ENHANCING GENERIC CODE CLONE DETECTION MODEL THROUGH
PROTECTED ACCESS MODIFIER RULE AND WEIGHTAGE

SITI AN NASIHAH BINTI MOHD NAPI

A thesis submitted in fulfilment of the
requirements for the award of the degree of

Degree of Computer Science (Software Engineering) with Honors

Faculty of Computer Systems & Software Engineering

Universiti Malaysia Pahang

DECEMBER 2016

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : SITI AN NASIHAH BINTI MOHD NAPI
Date of Birth : 30 MAY 1994

Title : ENHANCING GENERIC CODE CLONE DETECTION
MODEL THROUGH PROTECTED ACCESS MODIFIER
RULE AND WEIGTHAGE

Academic Session : SEMESTER 1 16/17

| declare that this thesis is classified as:

[0 CONFIDENTIAL (Contains confidential information under the Official
Secret Act 1997)*

0 RESTRICTED (Contains restricted information as specified by the
organization where research was done)*

[0 OPEN ACCESS | agree that my thesis to be published as online open
access (Full Text)

| acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the
thesis for the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

(Student’s Signature) (Supervisor’s Signature)

940530-03-5092
New IC/Passport Number Name of Supervisor
Date: Date:

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

THESIS DECLARATION LETTER

Librarian,

Perpustakaan Universiti Malaysia Pahang,
Universiti Malaysia Pahang,

Lebuhraya Tun Razak,

26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of

Author’s Name
Thesis Title

Reasons (i)

(ii)

(iii)

three (3) years from the date of this letter. The reasons for this classification are as listed
below.

Thank you.

Yours faithfully,

(Supervisor’s Signature)
Date:

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian,
Perpustakaan Universiti Malaysia Pahang with its copy attached to the thesis.

SUPERVISOR’S DECLARATION

| hereby declare that | have read this thesis and in my opinion this thesis/ report is
sufficient in term of scope and quality for the award of the degree of Bachelor of

Computer Science (Software Engineering).

(Supervisor’s Signature)
Full Name : Dr. Al-Fahim Bin Mubarak Ali
Position
Date

STUDENT’S DECLARATION

| hereby declare that the work in this thesis is based on my original work except for
guotations and citations which have been duly acknowledged. | also declare that it
has not been previously or concurrently submitted for any other degree at

Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)
Full Name : SITI AN NASIHAH BINTI MOHD NAPI
ID Number :CB13058
Date : 06 DECEMBER 2016

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful

First and foremost, praise to Almighty Allah for all HIS blessings for giving me
patience and good health to complete this project successfully. With his blessing and
guidance, all obstacles and problems managed to be solved. Alhamdulillah.

Next, the deepest appreciation to my project supervisor, Dr. Al-Fahim Bin Mubarak
Ali for his supportive and useful guidance from start until finishes this project. |
really appreciated the support that was given by my supervisor throughout this
project development. The highest gratitude to my supervisor who never gives up

share with me relevant information related with my project title.

To my beloved family, who supports me all the times, thanks for the precious
motivations, priceless advices and finance support for me to finish this project and |

am grateful beyond words and supports for all that they have given me.

Lastly, I would like to express my high appreciation to my supportive friends who
always give me great ideas and solutions for my project. Thank you very much for
the endless support, the constructive criticism as well as help offered in completing

this project.

Vi

ABSTRACT

Code clone is a common term used to refer codes that have been repeated
multiple times in a program. There are four types of code clone which are type I,
type 11, type 11l and type IV. Code clone detection models have been used to detect
clones apart from code clone detection approaches by applying the protected access
modifier rule and weightage. The major challenge faced in detecting code clone
using models is the lack of generality in detecting all clone types. This is due to the
use of different code clone detection approaches in the models that represents
different representation of the source codes; hence it affecting the type of code clones
detected. Based on this weakness, it is essential to propose a code clone detection
model that can support different type of code. To overcome this weakness, Generic
Code Clone Detection model that consists of five processes which are Pre-
processing, Transformation, Parameterization, Categorization or called as pooling
and Match Detection process has been proposed. A prototype has been developed to
detect all code clone types in Java. The proposed method was evaluated in two case
studies comprised of three Java applications. The result shows the Generic Code
Clone Model prototype was able to detect Type I, Type IlI, Type Il and Type IV
clone pairs. The results imply that the Generic Code Clone Model was able to detect
all code clone types in Java applications and the generated Generic Code Clone
Model have better visualization of the code clone detection results.

vii

ABSTRAK

Kod klon adalah istilah umum yang digunakan untuk merujuk kod yang telah
diulang beberapa kali dalam program. Terdapat empat jenis kod klon yang jenis I,
jenis 11, jenis 11l dan jenis IV. Kod model pengesanan klon telah digunakan untuk
mengesan klon selain pendekatan pengesanan kod klon dengan menggunakan akses
peraturan pengubahsuai yang dilindungi dan pemberat. Cabaran utama yang dihadapi
dalam mengesan kod klon menggunakan model adalah kekurangan keluasan dalam
mengesan semua jenis klon. Ini adalah kerana penggunaan pendekatan pengesanan
kod klon yang berbeza dalam model yang menghasilkan perwakilan yang berbeza
daripada kod sumber; oleh itu ia memberi kesan kepada jenis klon kod dikesan.
Berdasarkan kelemahan ini, ia adalah penting untuk mencadangkan model
pengesanan kod klon yang boleh menyokong pelbagai jenis kod. Untuk mengatasi
kelemahan ini, model pengesanan Generic Code Clone yang terdiri daripada lima
proses yang Pra-pemprosesan, Transformasi, parameterization, Pengkategorian atau
dipanggil sebagai pengumpulan dan proses pengesanan Perlawanan telah
dicadangkan. prototaip telah dibangunkan untuk mengesan semua jenis kod klon di
Jawa. Kaedah yang dicadangkan telah dinilai dalam dua kajian kes terdiri daripada
tiga aplikasi Java. Hasilnya menunjukkan prototaip pengesanan Generic Code Clone
dapat mengesan Jenis I, Jenis I, Jenis Il dan IV Jenis pasangan klon. Keputusan
membayangkan bahawa pengesanan Generic Code Clone automatik mampu untuk
mengesan semua jenis kod klon dalam aplikasi Java dan yang dihasilkan pengesanan
Generic Code Clone mempunyai visualisasi lebih baik keputusan pengesanan kod

klon.

