracted from the parents and is used to create offspring. The aim of crossover is

to produce new solutions in region of search space where successful ones have

already been found. Mutation introduces random changes to chromosomes. It is a

mechanism that has only a small change of occurring. This does not mean that the

18

mutation operator is useless. Indeed, in absence of diversity, the crossover would

again fall into the trap of non-representative sampling, because the progeny would be

identical to the parents. The mutation also creates new points containing some of the

gene from parent chromosome (Moon et. al 2002).

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

This chapter is focused on the methodology process. Before the problem can

be solve using genetic algorithm method, there will be steps that must be follow. In

this chapter, all the important steps to solve the problem are stated. The flow of the

project from the beginning until the end of the project is also stated.

20

3.2 PROJECT FLOW CHART

Figure 3.1 Overall process flow chart

3.3 PROBLEM IDENTIFICATION (step 1)

A problem related to sequencing flow shop will be identified before a further

movement can be made. During this process, data collection will be made from the

real situation such as the data from the company or collecting data from the thesis

Start

Literature

Review

Develop a new

problem based on

flow shop sequencing

problem concept

Modified the

problem to meet

the genetic

algorithm toolbox

criteria.

Analyze

End

Failed

Succes

s

Step 1

Step 2

Step 3

21

that have been studied in literature review. The data taken then will be evaluate, in

order to used the genetic algorithm method.

3.4 GENETIC ALGORITHM METHOD (step 2)

In genetic algorithm method, there are five steps that must be followed before

final solution can be evaluated. The steps in genetic algorithm are as stated below:

1. Encoding

2. Evaluation

3. Crossover

4. Mutation

5. Decoding

3.4.1 Encoding process

The data that have been collected will go through the encoding process before

it can be solve. Encoding process was the most important part in genetic algorithm

method. This process was also the most difficult process in genetic algorithm. In

encoding process we need to convert the real problem that is the data collected into

computer language.

3.4.2 Evaluation process

The fitness of each individual in the population is then computed. In

evaluation process the evolution function is used to decide how good a chromosome

that represents a possible solution to the problem. This function is also known as

objective function (Bryant 2001)

3.4.3 Crossover process

The crossover process is where the two individuals are recombined to create

new individuals which are copied into the new generation. The crossover probability

was set in the range of 0.5 to 0.7 and normally 0.7 will be selected as the crossover

22

probability. The crossover process will provide new offspring that represents a better

solution to the problem.

3.4.4 Mutation process

The chromosome is naturally near the local optimum and very far from the

global optimum (possible solution) due to the randomness process. Therefore,

mutation process will take place to prevent the chromosome near the local optimum.

The probability for mutation process was set in the range of 0.001 to 0.01.

3.4.5 Decoding process

The process will be repeated from steps one to step four several times based

on the performance the computer before decoding process take place. Decoding

process was the final process in genetic algorithm method. In this process, the

possible solution will be converted from computer language into a better

understanding language (real situation). The possible solution will be selected from

the solutions given from the genetic algorithm method based on the objective of the

project.

3.5 GENETIC ALGORITHM METHOD FLOW CHART (step 3)

Figure 3.2 in the next page represent the overall computer process for genetic

algorithm method:

23

Start

Set initial population,

crossover probability

and mutation

probability

Feasible

permutation?

Calculate the fitness

function and

evaluate

Termination

criteria are

satisfied?

Randomness selection for

parents next generation

Crossover

Mutation

Reproduce

new

population

Repair

operation

End

Yes

No

Yes

No

Figure 3.2 Genetic Algorithm Procedures for FSP

In
itializatio

n

G
en

eratin
g
 n

ew

o
ffsp

rin
g

E

v
alu

atio
n
 an

d

selectio
n

R

ep
resen

tatio
n

CHAPTER 4

NUMERICAL EXPERIMENT

4.1 INTRODUCTION

Chapter 4 is dealing with numerical experiment of flow shop sequencing

problem. This chapter started with experiment setup, finding the real case study and

then numerical experiment results. Genetic algorithm toolbox in math lab

programming is used to run the experiment. Genetic algorithm toolbox was design to

solve optimization problems without writing the programming for each problem that

want to solve.

