THE WATER FOOTPRINT ASSESSMENT OF WATER SUPPLY TREATMENT PROCESS (WSTP) – COMPARISON BETWEEN SEMAMBU, KUANTAN WSTP AND PERAMU, PEKAN WSTP

MELISSA BINTI MADSAHIK

BACHELOR (HONS) OF CIVIL ENGINEERING
UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor (Hons) of Civil Engineering.

(Supervisor’s Signature)

Full Name: DR. EDRIYANA BINTI A. AZIZ

Position:

Date:
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

__
(Student’s Signature)
Full Name : MELISSA BINTI MADSAHIK
ID Number : AA13282
Date :
THE WATER FOOTPRINT ASSESSMENT OF WATER SUPPLY TREATMENT PROCESS (WSTP) – COMPARISON BETWEEN SEMAMBU, KUANTAN WSTP AND PERAMU, PEKAN WSTP

MELISSA BINTI MADSAHIK

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor (Hons) of Civil Engineering

Faculty of Civil Engineering and Earth Resources
UNIVERSITI MALAYSIA PAHANG

JANUARY 2017
ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful.

Alhamdulillah, praises to Allah S.W.T for giving me strength and wisdom to finishes this thesis and complete my final year project.

First and foremost, I would like to give a special thanks to my final year project’s supervisor; Dr. Edriyana binti A. Aziz as her kindness to supervised me for the completion of my final year project. I will never forget all the things that she had done for me.

My sincere appreciation I give to Dr. Nurul Nadrah Aqilah Tukimat as a coordinator program for this final year project subject and all lecturers that already involved on delivered and shared their knowledge and teach all final year project’s students on how to do the best thesis of project by following the thesis guideline.

I would like to express my gratitude to En. Mohd Syazwan Nizam bin Mohd Moni, lecturers, staffs, and all my final year friends in the Faculty of Civil Engineering and Earth Resources for their ideas, cooperation, and supports.

Lastly, I would like to acknowledge my appreciation to my dearest family for their support, guidance, sacrifice, motivation, and inspiration along my completion of this thesis project.

Best regards and thank you in advanced. May Allah reward all of you.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of Study 1
1.2 Problem Statement 2
1.3 Research Objectives 2
1.4 Scope of Study 2
1.5 Significance of Study 3

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 4
2.2 Water Footprint 4
 2.2.1 Water Footprint Accounting 5
 2.2.2 Water Footprint Assessment (WFA) 6
 2.2.3 Water Footprint and Life Cycle Assessment (LCA) 6
2.3 Water Supply Treatment Plant (WSTP) 7
2.4 Water Resources Management 9
 2.4.1 Water Resources Management in Malaysia 10
 2.4.2 Water Availability 10
2.5 Water Scarcity 11
 2.5.1 The Rising of Population 11
 2.5.2 Land Use Development 12
 2.5.3 Monsoonal Changes in Malaysia 12
2.6 Water Supply Sustainability 13
2.6.1 Water Consumption 14
2.6.2 Water Demand 15
2.7 Prediction of Water Footprint 16
2.7.1 Artificial Neural Network (ANN) 16

CHAPTER 3 RESEARCH DESIGN AND METHODOLOGY

3.1 Study Area 17
3.1.1 Semambu Water Supply Treatment Process (WSTP) 17
3.1.2 Peramu Water Supply Treatment Process (WSTP) 18
3.2 Data Collection 19
3.3 Water Supply Treatment Process Design 20
3.3.1 Semambu Water Supply Treatment Process (WSTP) 20
3.3.2 Peramu Water Supply Treatment Process (WSTP) 22
3.3.3 Water Treatment Process at both WSTPs 24
3.4 Water Footprint Accounting 25
3.4.1 Affected by Population 28
3.4.2 Affected by Land Use 29
3.4.2.1 Water Demand 29
3.4.3 Affected by Monsoonal Changes 30
3.5 Prediction of Water Footprint at both WSTP 30
3.5.1 Artificial Neural Network (ANN) 30