viii

TABLE OF CONTENTS
CONTENTS PAGE
THESIS DECLARATION LETTER ...t I
SUPERVISOR’S DECLARATION ..ot ii
STUDENT’S DECLARATIONoooiiiiiii e 0\
ACKNOWLEDGEMENTS ... v
ABSTRACT .. Vi
ABSTRAK . vii
TABLE OF CONTENTS ... viii
LIST OF FIGURES ..ot Xi
LIST OF TABLES ... Xii
CHAPTER 1 INTRODUCTIONcoiiiiiiiiiiii s 1
1.1 INTRODUCTION. ..ottt 1
1.2 PROBLEM STATEMENT ..ot 3
1.3 RESEARCH OBJECTIVESccoiiiiiire e 6
14 RESEARCH QUESTIONS ... 6
1.5 RESEARCH SIGNIFICANCES..........cooiii 7
1.6 RESEARCH SCOPES. ... 7
1.7 RESEARCH ORGANIZATIONccccoiiiiiiii 8
CHAPTER 2 LITERATURE REVIEWccoiiiiiiiiec e 9
2.1 INTRODUCTION.....coiiiiiieii s 9
2.2 IMPACT OF CODE CLONEcccciiiiitiiiiite et 11

221 Increased Probability of Bug Propagationccccocevviiiiincnencnennnn 11

2.2.2 Increased Probability of Bad DeSign.........ccccoceviveieviiicicie e 11
2.2.3 Increased Difficulty in System improvementcccccooevvvieeveseesesiene 11
224 Increased MAINTENANCE COS........ccvoviiiiiiiiree s 12
2.25 Increased resouUrce reqUIrEMENTS.couvviirinirerieieeee s 12
2.3 CODE CLONE DEFINITION. ...ttt 12
24 CODE CLONE DETECTION APPROACHES ... 13
24.1 Text-based Detection APProach ... 13
2.4.2 Token-based Detection APProach ... 14
2.4.3 Tree-based Detection APProachcccccevvee i 14
2.4.4 Metrics-based Detection APProachccocevviiiiciecicic s, 15
245 Program Dependency Graph-based Detection Approach........................ 15
25 ACCESS MODIFIER ..ottt 15
251 Public ACCESS MOITIENoiviiiiiiiieee e 16
252 Protected AcCeSS MOITIENccoiiiiiiciiiiic e 17
253 NO ACCESS MOTITIET ...t 18
25.4 Private ACCESS MOGITIENcoviiiiiiiiice e 19
255 The Differences of characteristics of Access Modifier Methods............... 20
2.6 RELATED WORK ...ttt 21
2.6.1 Generic Clone MOEl ..o 21
2.6.2 Generic Pipeline Model ... 22
2.6.3 Unified Clone MOEL ..o 24
2.6.4 Advantages and Disadvantages of ModelS............ccocevviviiiiiiinincncn 24
2.7 SUMMARY ..t sttt b e e be et e 26
CHAPTER 3 METHODOLOGY ..ottt e 27
3.1 INTRODUCTION. ...ttt et nae e e sre e e 27
3.2 RESEARCH METHODOLOGYccooiiiiieiieiieeieesiee st 28
3.21 Literature ANAIYSIScoooiiiie e 29
3.2.2 Design and Develop MOodel ..o 30

3.2.3 [V 1 [UE=N A o] o IR 35

3.3 DAtA SEL.....ooiiiii 35
3.4 Hardware and SOftWANEccooiiiiiiiic e 36
34.1 Hardware DevelopmeNt..........cooviiiiiiiieee s 36
34.2 Software DeVelOPMENT.........cccoiiiiieie e 36

3.5 GANTE CAIT ... 37
3.6 SUMMARY ..ttt b e b e 37
CHAPTER 4 EVALUATION ..ottt 38
41 INTRODUCTION. ...ttt nee e 38
4.2 MODEL EVALUATION ..ottt 38
4.3 CLONE PAIR DETECTION ..ottt 39
4.4 OVERALL RUNTIME PERFORMANCE ...t 39
4.5 SUMMALRY ..ttt re e 41
CHAPTER 5 CONCLUSION ..ottt 42
51 CONCLUSION ..ttt r e e nne e 42
5.2 LESSON LEARNT ..ottt sttt 43
5.3 RESEARCH LIMITATIONS ...ttt 44
54 FUTURE WORK ...ttt s 44
55 SUMMARY ..t e bbbttt et nre e 45
REFERENCQCES. ...ttt bttt 46

APPENDICES ... 49

Xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 4.1:

The Types of Code CIONE........cccooiiiiie e, 2
Example Output of Text-based AppProachc.cceoeveveriiencnennsieennn, 4
Example Output of tree-based approachc.cccooevveiiiiciccc e 5
A situation demonstrating Java visibility modifiers...........cccccoveviiennn, 16
Example of public access modifier (“Access Modifiers [1,” n.d.) 17
Example of Protected access MOdifier...........ccoovvveienenc s, 18
Example of No access Modifier...........cccooveviieieeie i 19
Example of Private access Modifierccovvvveiiiiiiiccccc e 20
The overview of generic clone model (Giesecke, 2007)cccovvvvenenn, 21
An overview of process in Generic Pipeline Model..............cccooeeee 23
An overview of the flow of Unified Clone Modelcccccovveivnnnnn, 24
Research Methodologyccccveiieiiiic e 28
Literature Review and ANAlYSISc.ccoveieiieiieic e 29
Design of the Generic Code Clone Model..........c.ccoovvieniiiiiieinien, 30
The interface design of the generic code clone modelc.cccoee.... 33
Example of code built in jJava..........cccocveviiiiie i 33
The sample of code clone detection report...........cccoevveveevieicie e, 34