4.2 GENETIC ALGORITHM AND DIRECT SEARCH TOOLBOX

Genetic Algorithm and Direct Search Toolbox extends the optimization

capabilities in MATLAB and Optimization Toolbox with tools for using genetic

algorithms, simulated annealing, and direct search. These algorithms can be used for

problems that are difficult to solve with traditional optimization techniques,

including problems that are not well defined or are difficult to model mathematically.

It also can be used when computation of the objective function is discontinuous,

highly nonlinear, stochastic, or has unreliable or undefined derivatives. Genetic

Algorithm and Direct Search Toolbox complements other optimization methods to

help find good starting points. Traditional optimization techniques then can be used

to refine the solution.

Toolbox functions, accessible through a graphical user interface (GUI) or the

MATLAB command line, are written in the open MATLAB language. This means

http://www.mathworks.com/products/optimization/

25

that the algorithms can be inspected, modify the source code, and created custom

functions by own self. The Genetic Algorithm Tool is a graphical user interface that

enables to use the genetic algorithm without working at the command line.

4.2.1 Genetic Algorithm Toolbox

The genetic algorithms solve optimization problems by mimicking the

principles of biological evolution, repeatedly modifying a population of individual

points using rules modeled on gene combinations in biological reproduction. Due to

its random nature, the genetic algorithm improves chances of finding a global

solution.

The Genetic Algorithm and Direct Search Toolbox provide the following

standard algorithm options.

Table 4.1: Overview of genetic algorithm toolbox

Step Algorithm Option

Creation Uniform

Fitness scaling Rank-based, proportional, top (truncation), linear scaling, shift

Selection Roulette, stochastic uniform selection (SUS), tournament, uniform

Crossover Arithmetic, heuristic, intermediate, scattered, single-point, two-point

Mutation Adaptive feasible, Gaussian, uniform

Plotting Best fitness, best individual, distance among individuals, expectation of

individuals, range, diversity of population, selection index, stopping

conditions

Genetic algorithm method using genetic algorithm toolbox provide user to

key in the data based on the objective of the problems. All the data that need to be

key-in in the toolbox was stated as below:

 Population size

26

 Crossover fraction

 Mutation fraction

 Fitness function

4.2.1.1 Population size

The population size was the part where the user can set how large the process

of solving the problems before the user gets the exact solution. It determines how

many round of process solving using genetic algorithm technique starting from

crossover until mutation process. The greater number of population size will provide

the solution that almost the exact answer. As stated before in chapter 2, genetic

algorithm method cannot give an exact solution to the problem.

Genetic algorithm methods only provide the solution that almost the exact

solution. To be able to get the solution that nearer the exact solution, a greater

number of population sizes were suggested. Normally the user will used 100 as a

population size to solve the problem.

4.2.1.2 Crossover fraction

Crossover fraction was the percentage that definite which chromosomes are

selected to mate each other to produce new generation of chromosome. The

chromosome that was produce contains genes or in other words the possible answer

of the problems. The greater number of crossover fraction will increase the

percentage of the chromosome to be selected. Based on the previous researcher that

is Moon, 0.6 was set as the crossover fraction.

4.2.1.3 Mutation fraction

Crossover fraction was the percentage that the user set for the new generation

of chromosome to be selected for mutation process. The new generation of

chromosome that was produced from crossover process will continue the genetic

algorithm technique with mutation process. The mutation process will modified the

27

selected chromosome in order to determine the nearest answer with the exact

solution. Normally the percentage of the chromosome to be selected for mutation

process is small. Therefore, the user should set the small number for the mutation

fraction. 0.2 was set as the mutation fraction to solve the problems in this thesis

based on the previous researcher Moon.

4.2.1.4 Fitness function

The fitness function represents the problem that the users want to solve.

Therefore, it was the most important part before the problem can be solve. In fitness

function section, it converts the problem into mathematical equation. It is depends on

the user how to convert the problem into the mathematical equation.

For this section, the creativity of the user to convert the problem was the most

important things. If the user cannot convert the problems into mathematical equation,

the process of solving problem cannot continue.

4.2.2 Displaying, Monitoring, and Outputting Results

The toolbox includes a number of plotting functions for visualizing the

optimization problems. These visualizations give live feedback about the problem

solving, enabling the user to make modifications while executing. Specific plotting

functions are provided for both the genetic algorithm and direct search algorithms.

