Copyright © 2017, University of Mohammed Premier Oujda Morocco http://www.jmaterenvironsci.com/

CO₂ reforming of CH₄ over Ni/SBA-15: Influence of Ni loading on the metalsupport interaction and catalytic activity

H.D. Setiabudi^{a,*}, K.H. Lim^a, N. Ainirazali^a, S.Y. Chin^a, N.H.N. Kamarudin^b

^aFaculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia.

^bDepartment of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.

Abstract

Received 05 Jul 2016, Revised 22 Nov 2016, Accepted 25 Nov 2016

Keywords

- ✓ Ni/SBA-15,
- ✓ CH_4 reforming,
- ✓ Nickel loading,
- ✓ metal-support interaction.
- ✓ catalyst stability

Email:<u>herma@ump.edu.</u> <u>my</u> (H.D. Setiabudi); Phone: +60-9-5492836; Fax: +60-9-5492889 The influence of Ni loading on the properties of Ni/SBA-15 and CO₂ reforming of CH₄ were studied. XRD, BET and TGA results indicated that the increasing Ni loading (3-10 wt%) decreased the crystallinity, surface area and physically adsorbed water content of the catalysts. FTIR, TEM and H₂-TPR analysis confirmed the formation of Ni–O–Si by the substitution of surface silanol groups with Ni species and the maximum substitution of surface silanol groups with Ni were achieved at 5 wt%, while further increased in Ni loading stimulate the agglomeration of Ni particles. The activity of catalysts followed the order of $5Ni/SBA-15 > 3Ni/SBA-15 \approx 10Ni/SBA-15 > SBA-15$, with the conversion of CH₄ and CO₂ over 5Ni/SBA-15 was about 89% and 88% respectively, and CO₂/CH₄ ratio of 1.02. The superior catalytic performance of 5Ni/SBA-15 towards CO₂ reforming of CH₄ probably was related with the formation of metal-support interaction, Ni-O-Si, which enhanced the stabilization of the active Ni species on SBA-15 support and altered the properties of catalyst towards an excellent catalytic performance. The analysis of spent catalysts found that the presence of Ni-O-Si minimizes the growth of encapsulating graphite carbon and thus enhanced the stability of catalyst. This study provides new perspectives on the Ni-based catalyst, particularly on the influence of Ni on the metal-support interaction and catalytic performance of Ni/SBA-15 towards CO₂ reforming of CH₄.