CHAPTER 4 RESULTS ANALYSIS AND DISCUSSION

4.1 Introduction 36
4.1.1 Water Treatment Process at Semambu WSTP 36
4.1.2 Water Treatment Process at Peramu WSTP 37
4.1.3 The Comparison of Water Treatment Process at Semambu WSTP and Peramu WSTP 38
4.2 The Effect of Water Footprint 39
4.2.1 Water Treatment Process at Semambu WSTP 39
4.2.2 Water Treatment Process at Peramu WSTP 43
4.2.3 The Comparison of Water Footprint at Semambu WSTP and Peramu WSTP 48
4.3 Water Footprint Affected by Population 50
4.3.1 Water Footprint Affected by Population at Semambu WSTP 50
4.3.2 Water Footprint Affected by Population at Peramu WSTP 51
4.3.3 The Comparison of Water Footprint Affected by Population at Semambu WSTP and Peramu WSTP 52
4.3.4 Relationship of Water Footprint at Semambu WSTP and Peramu WSTP with Global Water Footprint 52
4.4 Water Footprint Affected by Land Use According to Water Demand

4.4.1 Water Footprint Affected by Land Use According to Water Demand at Semambu WSTP

4.4.2 Water Footprint Affected by Land Use According to Water Demand at Peramu WSTP

4.4.3 The Comparison of Water Footprint Affected by Land Use According to Water Demand at Semambu WSTP and Peramu WSTP

4.5 Water Footprint Affected by Monsoonal Changes

4.5.1 Water Footprint by Inter Monsoon (April-May)

4.5.2 Water Footprint by Southwest Monsoon (June-August)

4.5.3 Water Footprint by Northeast Monsoon (June-November)

4.5.4 The Comparison of Water Footprint Affected by Monsoonal Changes at Semambu WSTP and Peramu WSTP

4.6 The Prediction of Water Footprint for Both WSTP from Year 2016 Until 2020 by Using Artificial Neural Network (ANN)

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

5.2 Recommendation

REFERENCES

APPENDICES

Appendix A Book of Kuantan District Local Plan.

Appendix B Book of Pekan District Local Plan.

Appendix C Table of Population by districts in the administrative district of Kuantan and Pekan, Pahang, 2005-2015.

Appendix D One of As-Built Drawing for Process Flow Scheme Treatment Work.

Appendix E One of Monthly Report Water Plant.

Appendix F Water Footprint Analysis for Semambu WSTP.

Appendix G Water Footprint Analysis for Peramu WSTP.
LIST OF FIGURES

Figure 2.1. Water Treatment Process. 9
Figure 3.1. Semambu, Kuantan location. 18
Figure 3.2. Peramu, Pekan location. 19
Figure 3.3. Semambu WSTP distribution system phase I. 21
Figure 3.4. Semambu WSTP distribution system phase II. 22
Figure 3.5. Peramu water treatment plant distribution system phase II. 23
Figure 3.6. Schematic diagram of Peramu water supply treatment process (WSTP). 23
Figure 3.7. Step 1 - Key in past values data. 31
Figure 3.8. Step 2 - Choose ANN type to be used. 32
Figure 3.9. Step 3 - Choose the Neural Network Time Series Tool to be used. 33
Figure 3.10. Step 4 - Select data to be used for prediction. 33
Figure 3.11. Step 5 - Choose the Train Network to be used. 34
Figure 3.12. Step 6 - Neural Network Training to obtain the result. 35
Figure 4.1. Schematic Flow Diagram of Semambu, Kuantan WSTP. 36
Figure 4.2. Schematic Flow Diagram of Peramu, Pekan WSTP. 37
Figure 4.3. Graph of Water Footprint at Semambu WSTP. 43
Figure 4.4. Graph of Water Footprint at Peramu WSTP. 47
Figure 4.5. Graph Comparison of Water Footprint. 48
Figure 4.6. Graph of Population against Water Footprint at Semambu WSTP. 50
Figure 4.7. Graph of Population against Water Footprint at Peramu WSTP. 51
Figure 4.8. Graph of Water Footprint for both WSTP against Global Water Footprint 53
Figure 4.9. Graph of water demand at Semambu WSTP. 54
Figure 4.10. Graph of water demand at Peramu WSTP. 55
Figure 4.11. Graph comparison of water demand for both WSTP. 56
Figure 4.12. Graph of Water Footprint for Inter Monsoon at both WSTP. 59
Figure 4.13. Graph of Water Footprint for Southwest Monsoon at both WSTP. 61
Figure 4.14. Graph of Water Footprint for Inter Monsoon (Sept-Oct) at both WSTP. 63
Figure 4.15. Graph of Water Footprint for Inter Monsoon (Nov-March) at both. 65
Figure 4.16. Graph of Water Footprint by Monsoonal Changes at Semambu WSTP. 67
Figure 4.17. Graph of Water Footprint by Monsoonal Changes at Peramu WSTP. 69
Figure 4.18. Graph of Water Footprint trend for Semambu WSTP by using ANN. 71