The plotting functions include function value, score histogram, genealogy, and

fitness value, mesh size, and function evaluations. Multiple plots also can be showing

altogether in a graph or select specific plots for closer examination.

The genetic algorithm toolbox is provided in matlab software version 7.0.

The toolbox can be called out by typing „gatool‟ in mathlab workspace. An example

of genetic algorithm toolbox was given in figure 4.1

28

Figure 4.1: Genetic algorithm toolbox

4.3 CASE STUDY І: NEXUS ELECTRONIC SDN. BHD.

The case study І was taken from the real situation of optimization problem.

The data was taken from an electronic company, Nexus Electronic Snd Bhd , Jaya

Gading, Kuantan. The general manager of the company was Mr. CH Chong and

technical director was Mr. Ismail b Md Dom. Nexus Electronic Sdn Bhd produces

29

various types of transformer and toroid. They produce 5000-6000 transformers and

1000-1200 toroid per day with 115 workers. The picture of the transformer and

toroid were given in figure 4.2 and figure 4.3 All the product that was produce was

then send to Nemic-Lamdar that acts as nexus main customer. The objective of case

study І is to find the fastest time to produce their product therefore the company can

maximize their production per day.

.

Figure 4.2: Transformer

30

Figure 4.3: Toroid

The precedence diagram for toroid production was same with the precedence

diagram for transformer production. Therefore the precedence diagram in figure 4.4

below represents precedence for both products

.

Figure 4.4: Precedence constraint for case study І: Nexus Electronic Sdn Bhd

The transition time for case study І: Nexus Electronic Sdn Bhd is given in

table 4.2 for transformer production and table 4.3 for toroid production.

PRE-

PREPARATION
WINDING

FIRST

ASSEMBL

Y

SECOND

ASSEMB

LY

ATE

QUALITY

CONTROL

FINAL

TOUCH UP

TOUCH

UP
VARNISH

OUTGOING

QUALITY

ASSURANCE

PACKING +

CARTON

LABEL

31

Table 4.2: Processing and transition time for transformer production

TASK
O

Q
A

W
IN

D
IN

G

F
IR

S
T

 A
S

S
E

N
B

L
Y

A
T

E

S
E

C
O

N
D

A
S

S
E

M
B

L
Y

T
O

U
C

H
 U

P

V
A

R
N

IS
H

F
IN

A
L

 T
O

U
C

H
 U

P

Q
C

P
A

C
K

IN
G

P
R

E
-

P
R

E
P

A
R

A
T

IO
N

PRE-

PREPARATOI

N

15

(s)
- - - - - - - - - -

WINDING -
830

(s)
- - - - - - - - -

FIRST

ASSENBLY
- -

63

(s)
- - - - - - - -

ATE - - -
20

(s)
- - - - - - -

SECOND

ASSEMBLY
- - - - 45 (s) - - - - - -

TOUCH UP - - - - -
65

(s)
- - - - -

VARNISH - - - - - -
2700

(s)
- - - -

FINAL

TOUCH UP
- - - - - - -

50

(s)
- - -

QC - - - - - - - -
30

(s)
- -

PACKING - - - - - - - - -
8

(s)
-

OQA - - - - - - - - - - 45 (s)

32

Table 4.3: Processing and transition time for toroid production

TASK
O

Q
A

W
IN

D
IN

G

F
IR

S
T

 A
S

S
E

N
B

L
Y

A
T

E

S
E

C
O

N
D

 A
S

S
E

M
B

L
Y

T
O

U
C

H
 U

P

V
A

R
N

IS
H

F
IN

A
L

 T
O

U
C

H
 U

P

Q
C

P
A

C
K

IN
G

P
R

E
-

P
R

E
P

A
R

A
T

IO
N

PRE-

PREPARATOIN

15

(s)
- - - - - - - - - -

WINDING -
850

(s)
- - - - - - - - -

FIRST

ASSENBLY
- -

50

(s)
- - - - - - - -

ATE - - -
14(

s)
- - - - - - -

SECOND

ASSEMBLY
- - - -

45

(s)
- - - - - -

TOUCH UP - - - - -
65

(s)
- - - - -

VARNISH - - - - - -
2700

(s)
- - - -

FINAL TOUCH

UP
- - - - - - -

50

(s)
- - -

QC - - - - - - - -
30

(s)
- -

PACKING - - - - - - - - -
8

(s)
-

OQA - - - - - - - - - -
45

(s)

33

4.3.1 Numerical Experiment Results for Case Study І: Nexus Electronic Sdn

Bhd

There are no results to display for case study І: Nexus Electronic Sdn Bhd .