Line graphs for shows the overall run time performance of Generic Code

CloNE dEtECION MOUEL.t 40

Xii

LIST OF TABLES
TABLE NO. TITLE PAGE
Table 2.1: The difference of characteristics of Access Modifier Methods................ 20
Table 2.2: SWOT analysis of the models............ccocooviviiiicce e, 25
Table 3.1: The Characteristics 0f the TOOISceeveeeeeeeeeeeee e 36
Table 3.2: Hardware DevelopmeNtccooiiiiiiiiiiseeeee e 36
Table 3.3: Software DeVEIOPMENT........ccciiiiiiiee e 37
Table 4.1: Result of the detected COE ClONE........oeee e 39

Table 4.2: The evaluation of the overall run time performance of code clone

AEtECHION MO ... 40

CHAPTER 1

INTRODUCTION

11 INTRODUCTION

Refer to IEEE standard; definition of software development process is
concerned primarily with the production aspect of software development, as opposed
to the technical aspect, such as software tools. These processes exist primarily for
supporting the management of software development, and are generally skewed
toward addressing business concerns. Many software development processes can be
run in a similar way to general project management processes. A clone occurs when
a code fragment is an identical to another code fragment according to some basic
criteria. These criteria may be syntactical, semantical, or both of them (El-Matarawy,
El-Ramly, & Bahgat, 2013). In software project management, it is common to reuse
some code fragments by copying with or without minor modifications for use in

different programs or maintained by the same entity.

Most of the software systems consist of a large number of identical code
segments. These identical code segments are known as code clones. According to
previous research, a software system consists of about 7% to 23% of cloned code
(Yuan & Guo, 2011). There are four types of code clone which are type I, type I,

type 111 and type IV. Below is the diagram to show the difference of four types of

code clone.

Type I

Original Code

Clone Code

Type I1

Original Code

Clone Code

if(a>=b){c=d+b://
Comment1l

Types of Code Clone

—

Type IIT

F=drlJekec=d-a;
//Comment2

if (m >=n)

{// Comment1’y = x +n: x = x
+~5;//Comments J

else y = x - m; //Comment2’

Original Code

Clone Code

Type IV

if (a >=b) {
c=d+ b; // Commentl
d=d+ 1;}

else
¢ =d - a; //Comment2

if (a >=b) {

e = 1; // This statement is added
d=d+1;}

else
¢ =d - a; //Comment2

Original Code

Clone Code

int i, j=1;
for (i=1; i<=VALUE; i++)
J=j=i;

int factorial(int n) {
if (n == 0) return 1 ;
else return n * factorial(n-1) ;

}

Figure 1.1: The Types of Code Clone

For type | for above figure, these two fragments are textually after removing

the whitespace and comments. Next, for the type Il of code clone in above figure

shows that the two code segments change a lot in their shape, variable names and

value assignments. However, the syntactic structure is still similar in both segments.

Type 11 in the figure of types of code clone above shows that the two fragments and

from the corresponding difference, all the original statements are used directly or

after being changed in their identifiers or literals with one insertion in the first line,

making this code fragment as Type 111 of code clone. Without this inserted statement,

this copied fragment could be a Type Il code clone. For type IV of code clone in the

figure above shows that from the semantics point of view both the code fragments

are similar in their functionality and termed as Type IV semantic clones although one
Is a simple code fragment and another is a recursive function with no structural

similarities between the statements of the two fragments.

Clones are considered harmful in software maintenance and should be
removed or detected at least. However, it would have been much better if there is no
clone at all in the developed system so that we would not have to think about neither
removal nor detection of clones. The idea is to use a clone detection tool in the
normal development process to avoid cloning in the software right from the
beginning. There are two ways of how to use a clone detection tool in the
development process for avoiding clones. One way is the preventive control where a
new function is added to the system only after being confirmed that this new function
is not a clone to any existing one or there are specific reasons of adding that function
as a clone to the system. The other way is the problem mining where any
modification to a function must be consistently propagated to all of its similar
functions in the system. Therefore, no clones are created unnecessarily, and the
probability of update anomalies is reduced significantly(Roy & Cordy, 2007).

1.2 PROBLEM STATEMENT

Over the last decade many technigues and tools for software clone detection have
been proposed. This includes textual approaches and semantic approaches. Most of
them are oriented to a specific computer language and they range from high precision
to low precision, and from high recall to low recall (EI-Matarawy et al., 2013). There
are five approaches that have been used in code clone detection which are text-based
approach, token-based approach, tree-based approach, metrics-based detection
approach and program dependency graph-based (PDG-based) detection approach.
The figures below explain of all the code clone detection approach:

Before Filtering: After Filtering:

#include <stdic.h>

static int stat = 0O;

staticintstat=0;
int main (argc, argv) intmain(argec,argv)
int argc; intargc;
char **argv, chars**xargwv;

4 ++argv,——argv;
/+skip program name =/ if(arge>0)
++argv, ——argv;
if (argec > 0) {

Figure 1.2: Example Output of Text-based Approach

The above figure shows text-based approach, two code fragments are compared
with each other to find sequences of same strings. Once two or more code fragments are
found to be similar in their maximum possible extent are returned as clone pair or clone
class by the detection technique. Because of the purely text-based, detected clones do not
correspond to structural elements of the language. A small or no normalization is
performed on the source code before starting the actual comparison and most of the
cases; the original source code is directly used in the clone detection process. However,
to validate the following normalizations are applied on some approaches which are
comments removal, whitespace removal and normalization of the code(Roy & Cordy,
2007).

