STUDY OF SAND BRICK RATIO 1:3 FOR PARTIAL REPLACEMENT OF SAND WITH PALM KERNEL SHELLS (0%, 10% AND 20%)

MAISARAH BINTI ABDULLAH

B.ENG (HONS.) CIVIL ENGINEERING UNIVERSITI MALAYSIA PAHANG

STUDY OF SAND BRICK RATIO 1:3 FOR PARTIAL REPLACEMENT OF SAND WITH PALM KERNEL SHELLS (0%, 10% AND 20%)

MAISARAH BINTI ABDULLAH

Thesis submitted in fulfilment of the requirements for the award of the degree of Bachelor Civil Engineering

Faculty of Civil Engineering and Earth Resources Universiti Malaysia Pahang

JANUARY 2017

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor (Hons.) of Civil Engineering

Signature	:
Name of Supervisor	: SHARIZA BINTI MAT ARIS
Position	: SENIOR LECTURER
Date	: 10 JANUARY 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award for other degree.

Signature	:
Name	: MAISARAH BINTI ABDULLAH
ID Number	: AA13011
Date	: 10 JANUARY 2017

This hard work is dedicated to my beloved family and my precious friends who love me and support me during my whole journey of education at University of Malaysia Pahang.

ACKNOWLEDGEMENT

Alhamdulillahi rabbil 'alamin, first of all, I would like to express my highest gratitude to God; Allah SWT for the blessing, love, health, strength, mercy as well as giving me the opportunity to complete this final year project even though there were tons of works that I need to do at the same time. I am very thankful to God once again because I was given a good health along the journey I had been through in completing this final year project. Not to forget, Selawat is also sent to Prophet Muhammad SAW who had delivered the truth to human beings in general and particularly to Muslims.

Besides that, I would like to thank my supervisor; Mdm. Shariza Binti Mat Aris for the endless support and guidance she had lend along the way to complete this final year project. I am very grateful and appreciate all of her kindness as well as her commitment in helping me with this task. Besides that, I also want to express my deepest gratitude to my family especially my father, Abdullah bin Chik and my mother, Zainon binti Abdullah for endless prayers and supports.

On top of that, I would like to thank my classmates and my partner for the ideas they had given and shared with me in order to help me with this coursework. They were very happy to help me and for that, I really want to say thank you. Thank you for helping me patiently in completing this final year project with your endless suggestions and ideas. There are nothing much for me to give but thank you as a token of appreciation. It might seems like little thing but it did helped me a lot. I will keep this beautiful experience in my mind and cherish this forever. Only God can repay all your kindness. Thank you.

TABLE OF CONTENT

Titles		Page
SUPERV	ISOR'S DECLARATION	ii
STUDEN	T'S DECLARATION	iii
DEDICAT	TION	iv
ACKNOV	VLEDGEMENT	v
ABSTRA	СТ	vi
ABSTRA	K	vii
TABLE C	DF CONTENT	viii
LISTS OI	FTABLE	xi
LISTS OI	F FIGURE	xii
LISTS OI	F ABBREVIATIONS	xiv
CHAPTER 1	INTRODUCTION	
1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Objectives Study	3
1.4	Scope of Study	3
CHAPTER 2	LITERATURE REVIEW	
2.1	Introduction	5
2.2	General	6
	2.2.1 Sand Brick	6
	2.2.2 Palm Kernel Shells	7
2.3	Types of Brick	8
	2.3.1 Clay Brick	8
	2.3.1.1 Common Brick	8

		2.3.1.2 Facing Brick	9
		2.3.1.3 Engineering Brick	9
2.4	Materi	als	10
	2.4.1	Cement	10
	2.4.2	Water	10
	2.4.3	Sand	11
	2.4.4	Palm Kernel Shells	11
2.5	Metho	ds	12
	2.5.1	Compressive Strength Test	12
	2.5.2	Water Absorption Test	14