4.3.2 Analysis of Numerical Experiment Results for Case Study І: Nexus

Electronic Sdn Bhd

There are no results to display for case study І: Nexus Electronic Sdn Bhd

because the limitation of genetic algorithm method using genetic algorithm toolbox.

Each optimization method will have the limitation in solving the problems. The same

reason goes to genetic algorithm method using genetic algorithm tool

.

Because of the limitation for each method developed various type of solving

method has been proposed. In the field of optimization problem, various methods

have been developed such as neural network, tabu search and genetic algorithms. All

of the optimization method will have the limitation and method used is depends on

type of problem to optimize.

From the precedence diagram in case study І: Nexus Electronic Sdn Bhd it

showed that each job must be done by following the sequence given. As an example,

to be able to do winding process pre-preparation process must be done first. It is

same goes to ATE process that must complete the winding process before it can be

perform. To be able to produce a complete transformer or toroid, it must follow the

sequence from pre-preparation until outgoing quality assurance by following the

sequence given as shown in figure 4.1.

From case study І: Nexus Electronic Sdn Bhd , it clearly showed the

limitation of genetic algorithm method using genetic algorithm toolbox. As it is

shown in case study І: Nexus Electronic Sdn Bhd , the problem that consists of

process that must perform by following the sequence cannot be solving in genetic

algorithm toolbox.

34

4.4 CASE STUDY ІІ: PROCESS FLOW SHOP WITHOUT PRECEDENCE

CONSTRAINT PROBLEM (TSP CONCEPT).

Case study ІІ was focused on the process flow shop without precedence

constraint. Flow shop sequencing or assembly line problems without precedence

constraint were similar with traveling salesman problem (TSP). As stated in chapter

2, TSP concept deal with the distance take between the city visited but for assembly

line it deals with the time taken between each machine. A simple problem was

illustrated in figure 4.5 to represent the process flow shop without precedence

constraint problem.

Figure 4.5: Process flow shop without precedence constraint

Figure 4.5 represent the process flow shop without precedence constraint

problem. The number 1, 2, 3, 4, 5 and 6 as shown in figure 4.5 represent the number

of machine used in an assembly line problem. The problem was not restricted to start

at a certain machine and end at certain machine because it was the problem without

precedence constraint. Therefore, the process of solving the problem can be starting

at any machine as long as all the machines were used. As an example, the assembly

line process can start at machine number 5, 4, 1, 6, 3 and end at machine number 2.

1

5
6

2
4

3

35

The main objective of this problem was to determine the best sequence that can

produce the minimum transition time. By minimizing the transition time, the number

of product can be increase in a certain time. The time taken for transition time from

each machine was assumed as constant in order for the problem to be able to solve

using genetic algorithm toolbox.

4.4.1 Numerical Experiment Results for Case Study ІІ: Process flow shop

without precedence constraint problem

The results for case study ІІ are shown in table 4.4, figure 4.6 and figure 4.7.

Table 4.4 Comparison table for the possible solution

No. of

machine

Possible solution

Weight 1 Weight 2 Weight 3 Weight 4 Weight 5

 1 0.13154 0.17859 0.17853 0.1317 0.53953

 2 0.23991 0.1014 0.32356 0.00371 0.00569

 3 0.2313 0.32285 0.02599 0.57006 0.14117

 4 0.02233 0.07679 0.32633 0.28427 0.22039

 5 0.06098 0.27845 0.1134 0.27721 0.19877

 6 0.012672 0.1247 0.19187 0.40851 0.22841

Best fitness 0.8128 1.0828 1.1587 1.6755 1.334

36

Figure 4.6: Performance graph

37

Figure 4.7: Results after running genetic algorithm toolbox

4.4.2 Analysis of Numerical Experiment Results for Case Study ІІ: Process

Flow Shop without precedence constraint problem

From the problem given, there were several possible sequences that can be

constructing. In order to give a clear view on how the best sequence was selected,

comparison between five possible sequences have been made. Table 4.4 shows the

comparison for the possible solution that can minimize the transition time. The

Results

38

transition time for each machine was assumed as constant. Therefore, all the numbers

that shown in table 4.5 in the possible solution column represented as weight for

transition time for each machine starting from machine number 1 until machine

number 6.