In the token-based detection approach, the entire source system is transformed to
a sequence of tokens. This sequence is then scanned for finding duplicated sub
sequences of tokens and finally, the original code portions representing the duplicated
sub sequences returned as clones. Compared to text-based approaches, a token-based
approach is usually more robust against code changes such as formatting and spacing.
Next, Tree-based approach is pared to a parse tree with a parser of the language of
interest. Similar sub trees are then searched in the tree with some tree matching
techniques and the corresponding source code of the similar sub trees are returned as
clones pairs or clone classes. The parse tree or Abstract Syntax Tree contains the
complete information about the source code. The figure below shows the example of

tree-based approach:

al?] = x
occurs twice:
ali] = x ;

ali+l] = x ;

Figure 1.3: Example Output of tree-based approach

The above figure shows the argument to the first occurrence is lexical
because it includes only a leaf and, perhaps, a unary node that identifies the type of
the leaf. The argument to the second occurrence is, however, structural because it
includes a binary based-tree node. Thus, it is clear that structural abstraction is more
general than based-tree and hence, can find gapped clones by abstracting of a based-
tree with the cost of much larger search space. Program Dependency Graph (PDG)-
based approaches go one step further in obtaining a source code representation of
high abstraction than other approaches by considering the semantic information of
the source. PDG-based contains the control flow and data flow information of a

program and hence carries semantic information.

Once a set of PDG-based are obtained from a subject program, isomorphic
sub graph matching algorithm is applied for finding similar sub graphs which are
returned as clones. Another approach of clone detection is metric-based approach.
Metrics-based approaches gather different metrics for code fragments and compare
these metrics vectors instead of comparing code directly. There are several clone
detection techniques that use various software metrics for detecting similar code.
First, a set of software metrics called fingerprinting functions are calculated for one
or more syntactic units such as a class, a function, or a method or even statement and

then the metrics values are compared to find clones over these syntactic units.

A clone detector must try to find pieces of code of high similarity in a

system’s source text. The main problem is that it is not known beforehand which

code fragments can be found multiple times. The detector thus essentially has to
compare every possible fragment with every other possible fragment. Such
comparison is very expensive from a computational point of view and thus, several
measures are taken to reduce the domain of comparison before performing the actual
comparison. Moreover, after finding the potential cloned fragments, further analysis
and tool support is required to detect actual clones (Roy, Cordy, & Koschke, 2009).

1.3 RESEARCH OBJECTIVES

The main objectives to be achieved on this research are the following:

I. To propose a method in enhancing the generic code clone detection
model.

ii. To implement the proposed method of enhancing the generic code clone
detection model.

ii. To evaluate the result based on code clone type and run time performance
of three applications.

1.4 RESEARCH QUESTIONS

There are several things that should be considered in achieving the objectives

in this research:

i. What is the appropriate access modifier method to detect the type of code
clone?

ii. How to implement the proposed access modifier method in generic code
clone detection?

iii. How to evaluate the code clone detection result?

1.5

RESEARCH SIGNIFICANCES

There are a few of significances of this research:

1.6

The analysis of access modifier are useful as a medium to evaluate a huge
of data and as a baseline reference for future research.

The applied method of access modifier in detection of code clone can
assist the expert in gaining the new program without duplication of code
fragment.

The applied method of access modifier in detection of code clone also can
increase the confidence of the developer to create their own program
without duplication of code fragments.

Monitoring and removal of code clones are important in software

development.

RESEARCH SCOPES

The boundary of the research as follows:

This research is focusing on workability of access modifier in detection of
code clone.

The datasets of the code is real codes that obtained from the existed code
in library, internet sources or develop the code from programming tools
for use in detection of code clone.

Determine of applied method of access modifier in detection of code
clone.

The evaluation of the proposed method of access modifier in detection of

the code clone.

1.7

RESEARCH ORGANIZATION

This research consists of five chapters. Chapter One which is introduction,
that give briefly explanation to the readers about the research topic, related issues
and objectives of this research. Next, chapter Two which is literature review, this
part will explain in details about the selected topic, analyse the related work and
make the comparison. Besides, this part also will explain the method that is
suitable to be included in the research. Chapter Three which is methodology that
will discuss about the research methodology, parameter of datasets, selected
method, development technique and tools that used in this research. Then, we
continue to the Chapter Four where the prototype is developed. From the
prototype, we evaluate the result based on the code clone type and run time
performance of the three application. Next, we move to Chapter Five which is the
conclusion of the research. In conclusion, we conclude all the objective either it

achieve or not achieve.

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

It is very common in computer programming to copy part of the program
from one place and paste it in another place and then adapt it to fit in the new place.
This happens for a variety of reasons. As a result, software systems often contain
sections of code that are very similar, called code clones. Sometimes code clones are
created for legitimate reasons, but other times they are not and they deteriorate the
quality of the code. One of the main drawbacks of code clones is that the developer
should modify multiple copies of the same pieces of code if a change is needed in a
piece of code that has been cloned. Often this does not happen with good quality
because the programmer forgets where they duplicated the code and leaves some
clones unchanged. Fortunately, several techniques for detecting code clones have
been proposed to help the programmer find code clones and locate the locations of
duplicate code (El-Matarawy et al., 2013).

Code cloning is found to be a more serious problem in industrial software
systems. In presence of clones, the normal functioning of the system may not be
affected, but without countermeasures by the maintenance team, further development
may become prohibitively expensive. Clones are believed to have a negative impact

on evolution. Code clones may adversely affect the software systems’ quality,

10

especially their maintainability and comprehensibility. For example, cloning
increases the probability of update anomalies. If a bug is found in a code fragment,
all of its similar cloned fragments should be detected to fix the bug in question.
Moreover, too much cloning increases the system size and often indicates design
problems such as missing inheritance or missing procedural abstraction. Although
the cost of maintaining clones over a system’s lifetime has not been estimated yet, it
is at least agreed that the financial impact on maintenance is very high. The costs of
changes carried out after delivery is estimated at 40% - 70% of the total costs during

a system’s lifetime (Latoza, 2005).