CHAPTER 3 METHODOLOGY

3.1	Introduction 1		15
3.2	Resear	ch Design	15
3.3	Prepar	ation of Materials	17
	3.3.1	Sand	17
	3.3.2	Water	18
	3.3.3	Cement	18
	3.3.4	Palm Kernel Shells	19
3.4	Specin	nen Preparation	21
3.5	Metho	d of Testing	24
	3.5.1	Curing Process	24
	3.5.2	Compressive Strength Test	25
	3.5.3	Water Absorption Test	26

CHAPTER4 RESULT AND DISCUSSION

4.1	Introduction	28
4.2	Sand Brick Tests	28
	4.2.1 Compressive Strength Test	29
	4.2.2 Water Absorption Test	40
4.3	Discussion	43

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Introduction	44
5.2	Conclusion	44
5.3	Recommendations	45

REFERENCES

APPENDIX

А	Control Sample for Air Curing at 7 days	49
В	Control Sample for Air Curing at 28 days	50
С	Control Sample for Water Curing at 7 days	51
D	Control Sample for Water Curing at 28 days	52
E	Ratio 10% for Air Curing at 7 days	53
F	Ratio 10% for Air Curing at 28 days	54
G	Ratio 10% for Water Curing at 7 days	55
Н	Ratio 10% for Water Curing at 28 days	56
Ι	Ratio 20% for Air Curing at 7days	57
J	Ratio 20% for Air Curing at 28 days	58
Κ	Ratio 20% for Water Curing at 7 day	59
L	Ratio 20% for Water Curing at 28 days	60

47

LIST OF TABLES

Table No.	Title	Page
2.1	Size of sand brick follows the JKR standard	7
2.2	Chemical Composition of Palm Kernel Shells	
	(Chaiyaomporn & Chavalparit, 2010)	11
2.3	Chemical Composite in Palm Kernel Shells	
	(Chaiyaomporn & Chavalparit, 2010)	12
2.4	Brick Classification follow the BS 3921:1985	13
3.1	Ratio of Mix Design Sand Brick	22
3.2	Type of test in Curing Process	24
4.1	Average of control samples at 7 days and at 28 days	34
4.2	Average of 10% ratio of PKS at 7 days and at 28 days	35
4.3	Average of 20% ratio of PKS at 7 days and at 28 days	36
4.4	Compressive Strength for air curing	37
4.5	Compressive Strength for water curing	38
4.6	Percentage of water absorption at 7 days	40
4.7	Percentage of water absorption at 28 days	41
4.8	Percentage of water absorption at 7 days and at 28 days	42

LIST OF FIGURES

Figure No.	Title	Page
2.1	Sand Bricks	6
2.2	Palm Kernel Shells	7
2.3	Clay Bricks	8
2.4	Common Brick	8
2.5	Facing Brick	9
2.6	General Composition Limits of Portland Cement (Lim, 2012)	10
2.7	Mean compressive strength of walls against strength for 102 mm th	nick
	brickwork in various mortars Hendry, (1990)	13
2.8	Physical requirement for building bricks (ASTM C62-89a, 1990)	14
3.1	Flow chart of Final Year Project	16
3.2	Sands	17
3.3	Sieve Shaker	17
3.4	Tap Water	18
3.5	Portland Composite Cement	19
3.6	Taking Palm Kernel Shells at factory of palm oil	19
3.7	Process of washing palm kernel shells	20
3.8	Process of cleaning PKS	20
3.9	Sundried for two days	20
3.10	Crushing using hammer to get passing 4.75mm	21
3.11	Sieve palm kernel shells to get passing 4.75mm	21
3.12	Marked the dimension of brick	22
3.13	Cut the plywood following the right size	22
3.14	Installed all the cut plywood to form mould of brick	23
3.15	This oil to paint on to plywood to avoid sample of mixture stick at	the
	mould	23
3.16	Sample mixing process	23
3.17	Process of putting the mixture into mould	24