Five different kind of analysis has been done using genetic algorithm toolbox

and the result was as shown in table 4.5. From the results given in table 4.5, there

were five different sequences that can be constructed based on the results. The

sequences were constructed based on the orientation from the lowest number of

weight until the highest number of weight. This is because by performing the fastest

process first, the production time can be minimizing by reducing the wasting time

from the longest process.

The sequence for weight 1 was 6, 4, 5, 1, 3, and 2. For weight 2, the sequence

was 4, 2, 6, 1, 5, and 3. It was followed by weight 3 with the sequence 3, 5, 1, 6, 2,

and 4. For weight 4 and weight 5 the sequence was 2, 1, 5, 4, 6, 3 and 2, 3, 5, 4, 6, 1.

The best sequence was determined by selecting the lowest fitness function

value. Therefore, weight 1 was selected as the best answer for the case study ІІ with

0.8128 as fitness value as shown in table 4.4. The fitness function was calculated by

adding all the weight for each machine. As a result of the analysis, 6, 4, 5, 1, 3, and 2

sequence was selected as the best sequence that can minimize the transition time.

The performance graph for the best sequence that is the sequence for weight 1

was shown in figure 4.6. The value of the fitness function can be determined from

the graph given in figure 4.6. The value of the fitness function was selected by

selecting the value at the graph that has been constant. The graph has been constant

starting from the 15
th

 generation until 20
th

 generation as shown in figure 4.6.

Therefore the best fitness value was 0.8128. The value for the weight for each

machine can be collected from the genetic algorithm toolbox after the analysis has

been done. The weight value for machine 1 was 0.13154 followed by machine 2,

0.23991, machine 3, 0.2313, machine 4, 0.02233, machine 5, 0.06098 and machine 6,

0.12672. All the value was shown in figure 4.7.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

This chapter summarizes and concludes the research which related to the

research objectives. Then, several recommendations for further research works are

presented.

5.1 RESEARCH SUMMARY

In this research, few problems of genetic algorithm method and flow shop

sequencing problem or assembly line problem was highlighted. One of the problems

is how to apply genetic algorithm method. Genetic algorithm method was an

optimization method that can solve variable kind of optimization problems. There are

two different ways on how to apply genetic algorithm method in order to solve

combinatorial optimization problems.

The first way to apply genetic algorithm method is by using the genetic

algorithm toolbox where this research was focus on. Genetic algorithm toolbox was

designed to help the user find the solution in the simple way. However the genetic

algorithm toolbox has a limitation on what types of problems that can be solve. One

of these research objectives is to determine the limitation of genetic algorithm

toolbox. This research has successfully found the limitation of genetic algorithm

toolbox.

The second ways of applying genetic algorithm method is by constructing

new algorithm or writing programming based on assembly line problem. Various

kind of assembly line problem such as assembly line with precedence constraint

40

problem or an assembly line without precedence constraint problem can be solving.

The way on how to write the programming depends on the creativity by following a

certain command.

Flow shop sequencing problems (FSP) also know as an assembly line

problem. FSP problems have been well studied in the field of combinatorial

optimization. The problems were an optimization problems that normally faced by

the company that produced product based on an assembly production. There were

various kinds of ways to solve optimization problems such as tabu search, neural

networks and genetic algorithm.

In order to determine the limitation of genetic algorithm toolbox, the real data

was collected from the real case study that is in case study І. Numerical experiment

was performed based the data collected using genetic algorithm toolbox. As a result

of the numerical experiment, it shows that the genetic algorithm toolbox cannot be

used in order to solve real case study.

The real case study shows the problem with precedence constraint with

processing and transition time on each machine used. This kind of optimization

problem cannot be solving using genetic algorithm toolbox because of the genetic

algorithm toolbox limitation. Therefore, case study ІІ was constructed in order to see

the performance of genetic algorithm toolbox. The result for genetic algorithm

toolbox performance was given in chapter 4.