Existing research shows that a significant amount of code of a software
system is cloned code and this amount may vary depending on the domain and origin
of the software system. For instance, Baker has found that on large systems between
13% - 20% of source code can be cloned code. Lague et al. have studied only
function clones and reported that between 6.4% - 7.5% of code is cloned code
whereas Baxter et al. have reported that 12.7% of code being clones of a software
system. Mayrand et al. have also estimated that normal industrial source code
contains 5% — 20% of duplicated code. Kapser and Godfrey have experienced that as
much as 10% —15% of source code of large system is cloned. For an object-oriented
COBOL system, the rate of duplicated code is found even much higher, about 50%
(Roy & Cordy, 2007).

Most previous work on code-clone detection has focused on finding identical
clones, or clones that could be made identical via consistent transformations of
identifiers and literals. However, code segments that are similar but not identical
occur often in practice, and finding such non-identical clones can be as important as
finding identical code segments. For example, while automated code compaction
may require finding identical clones, studies of the evolution of a codebase over time
require finding clones that vary in their similarity. One of the central issues with
finding non-identical clones is assessing when two pieces of code are close enough to
be considered “similar”. Because this is likely to depend on the context in which the

clone-detection clone detection tool is used, we believe that such tools should

11

provide a quantitative measure of clone similarity, leaving the ultimate decision of
classification to the user of the tool (Smith & Horwitz, 2009).

2.2 IMPACT OF CODE CLONE

Code clone happened when the developer build a large software programme.
While it is beneficial to practise cloning, code clones can have severe impacts on the
quality, reusability and maintainability of a software system (Roy & Cordy, 2007).

Several of impacts of code clone are listed as follows:

2.2.1 Increased Probability of Bug Propagation

On the off chance that a code portion contains a bug and that fragment is
reused by adapting and gluing without or with minor adjustments, the bug of the first
section may stay in all the glued fragments in the framework and accordingly, the
likelihood of bug proliferation may increment fundamentally in the framework.
Expanded of presenting another bug in numerous cases, just the structure of the
copied piece is reused with the designer's obligation of adjusting the code to the
present need. This procedure can be blunder inclined and may present new bugs in
the framework (Kapser & Godfrey, 2008).

2.2.2 Increased Probability of Bad Design

Cloning may present terrible configuration, absence of good legacy structure
or deliberation. Hence, it gets to be hard to reuse part of the usage in future tasks. It
likewise severely effects on the viability of the product (Roy & Cordy, 2007; Roy et
al., 2009).

2.2.3 Increased Difficulty in System improvement

As a result of copied code in the framework, one needs extra time and regard

for comprehend the current cloned code and worries to be adjusted, and in this way,

12

it gets to be hard to include new functionalities in the framework, or even to change
existing ones (Morshed, Rahman, & Ahmed, 2012).

2.2.4 Increased maintenance cost

If a cloned code segment is found to be contained a bug, all of its similar
counterparts should be investigated for correcting the bug in question as there is no
guarantee that this bug has been already eliminated from other similar parts at the
time of reusing or during maintenance. Moreover, when maintaining or enhancing a

piece of code, duplication multiplies the work to be done (Kapser & Godfrey, 2008).

2.2.5 Increased resource requirements

Code duplication introduces higher development rate of the framework size.
Same time framework measure might not make a huge issue for a portion domains,
others might require expensive equipment overhaul for a programming overhaul.
Accumulation times will build in that's only the tip of the iceberg code need to a
chance to be translated which need An adverse impact on the edit-compile-test cycle.
The overall effect of cloning has been described by Johnson as a form of software
aging or “hardening of the arteries” where even small changes on the architectural
level become very difficult to achieve in the actual code (Kapser & Godfrey, 2008;
Morshed et al., 2012; Smith & Horwitz, 2009).

2.3 CODE CLONE DEFINITION

Code clone definition is refer to the characteristics in code clone which is
code clone have four types of detection. There are Type I, Type Il, Type 11l and Type
IV. Furthermore, the granularity in code clones detection which are clone pair and

clone class.

Code clone Type 1 is define as identical code fragments except for variations
in whitespaces, layout and comments. Refer to this journal, (Latoza, 2005) Type Il

of code clone is Structurally identical fragments except for variations in identifiers,

13

literals, types, whitespaces, layout and comments. Next, the code clone Type Il is
Copy and paste the code fragments with further modifications. Statements can be
changed, added or removed in addition to variations in identifiers, literals, types,
layout and comments (Prem, 2013). From this journal (Approach, n.d.), Type 1V is
defined that two or more code fragments that perform the same computation but
implemented through different syntactic variants. These types of clones not only
define an increasing level of subtlety from Type | through Type IV but also the
analytical complexity and sophistication in detecting such clones increases from
Type | through Type IV with Type IV being the highest. The detection of Type IV
clones is the hardest even after having a great deal of background knowledge about
the program construction and software design. This increasing level of analytical
complexity from Type | through Type IV does not vary whether the process is
automatic or not(Roy & Cordy, 2007).

The granularity of code clone which are clone pair and clone class. Clone pair
is defined as a pair of code fragments is called a clone if there exists a clone-relation
between them while clone class is the maximal set of code fragments in which any
two of the code fragments hold a clone-relation (Roy & Cordy, 2007)

24 CODE CLONE DETECTION APPROACHES

Various clone detection techniques are presented in the literature. While a
few of them are commercial, most of them are for research purposes aiming at
assisting the development and maintenance processes (Van Rysselberghe &
Demeyer, 2003).