Figure 4.19. Graph of Water Footprint trend for Peramu WSTP by using ANN. 72
LIST OF TABLES

Table 3.1 *List of department and data involved in the study.* 19
Table 3.2 *Table of Water Treatment Process.* 24
Table 3.3 *Value of “p” based on latitude.* 27
Table 4.1 *Water Treatment Process Design at both WSTP.* 38
Table 4.2 *Types of water footprint at each stages at Semambu WSTP.* 39
Table 4.3 *Water Footprint Accounting at Semambu WSTP.* 40
Table 4.4 *Table of Total Water Footprint at Semambu WSTP.* 42
Table 4.5 *Types of water footprint at each stages at Peramu WSTP.* 43
Table 4.6 *Types of water footprint at each stages at Peramu WSTP.* 44
Table 4.7 *Table of Total Water Footprint at Peramu WSTP.* 47
Table 4.8 *Table of Comparison Value of Water Footprint for both WSTPs.* 48
Table 4.9 *Table of Population against Water Footprint at Semambu WSTP.* 50
Table 4.10 *Table of Population against Water Footprint at Peramu WSTP.* 51
Table 4.11 *Table of the relationship between Water Footprint with Global WF.* 53
Table 4.12 *Table of water footprint affected by land use at Semambu WSTP.* 54
Table 4.13 *Table of water footprint affected by land use at Peramu WSTP.* 55
Table 4.14 *Table comparison of water demand for both WSTP.* 56
Table 4.15 *Table of Water Footprint by Inter Monsoon at Semambu WSTP.* 58
Table 4.16 *Table of Water Footprint by Inter Monsoon at Peramu WSTP.* 58
Table 4.17 *Table of Water Footprint by Southwest Monsoon at Semambu WSTP.* 60
Table 4.18 *Table of Water Footprint by Southwest Monsoon at Peramu WSTP.* 60
Table 4.19 *Table of Water Footprint by Inter Monsoon at Semambu WSTP.* 62
Table 4.20 *Table of Water Footprint by Inter Monsoon at Peramu WSTP.* 62
Table 4.21 *Table of Water Footprint by Northeast Monsoon at Semambu WSTP.* 64
Table 4.22 *Table of Water Footprint by Northeast Monsoon at Peramu WSTP.* 64
Table 4.23 *Table of Water Footprint by Monsoonal Changes at Semambu WSTP.* 66
Table 4.24 *Table of Water Footprint by Monsoonal Changes at Semambu WSTP.* 68

Table 4.25 *Table of Water Footprint at Semambu WSTP from year 2010 until 2020.* 71

Table 4.26 *Table of Water Footprint at Peramu WSTP from year 2010 until 2020.* 72
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td>H₂S</td>
<td>Hydrogen Sulfide</td>
</tr>
<tr>
<td>LCA</td>
<td>Life Cycle Assessment</td>
</tr>
<tr>
<td>MLD</td>
<td>Million Litres per Day</td>
</tr>
<tr>
<td>NH₃</td>
<td>Ammonia</td>
</tr>
<tr>
<td>PAIP</td>
<td>Pengurusan Air Pahang</td>
</tr>
<tr>
<td>PIs</td>
<td>Performance Indicators</td>
</tr>
<tr>
<td>TP</td>
<td>Total Phosphorus</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solid</td>
</tr>
<tr>
<td>UMP</td>
<td>Universiti Malaysia Pahang</td>
</tr>
<tr>
<td>WF</td>
<td>Water Footprint</td>
</tr>
<tr>
<td>WFA</td>
<td>Water Footprint Assessment</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WQI</td>
<td>Water Quality Index</td>
</tr>
<tr>
<td>WSTP</td>
<td>Water Supply Treatment Process</td>
</tr>
</tbody>
</table>