5.2 RESEARCH CONCLUSIONS

In relation to the research objectives;

1. The research had successfully determined the limitation of genetic algorithm

toolbox. There was two limitation of genetic algorithm toolbox:

a. Genetic algorithm toolbox only can solve flow shop sequencing

problem without precedence constraint

b. The transition time from each machine must be assumed as constant

in order to solve the problem using genetic algorithm toolbox.

41

2. The genetic algorithm toolbox had successfully being implemented to the

modified assembly line sequencing problem.

From this research, the significant contribution is that the genetic algorithm

toolbox is enabling to learn genetic algorithm method to solve modification of flow

shop sequencing problem in the easier way before learn to solve flow shop

sequencing problem by typing the programming

.

5.3 RECOMMENDATIONS

Several recommendation for future study on solving flow shop sequencing

problem or also known as an assembly line problem by using genetic algorithm

method are proposed. The first recommendation is genetic algorithm toolbox only

suitable to solve the assembly line without precedence constraint. The transition time

also need to be assuming as constant in order for the problem to be solving using

genetic algorithm toolbox.

Another recommendation is learn to write the programming in order to solve

variable type of assembly line problems. Learning to write programming will give a

huge benefit. Various types of assembly line problems such as problems with

precedence diagram with transition time can be solve. It only depends on creativity

to manipulate the programming command to meet the problem.

42

REFERENCES

Arnold Reisman, Ashok Kumar, and Jaideep Motwani. 1997. Flow shop

Scheduling/Sequencing Research: A Statistical Review of the Literature, 1952–1994.

IEEE transactions on engineering management. 44(3): 316-329

D. L. Santos, J. L. Hunsucker and D.E. Deal. 1995. An evaluation of sequencing

heuristic in flow shops with multiple processors. Computer Industrial engineering.

30(4): 681-692

Jose M. Framinan, Rainer Leisten and Rafael Ruiz-Usano. (2002). Efficient

heuristics for flow shop sequencing with the objectives of makespan and flow time

minimization. European Journal of Operational Research

Kylie Bryant. 2000. Genetic Algorithms and the Traveling Salesman Problem.

Department of mathematic, Harvy Mudd College

Michael Negnevitsky. 2004. Artificial Intelligence – A guide to intelligence systems.

Addison-Wesley

Mitsuo Gen. 1997. Genetic Algorithms and engineering design. New York: John

Wiley and Sons, Inc.

Paulo M. Franca, Gilberto Tin Jr. and Luciana Buriol. The no-wait flow shop

problem with sequence dependent setup time and release dates. European Journal of

Operational Research

Quan-Ke Pan, M. Fatih Tasgetiren and Yun-Chia Liang. 2008. A discrete particle

swarm optimization algorithm for the no-wait flow shop scheduling problem.

Computers & Operations Research. 35: 2807 – 2839

43

Srikanth K. Iyer and Barkha Saxena. (2003). Improved genetic algorithm for the

permutation flow shop scheduling problem. European Journal of Operational

Research

44

APPENDIX A

Gantt chart

Gantt chart for FYP 1

Project

activities

Weeks

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Literature

study

Identify problem

statement

Define objective and

scope of study

Detailed

methodology

Proposal

preparation

Presentation

preparation

FYP 1

presentation

45

Gantt chart for FYP 2

Project activities

Weeks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Identify new

problem

Analyze the

problem

Report writing

Presentation

preparation

FYP 2 preparation

Supervisor and

panel approval

Report submission

46

APPENDIX B

Example of Genetic Algorithm toolbox problem solving

(Rastrigin‟s function)

To get better understanding about genetic algorithm method using genetic algorithm

tool, an equation called rastrigin‟s function is used as case study ІІ. Rastrigin's

function () is often used to

test the genetic algorithm. Therefore it will surely help to get better understanding

about genetic algorithm method using genetic algorithm tool. The objective of case

study ІІ is to find the minimum of Rastrigin‟s function using genetic algorithm

method using genetic algorithm tool.

Rastrigin's function is often used to test the genetic algorithm, because its many local

minima make it difficult for standard, gradient-based methods to find the global

minimum

As proposed by Moon, the parameters are as follows.