2.4.1 Text-based Detection Approach

There are a few clone location strategies that depend on immaculate content
based techniques. In this approach, the objective source system is considered as
grouping of lines or strings. Two code pieces are contrasted with each other with

discover groupings of 44 same strings. When two or more code pieces are observed

14

to be comparative in their most extreme conceivable degree are returned as clone
match or clone class by the recognition system. Because of the purely text -based
approach, detected clones do not correspond to structural elements of the language
(Roy & Cordy, 2008). Below are the characteristics in code fragments that needed to
evaluate the detection of code clone using text -based technique:

a) Comments Removal: Ignores all kinds of comments in the source code
depending on the language of interest.
b) Whitespace Removal: Removes tabs, and new line and other blanks spaces.

¢) Normalization: Some basic normalization can be applied on the source code

2.4.2 Token-based Detection Approach

In the token-based detection approach, the entire source system is
transformed to a sequence of tokens. This sequence is then scanned for finding
duplicated sub sequences of tokens and finally, the original code portions
representing the duplicated subsequence returned as clones. Compared to text-based
approaches, a token-based approach is usually more robust against code changes
such as formatting and spacing (Roy et al., 2009).

2.4.3 Tree-based Detection Approach

In the tree-based approach a program is pared to a parse tree of the language
of interest. Similar sub trees are then searched in the tree with some tree matching
techniques and the corresponding source code of the similar sub trees are returned as
clones pairs or clone classes. The parse tree contains the complete information about
the source code. Although the variable names and literal values of the source are
discarded in the tree representation, more sophisticated methods for the detection of
clones still can be applied (Baxter, Yahin, Moura, Sant’Anna, & Bier, 1998; Jia,
Binkley, Harman, Krinke, & Matsushita, 2009; Roy et al., 2009).

15

2.4.4 Metrics-based Detection Approach

Metrics-based approaches gather different metrics for code fragments and
compare these metrics vectors instead of comparing code directly. There are several
clone detection techniques that use various software metrics for detecting similar
code. First, a set of software metrics called fingerprinting functions are calculated for
one or more syntactic units such as a class, a function, or a method or even statement
and then the metrics values are compared to find clones over these syntactic units
(Roy & Cordy, 2008; Van Rysselberghe & Demeyer, 2003).

2.4.5 Program Dependency Graph-based Detection Approach

Program Dependency Graph (PDG)-based approaches representation a source
code with a high abstraction than other approaches by considering the semantic
information of the source. PDG-based approach contains the control flow and data
flow information of a program and hence carries semantic information. Once a set of
PDG-based approaches are obtained from a subject program, isomorphic sub graph
matching algorithm is applied for finding similar sub graphs which are returned as
clones (Roy et al., 2009; Smith & Horwitz, 2009).

2.5 ACCESS MODIFIER

Access modifiers are keywords in object-oriented languages that set the
accessibility of classes, methods, and other members. Access modifiers are a specific
part of programming language syntax used to facilitate the encapsulation of
components. If every member of every class and object were accessible to every
other class and object then understanding, debugging, and maintaining programs
would be an almost impossible task. The contracts presented by classes could not be
relied on because any piece of code could directly access a field and change it in
such a way as to violate the contract. One of the strengths of object-oriented
programming is its support for encapsulation and data hiding. To achieve these we

need a way to control who has access to what members of a class or interface, and

16

even to the class or interface itself. This control is specified with access modifiers on

class, interface, and member declarations.

package One
class P

P x = new P();

public a()
protected b()

c()
private d()

Cly = new C1();
C2 z = new C2();

class Anotherl

package Two

class C2

class Another2

Figure 2.1: A situation demonstrating Java visibility modifiers

2.5.1 Public Access Modifier

A public class is publicly accessible. Anyone can declare references to
objects of the classor access its public members. Without a modifier a class is only
accessible within its own package (Arnold et al., 2005). Changing them can be
impossible after that code relies on public or protected functionality. Package and
private access are part of your implementation, hidden from outsiders. Below is the

example of public access modifier:

17

//save by A.java

package pack;
public class A{
public void msg(){System.out.println("Hello"); }

b
//save by B.java

package mypack;
import pack.*;

class B{
public static void main(String args[]){
A obj = new A();
obj.msg();

¥

RELONOUnRUNE OURWNKE

= O -

OQutput:Hello

Figure 2.2: Example of public access modifier (“Access Modifiers [1,” n.d.)

2.5.2 Protected Access Modifier

Protected means it can be accessed by classes that extend that class, but that
is loose language. More precisely, beyond being accessible within the class itself and
to code within the same package, a protected member can also be accessed from a
class through object references that are of at least the same type as the classthat is,
references of the class's type or one its subtypes. An example will make this easier to
understand (Arnold et al., 2005). Below is the example of protected access modifier:

18

e g s e s m— e s ——

//save by A.java

package pack;
public class A{
protected void msg(){System.out.printin("Hello");}

b
//save by B.java

package mypack;
import pack.*;

class B extends A{
public static void main(String args[]){
B obj = new B();
obj.msg();
¥

BERLOLONOUVNRUNE OUNRWNE

ol o

-}

Output:Hello

Figure 2.3: Example of Protected access modifier

2.5.3 No Access Modifier

No modifier is called as default bydefault. The default modifier is accessible

only within package. Below is the example of no access modifier:

19

//save by A.java

package pack;
class A{
void msg(){System.out.printin("Hello");}

¥
//save by B.java

package mypack;
import pack.*;

class B{
public static void main(String args[]){
A obj = new A();//Compile Time Error
obj.msg();//Compile Time Error

10. }

LoONOUNAWNE OUWRRAWNE

l_l.
[
“

Figure 2.4: Example of No access modifier

In this example, we have created two packages pack and mypack. We are
accessing the A class from outside its package, since A class is not public, so it
cannot be accessed from outside the package.

2.5.4 Private Access Modifier

Private Members declared private are accessible only in the class itself. apply
only to members not to the classes or interfaces themselves. For a member to be
accessible from a section of code in some class, the member's class must first be
accessible from that code (Arnold et al., 2005). Below is the example of private

access method.