3.18	Process of air curing	25
3.19	Process of water curing	25
3.20	Process of compressive strength test	26
3.21	Bricks had been crushed	26
3.22	Brick on the digital scale	27
4.1	Control sample for air curing	29
4.2	Control sample for water curing	30
4.3	10% of PKS for air curing	31
4.4	10% of PKS for water curing	32
4.5	20% of PKS for air curing	33
4.6	20% of PKS for air curing	34
4.7	Average of control samples at 7 days and at 28 days	35
4.8	Average of 10% ratio of PKS at 7 days and at 28 days	36
4.9	Average of 20% ratio of PKS at 7 days and at28 days	37
4.10	Compressive Strength against Days for air curing	38
4.11	Compressive Strength against Days for water curing	39
4.12	Average water absorption for 7 days	40
4.13	Average water absorption for 28 days	41
4.14	Average water absorption for 7 and 28 days	42

LIST OF ABBREVIATIONS

PKS	Palm Kernel Shells
JKR	Jabatan Kerja Raya
FKASA	Fakulti Kejuruteraan Awam dan Sumber Alam
OPC	Ordinary Portland Cement
BS	British Standard
ASTM	American Standard Test and Method

STUDY OF SAND BRICK RATIO 1:3 FOR PARTIAL REPLACEMENT OF SAND WITH PALM KERNEL SHELLS (0%, 10% AND 20%)

MAISARAH BINTI ABDULLAH

Thesis submitted in fulfilment of the requirements for the award of the degree of Bachelor Civil Engineering

Faculty of Civil Engineering and Earth Resources Universiti Malaysia Pahang

JANUARY 2017

ABSTRACT

In this study, samples of sand brick that added with palm kernel shells (PKS) are produced to determine the best compressive strength of sand brick and to identify the best water absorption of sand brick with different percentages. There are 3 different percentages which are 0%, 10% and 20% will be replaced with the sand. The size of sand brick is 225mm x 113mm x 75mm. There are 120 bricks with three different percentage of ratio palm kernel shells are produced 20 samples for each percentage for 7 days and 28 days to get the average results of the compressive strength and water absorption. The outcome of these results is to compare the compressive strength and water absorption of sand brick are replaced with palm kernel shells and control samples. From the average of compressive strength by using air curing is decrease from 34.06 N/mm² until 22.66 N/mm² for 7 days and from 36.04 N/mm² until 24.86 N/mm² for 28 days while using water curing method also decrease from 33.00 N/mm² until 22.32 N/mm² for 7 days and from 34.63 N/mm² until 23.52 N/mm². Then, the average for water absorption by using air curing is increase from 2.41% until 5.35% for 7 days and from 2.64% until 6.33% for 28 days while by using water curing also increase from 2.67% until 6.24% for 7 days and from 2.94% until 6.63% for 28 days. This study will be useful to improve the strength of the sand brick by using smaller percentage from this study.

ABSTRAK

Dalam kajian ini, sampel bata pasir yang ditambah dengan sisa agrikultur iaitu tempurung kelapa sawit akan dihasilkan. Penghasilan ini dibuat bagi mengetahui kekuatan bata pasir yang mempunyai kandungan bahan tambah. Tempurung kelapa sawit dengan setiap peratusan penambahan didalam bancuhan rekabentuk telah ditetapkan iaitu sebanyak 0%, 10%, dan 20%. Saiz bata pasir adalah 225mm x 113mm x 75mm. Sebanyak 120 sampel dihasilkan dimana setiap bancuhan yang berbeza peratusan akan menghasilkan 20 biji bata. Separuh daripada jumlah sampel akan diuji pada usia ke 7 dan separuh lagi diuji pada usia ke 28 hari. Sampel bata ini diuji dengan dua ujian iaitu ujian kekuatan mampatan dan peratus penyerapan air menggunakan dua kaedah pengawetan iaitu pegawetan udara dan pengawetan air. Hasil daripada data yang diperolehi, nilai purata kekuatan mampatan bata menggunakan kaedah pengawetan udara adalah menurun daripada 34.06 N/mm² sehingga 22.66 N/mm² untuk hari ke 7 dan daripada 36.04 N/mm² sehingga 24.86 N/mm² pada hari ke 28 manakala menggunakan kaedah pengawetan air adalah menurun daripada 33.00 N/mm² sehingga 22.32 N/mm² untuk hari ke 7 dan daripada 34.63 N/mm² sehingga 23.52 N/mm². Berdasarkan peratus penyerapan air pula, nilai yang diperoleh menggunakan kaedah pengawetan air adalah menaik daripada 2.67% sehingga 6.24% untuk hari ke 7 dan daripada 2.94% sehingga 6.63% untuk hari 28 manakala menggunakan kaedah pengawetan udara adalah menaik daripada 2.41% sehingga 5.35% untuk hari ke 7 dan daripada 2.64% sehingga 6.33% untuk hari ke 28. Disebalik data penurunan untuk kekuatan mampatan ini, peratusan terbaik yang sesuai digunakan dalam kajian ialah sebanyak 10% menggunakan kaedah pengawetan udara memandangkan jumlah kekuatan mampatan tersebut pada hari ke 7 dan 28 menunjukkan penurunan yang paling sedikit berbanding bata kawalan dan data penaikan untuk peratus penyerapan air yang terbaik adalah 2.93% menggunakan kaedah pengawetan udara. Kesimpulannya, tempurung kelapa sawit berpotensi digunakan dalam penghasilan bata, namun jumlah peratusan bahan tambah yang lebih kecil dari 10% perlu dikaji pada kajian yang akan datang.