 Total number of generation, ngener = 20

 Population size, P = 10

 Probability of crossover, P c = 0.6

 Probability of mutation, Pm = 0.2

Numerical Experiment Results for Case Study ІІ: Rastrigin’s function

The results for Case Study ІІ is shown in figure 4.2.

47

Figure 4.2: Plot of Fitness Value versus Generation and The distance Between

Individuals for Case Study ІІ: Rastrigin‟s function

Analysis of Numerical Experiment Results for Case Study ІІ: Rastrigin’s

function

The best fitness value for case study Case Study ІІ: Rastrigin‟s function is

0.90244 with the mean fitness 2.8372 as shown in the figure 4.2 above. The final

point for this case study was 0.0185 and 0.06531 that stands for the value of case x1

and x2.

48

APPENDIX C

M-file for case study ІІ

M-file 1

1) function y= my_fun(x)

2) y =x(1)+x(2)+x(3)+x(4)+x(5)+x(6);

M-file 2

1) function y= my_fun(x)

2) y =x(2)+x(3)+x(4)+x(5)+x(6)+x(1);

M-file 3

1) function y= my_fun(x)

2) y =x(3)+x(4)+x(5)+x(6)+x(1)+x(2);

M-file 4

1) function y= my_fun(x)

2) y =x(4)+x(5)+x(6)+x(1)+x(2)+x(3);

M-file 5

1) function y= my_fun(x)

2) y =x(5)+x(6)+x(1)+x(2)+x(3)+x(4);

49

APPENDIX D

Example of programming code

Main program

function GA_FSP

clear

disp('===')

disp('Genetic algorithm for Flow shop sequencing problem with precedence')

disp('===')

%pause

tic;

num=6; %no of machine

disp('')

fprintf(1,'num=%.0f; no of machine\n',num);

disp('')

rand('seed',1.4929e+009);

machine_location=(rand(num,2));

figure

plot(machine_location(:,1),machine_location(:,2),'.r','markersize',25)

hold on

for i=1:num;

 text(machine_location(i,1)+0.02,machine_location(i,2),sprintf('%g',i));

end

%disp('Hit any key to plot all available connection between the machine.')

%pause

for n=1:num

 for i=1:num

 plot([machine_location(n,1) machine_location(i,1)],[machine_location(n,2)

machine_location(i,2)])

 end

end

%data of procwssing time (in this case it is time)

processing_time=[0 7 5 6 10 9

 7 0 14 6 10 8

 5 14 0 16 16 10

 6 6 16 0 10 6

 10 10 16 10 0 12

 9 8 10 6 12 0];

50

nind=10; % size of chromosome population

ngenes=num; % Number og genes in a chromosome

Pc=0.6; % Crossover probability

Pm=0.2; % Mutation probability

ngener=20; % Number of generatons

n_show=5; % Number of generations between showing the progress

disp('')

fprintf(1,'nind=%.0f; size of the chromosome population\n',nind);

fprintf(1,'Pc=%.1f; Crossover probability\n',Pc);

fprintf(1,'Pm=%.3f; Mutation probability\n',Pm);

fprintf(1,'ngener=%.0f; Number of generation\n',ngener);

fprintf(1,'n_show=%.0f; Number of generation between showing the

progress\n',n_show);

disp('')

fprintf(1,'Hit any key to generate a population of %.0f chromosomes.\n',nind);

chrom=[];

for k=1:nind

 chrom(k,:)=randperm(20);

end

'chrom';

rout=[chrom chrom(:,1)];

for f=1:nind

 brout=rout(f,:);

 routerepair5;

 routtemp(f,:)=newroute;

end

'routtemp';

rout=[routtemp routtemp(:,1)];

% Calcutate the chromosome fitness

ObjV=evalObjFun(rout,city_distance,nind,ngenes);

best=min(ObjV);

ave=mean(ObjV);

[a b]=min(ObjV);

chrom(b,:)

rout(b,:)

figure('name','The best rout found in the iniial population');

plot(machine_location(:,1),machine_location(:,2),'.r','markersize',25)

51

title([The total processing time:',num2str(a)'];

hold on

for i=1:ngenes;

 text(machine_location(i,1)+0.02,machine_location(i,2),sprintf('%g',i));

 plot([machine_location(rout(b,i),1)

machine_location(rout(b,(i+1)),1)],[machine_location(rout(b,i),2)

 machine_location(rout(b,(i+1)),2)])

end

hold

disp('')

ncross=0;

ccount=0;

for m=1:(ngener/n_show)

 for i=1:n_show

 % Fitness evaluation

 fitness=(1./ObjV)';