20

class A{
private int data=40;
private void msg(){System.out.println("Hello java");}

b

public class Simple{
public static void main(String args[])<{
A obj=new A();
System.out.println(obj.data);//Compile Time Error
10. obj.msg();//Compile Time Error
11. 3}
12.}

Lo NoUnhWN=

Figure 2.5: Example of Private access modifier

Based on the above figure, we have created two classes A and Simple. A
class contains private data member and private method. We are accessing these

private members from outside the class, so there is compile time error.

2.5.5 The Differences of characteristics of Access Modifier Methods
There are several difference characteristics of using the methods of access

modifier. Table 2.1 below shows the advantages and disadvantages of all of access
modifier methods.

Table 2.1: The difference of characteristics of Access Modifier Methods

Access Modifier | Within Within Outside package | Outside
class package by subclass only | package
1. Public Yes Yes Yes Yes
2. Protected | Yes Yes Yes No
3. No Yes Yes No No
modifier
4. Private Yes No No No

21

26 RELATED WORK

Code clone detection model is used detect code clones by using the proposed
access modifier rule and weightage to have the significant result. Therefore, model
was proposed to have unified code clone detection and results. There are three code
clone models used in code clone research domain. The models are generic clone

model, generic pipeline model and unified clone model.

2.6.1 Generic Clone Model

The generic clone model is a model that defines the clones that exist in a
program. The model has a division of concerns on clone detection, description and
management using layers. The main function of this model is to describe the clones.
Furthermore, the advantage of this model is can reduces the effort in the
implementation of tools supporting these activities. The figure of overview of the

generic clone model is shown below (Giesecke, 2007).

project *
. clone set (5G
instance (5G)
*
selection presentation
function function
* *
. . 2 * .
selection unit clone pair (SG)
- * - -
enumeration induction
function function
* *
comparison bl * .
unit comparison clone pair (CG)
algorithm
L J L J
V _'v'_
system artifacis clone data

Figure 2.6: The overview of generic clone model (Giesecke, 2007)

22

There are two type of elements linked to the model which are elements
correspond to system artifacts and artefacts representing the part of the clone data
that is generated by a clone detection algorithm based on the system artifacts. Project
instance is the highest level representation of the model. An instance is structured
into selection units and comparison unit through a selection function and an
enumeration function. This instance is known as clone data. The clone pairs exist in
two granulities that are the selected units and the comparison units. Clone pairs are
grouped into clone sets by a presentation function. The clone sets used here are sets

with a distinguished reference element to reduce redundancy in a clone set.

The implementation of this model is done as plugin to eclipse. Eclipse is an
integrated development environment (IDE) that is used for development standalone
programs and web applications. In addition, this model has a clear separation of
clone detection process definition using layers. Moreover, this model is more focused
on management of code clone that was driven by operational aspects of code clone
detection and removal. It is only available only as a plugin for IDE rather than a

separated code clone detection tool.

2.6.2 Generic Pipeline Model

A Generic Pipeline Model is a combination of processes to detect code clone
with all the necessary steps in a code clone detection process (Thesis et al., 2015).
There are five processes involved in this generic pipeline model which is shown in

the figure below.

23

=] source code ',A-":"} source units 1 ',“-1 preprocessed

—| wversion 1 J source units 1

N [| >
¥ parsing P preproc g

Hﬂlterlng}

ptional ’ ~
DNONIAN...somcsinsssamivsmasanssonminsisanonsssvsminsenmsiinssussinsnsaiossonsssssusmmieess ; S) ;‘g«u
p blpreprocessing : f G (
- F'-" preprocessed b 1}
source code Fe | 9 !
(% version 2 vrﬁg source units 2 j source units 2
... ! pools similarity groups filtered similarity grouy

Figure 2.7: An overview of process in Generic Pipeline Model

The first process is parsing process and its transforms source code into source
units. This process revolves in transforming source codes into source units.
Representations of source units uses sub trees of an Abstract Syntax Tree. The input
of this source file and the output of this process is the source units. Next, the source
units are used as input for the second process of the generic pipeline model. Pre-
processing process is to normalize the source units and to add additional annotations
to the source units. Normalization turns the source units into a regular form and
makes different source units more similar. It uses Abstract Syntax Tree as input and
pre-processed Abstract Syntax Tree as output. It is implemented using several-
cascaded processor. The output of this model is the pre-processed source files. The

pre-processed source files then proceed to the third process which is pooling process.

Pooling process is the process of grouping pre-processed Abstract Syntax
Tree source units into sets of groups according to defined characteristics based on
criteria set by the user. The output of this model process is pools. Then comparing
process is come after the pooling process. Comparing process is a recursive
comparison process of source units in all pools using a division rules. The output of
this process is clone similarity groups. These groups are then used as input for the
final input which is the filtering process. The function of filtering process is to

remove irrelevant clone candidate sets from the result set.

The use of the generic pipeline model is created by Java Code Clone
Detector. It is a code clone detection tool designed and developed to detect code

clones in Java.

2.6.3 Unified Clone Model

24

Unified Clone Model is a generic model that can represent all the results of

all code clone tools (Harder, 2013). Below is the figure shows the flow of the Unified

Clone Model.

| Grammar Category I

T

I Language Specification

I ™= == Document

<<Reguirad>>
Detection Run

0

DocumentPosition

<<Required>
System Summary

Ja\
I BytePosition I_.

_I LineColPosition I

| CharacterPosition I

<<Requir

Match é;t

Metric
Match Group i Rationale

I Version Information ﬂ

0

Sequence

>

Region

| Parameter |

Dol q_’ Argument |

Figure 2.8: An overview of the flow of Unified Clone Model

The figure 2.8 above is still in design phase. It was designed through different

clone representations of existing tool. As a concept analysis, uses case from eleven

applications has been used. The outcome of the analysis has been divided into four

groups which are detection for clone detection techniques. The disadvantage of this

model is the model is still in design phase and it is lacks of a proper file format for

data representation.