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Construction field is one of the areas that give to the development of the country, not only in Malaysia but also abroad. The construction sector can be seen in terms of the demand for construction of residential houses, office buildings, premises of business and so are constantly increasing for the country to build and strengthen the economy. From the demand, the use of materials such as bricks in the construction field is greatly needed to develop.

Bricks are probably the oldest industrialized building material known to man. Brick is in a rectangle-shaped, made of inorganic materials that are hard and tough. There are various types and forms of brick, depending on the type and source of raw material, the method of manufacture and use. There are four main stages in the manufacturing process. There are preparations of bricks, the manufacturing stage, drying and heating stages. The earliest bricks are made from clay, taken from close to the surface of the ground, or from river banks, moulded into shape by hand and dried in the sun. Clay bricks over the centuries were traditionally made locally and not transported very far, so that they had widely differing characteristics depending on the material available and the way the bricks will be treated by the maker.

Therefore, the sand brick which acts as the main character has been selected in this study which added with palm kernel shells (PKS) in the mixture of the sand brick. In Malaysia, the palm oil industry is important because of the production and exportation the palm oil all around the world. So, the waste material of the palm oil will be producing many wastes in this country. From that waste, we can save our earth from environmental pollution. Furthermore, in the construction industry, building materials brick is particularly important to interpret walls, roads, car parks and many more.

1.2 PROBLEM STATEMENT

Generally, the use of brick in construction is widespread, especially in the construction of buildings and infrastructure. Various studies will be conducted to produce variety methods that can add the strength of the brick. However, since the brick was exposed to the environment, it's a bit of a weakness (He et al., 2012). To overcome these weaknesses and to improve the brick strength, we will replacing the original composite brick with palm kernel shells based on the earlier studies that palm kernel shells was used in the making of bricks (Zakaria, 1987).

Palm kernel shell is one of the solid wastes from the process of agricultural production and palm kernel shells (Mamat, 2006) who mostly processed in the tropics (Shafigh et al., 2010). According to a statement issued in Berita Harian, seven percent palm kernel shells was produced for every tonne of palm oil bunches processed (Michael, 2006). By the way, if the waste is not reused indirectly may lead to increased problems of waste disposal of waste in landfills.

Detailed studies should be made to make sure that additional palm kernel shells can improve the strength of the brick itself. In addition, these studies rely on laboratory tests to get the right result. All data and processes of experiments conducted in the laboratory in addition to getting help from factories that operate brick manufacture or processing plant palm.

1.3 OBJECTIVES STUDY

The main objective of this study is to determine the effectiveness of sand brick and palm kernel shell as feedstock in the manufacture of brick.