 % Roulette wheel selection

 numsel=round(nind*0.9); % The number of chromosomes to be selected for

reproduction

 cumfit=repmat(cumsum(fitness),1,numsel);

 change=repmat(rand(1,numsel),nind,1)*cumfit(nind,1);

 [selind,j]=find(change<cumfit & change>=[zero(1,numsel);cumfit(1:nind-1,:)]);

 newchrom=chrom(selind,:);

 % Crossover

 points=round(rand(floor(numsel/2),1).*(ngenes-1))+1;

 points=[points round(rand(floor(numsel/2),1).*(ngenes-1))+1];

 points=sort((points*(rand(1)<Pc)),2);

 for j=1:length(points(:,1))

 swap_sect=newchrom(2*j-1*j,points(j,1)+1:points(j,2));

 remain_sect=newchrom(2*j-1*j,:);

 Pa=remain_sect(1,:);

 Pb=remain_sect(2,:);

 if rand(1)<Pc

 Cross12;

 end

 c1=Pa;

 c2=Pb;

 remain_sect=[c1;c2];

52

 newchrom;

 newchrom(2*j-1:2*j)=[remain_sect(1:2,:)];

 remain_sect=[];

 end

 % Mutation

 for i=1:numsel

 if rand(1)<Pm

 P=newchrom(i,:);

 J=20;

 sel=randint(1,2,[1,20]);

 PP=P;

 PP(sel(1))=P(sel(2));

 PP(sel(2))=P(sel(1));

 newchrom(i,:)=P;

 end

 end

 % Creating a new population of chromosomes

 if nind-numsel, % Preserving a part of the parent chromosome population

 [ans,Index]=sort(fitness);

 chrom=[chrom(Index(numsel+1:nind),:);newchrom];

 else % Replacing the entire parent chromosome population with a new one

 chrom=newchrom;

 end

 % Fitness calculation

 rout=[chrom chrom(:,1)];

 routtemp=[];

 for f=1:nind

 brout=rout(f,:);

 routerepair5;

 routtemp(f,:)=[newroute];

 end

 routtemp;

 rout=[routtemp routtemp(:,1)];

 ObjV=evalObjFun(rout,processing_time,nind,ngenes);

53

 best=[best min(ObjV)];

 ave=[ave mean(ObjV)];

 ccount=ccount+1

 time(ccount)=toc;

 aan(ccount)=min(ObjV);

 end

 [a b]=min(ObjV);

 rout(b,:)

 % Plotting the best rout found in the current population

 figure('name','The best round found in the current population');

 plot(machine_location(:,1),machine_location(:,2),'.r','markersize',25)

 title(['Generation#',num2str(m*n_show),' The total distance:',num2str(a)]);

 hold on

 for i=1:ngenes;

 text(machine_location(i,1)+0.02,machine_location(i,2),sprintf('%g',i));

 plot([machine_location(rout(b,i),1)

machine_location(rout(b,(i+1)),1)],[machine_location(rout(b,i),2)

 machine_location(rout(b,(i+1)),2)])

 end

 pause(0.2);

 hold

 newchrom=[];

end

disp('')

%disp('Hit any key to display the performance graph.')

%pause

figure('name','Performance graph');

plot(0:ngener,best,o:ngener,ave);

legend('Best','Average',0);

title(['Pc=,',num2str(Pc),',Pm=',num2str(Pm)]);

xlabel('Generation');

ylabel('Time taken')

figure('name','Performance graph');

plot(0:ngener,best);

legend('Best',0);

title(['Pc=',num2str(Pc),',Pm=',num2str(Pm)]);

xlabel('Generation');

ylabel('Time taken')

plot(time,aan)

function ObjV=evalObjFun(rout,machine_distance,nind,ngenes)

54

path=0; ObjV=[];

for k=1:nind

 for i=1:ngenes

 path=path+machine_distance(rout(k,i),rout(k,(i+1)));

 if i==ngenes

 path=path+machine_distance(rout(k,i),rout(k,(i+1)));

 end

 end

 ObjV(k)=path;path=0;

end