The objectives of this research are:

- i. To identify the best compressive strength of sand brick with the different percentage of palm kernel shell.
- ii. To identify the best water absorption of sand brick with the different percentage of palm kernel shell.

1.4 SCOPE OF STUDY

This research is mainly focused on the compressive strength of sand brick with additional of palm kernel shells on the investigated samples. The control samples are designed with cement, sand, and water without any admixture. To ensure that the study can meet the proposed objectives, the scope of this study will include a review of the potential ability of bricks containing the admixture of palm kernel shells whether it seeks to achieve and exceed the standards of the brick strength or vice versa. Size of the sand bricks will be followed the Malaysia Public Works Department or *Jabatan Kerja Raya* (JKR) standard which is length ($225 \pm 3.2 \text{ mm}$), width ($113 \pm 1.6 \text{ mm}$) and height ($75 \pm 1.6 \text{mm}$). All the tests on the samples will be carried out on brick samples in the laboratory of the Faculty of Civil Engineering (FKASA).

The scope of work mainly focuses on:

- i. The experiments that conducted are Compressive Strength Test and Water Absorption Test.
- ii. The compression strength test conducting at 7 days and 28 days to get the strength of brick.
- iii. The size of sand brick are follow JKR standard which is 225mm x 113mm x 75mm.
- iv. The ratio of sand brick is 1:3, which are one part of cement and 3 part of sand.
- v. The percentage of palm kernel shell were replacing sand at 10% and 20% replacement by volume of sand.

REFERENCES

- Shafigh. P., Jumaat, M. Z., & Mahmud, H. (2010). "Mix design and mechanical properties of oil palm shell lightweight aggregate concrete: A review". International Journal of the Physical Sciences 5(14), pp. 2127-2134.
- Mamat C.J (2013, Februari 2). Nilai Sisa Sawit. Akhbar Agrobiz. p. 2-3.
- Mamat R. (2014, Julai 5). Teknologi Nanomas hasilkan serbuk tempurung sawit. Berita Sawit untuk Berita Harian. p. 6.
- Mat Hussin, F. Kekuatan Mampatan dan Serapan Air Batu Bata Tanah Liat Tanpa Bakar yang Mengandungi Abu Dasar Sebagai Bahan Gantian Pasir. Undergraduate Thesis. Universiti Tun Hussein Onn Malaysia; 2014.
- Mat Lazim, Z. Bahan Dan Binaan. 1st ed. Malaysia: Dewan Bahasa dan Pustaka. 1987.
- Zakaria, M. S. Penggunaan Bahan Buangan Bottom Ash Kilang Sawit Dan Bottom Ash Loji Janakuasa Sebagai Bahan Gentian Dalam Penghasilan Bata Tanah Liat. Undergraduate Thesis. Universiti Tun Hussein Onn Malaysia; 2014.
- Zhang, T., Yu, Q., Wei, J., & Zhang, P. (2011). "Effects of size fraction on composition and fundamental properties of Portland cement". *Construction and building materials*. pp. 3038-3043.
- Mansor, M. Penggunaan Batu Bata Tanah Liat Dalam Industri Pembinaan. Undergraduate Thesis. Universiti Teknologi Malaysia; 2010.
- Mat Amin, K. N., Tumiran, D. M., & Johari, I. *C1001 Bahan Dan Binaan Kejuruteraan*. Malaysia: Kementerian Pendidikan Malaysia. 2006.

- Abd Kadir, A & Maasom, N. (2010). "Possible utilization of cigarette butts in light weight fired clay bricks". *International Journal of Civil and Environmental Engineering*, 2(3), pp. 118-122.
- Ahmad, A. *Bata Tanpa Bakar*. Undergraduate Thesis. Universiti Teknologi Malaysia; 2006.
- British Standard Institution (1990). *Soils for Civil Engineering Purposes*. London: BS 1377: Part 2: 1990.
- British Standard Institution (2006). Advanced Technical Ceramics- method of test for ceramics powder. London: BS EN 725: Part 4: 2006.
- Jabatan Kerja Raya (2005), Standard Specifications for Building Works, JKR MS 20800:2005