2.6.4 Advantages and Disadvantages of Models

Every model has its own advantages and disadvantages. Table 2.2 shows the
Strength Weakness Opportunity Threat (SWOT) analysis of the models.

Table 2.2: SWOT analysis of the models

25

Feature Generic Clone Model Generic Pipeline Unified Clone Model
Model
Strength This model has clear | This model consists of | This model is created
separation of clone | step by step process to | through the different
detection process | detect clones in Java | clone representations
definition using layers | applications. It allows | of existing tools.
which makes description | customization for the
of the clones possible. user to manipulate the
model.
Weakness Generic clone model not | The extension of this | This model is still in

allow manipulation on it

layers to extend the
effectiveness of this
model.

model is limited
because of the
manipulation on the

pre-defined sets and
rules in the model.

design phase and lacks
of proper file format
for the data
representation.

Opportunity

The description of the
generic clone model can
be improved.

The clone type
detection and the
process can be
improved to get the
better code clone
detection result.

The realization of the
model using user
defined process.

Threat

The implementation of
the changes of the model
is impossible as its nature
of being a plugin.

The application used
for evaluation will
have different results
compared to existing
work.

Different tools might
cause variation to the
end results.

Based on the SWOT analysis above, the basic weakness of the model is the
extendibility of the existing models. The generic clone model is not allowed the
manipulation on its pre-defined layers to extend the effectiveness of its model while
the generic pipeline model only allows the manipulation within its process so its limit
the extendibility of the model to enhance the code clone detection. The realization of
the model is another major weakness of the generic pipeline model. It is very
different with the struggles in realizing the prototype or tools for the unified clone

model.

26

27 SUMMARY

The conclusion of Chapter 2 is we have review the code clone area which is
what is the disadvantages of code clone, the definition of code clone, and the all
types of code clone. Then, we review about what access modifier is and how to
practice in the research with describe the properties of the every access modifier.
Moreover, we do the review of the models of clone include their advantages and the
disadvantages of every models. From all the methods of access modifier, we only
chose one method to be used in the code clone detection model which is protected
access modifier. We moved to next chapter which is Chapter 3, the methodology in
details of developing the model design.

27

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

In this chapter, it represents all the necessary information. The chapter
outlines the details about the research undertaken to address the question posed in
chapter one. It explores the research question in more depth and discusses what
method are the most appropriate, given the aims and nature of the research.
Consequently, the content of this chapter are methodology and dataset of the method
used in enhancing generic code clone detection model through the protected access
modifier rule and weightage. In this chapter, the explanation of the methodologies is

explained.

Dataset is discussing briefly about the parameter that we are going to use in
this research. Besides, the technique that we are going to use in improving code
clone detection is protected access modifier. This technique already briefly discussed
in chapter two. Furthermore, the development tools is describe about the tools that
we used during this research and justifying the importance of hardware and software

chosen. Then, the Gantt chart is draw using appropriate tools.

3.2 RESEARCH METHODOLOGY

Figure 3.1 presents the overview of enhancing generic code clone detection
model through the protected access modifier rule and weightage. The methodology is

divided into three phases which are the literature review and analysis, design and

develop the model and evaluation phase.

Phase 1

Phase 2

Phase 3

—

—

el

Literature Review and
Analvsis

Design and Develop the
Prototype

Evaluation

Figure 3.1: Research Methodology

29

3.2.1 Literature Analysis

| 1
Material LPIoduce : 1
. | mmmmmmmm=.| Material |_______ mm———————
Search for Articles ~ Analysis I Code Clone !
>= Approach :_ based
Tree
—> based
Y —> Metric-
Code Clone |m————————— \ pm———e e . based
Detection Access Modifier I Access ! 1 Clone 1 i,
I Modifier | I Models 1 raph-
v b ———— - - T " ! based
—y___
Code Clone ,--.Y_.__l ! > 1
Approach | Generic 1 1 Unified !
PP L o TN I Clone 1
1 Public | I No ! | Clone i H i
[I ! Modifier : I Model | I Model |
oty jmmm=tea s me ===
! Protected 1 I Private | Generic !
_______ b ems : Pipeline :
|- I Model | ‘
| . | SR]
Analysis of Characteristics of Access - l'
Modifier > Preferred

Figure 3.2: Literature Review and Analysis

The figure 3.2 above is the summary of literature review. During this phase,
a study on code clone and access modifier field is conducted. Consequently, all the
related literature papers and journals are gathered and reviewed in order to analyse
the issues and challenges in code clone detection. We have concluded the definition
of code clone, the approach of code clone and the whole of methods of access
modifier. However, we are focusing more to code clone detection. All of them are
difficult to diagnose but access modifier is the most challenged. Therefore,
enhancing the generic code clone detection model through modifier access is selected

to be studied. The clone model to be used in code clone detection is identified.

30

Furthermore, data related to the code clone detection is obtained from a
relevant source which is can act as a real data. After selected the field of studied, the
related technique are appointed to be implement in code clone detection. There are a
few relevant access modifier are analysed such as public access modifier, protected
access modifier, no access modifier and private modifier. However, protected access
modifier would be the best methods to be used for enhancing the code clone
detection due to the ability in identify the ambiguous data. Hereby, the problem

statements, objectives, questions, significant and scope are identified in this phase.

3.2.2 Design and Develop Model

Code Base

¥

Pre-processing

3

Transformation

I

| Parameterize |

I

Pool

3

Match Detection

Requirement } E Empirical
Mapping ; H Evaluation

Figure 3.3: Design of the Generic Code Clone Model

From the figure 3.3 above, this phase consists of four main activities which
are requirement design and analysis, model design, model implementation and model
testing. During requirement design and analysis, data is composed from related
references and be analysed. The data is the further analysed based on the protected
access modifier rule and weightage. Apart from it, functional and non-functional
requirements for the model also are determined during this activity. After getting and

analysing the requirement needed, the system design is begin.

31

The rule and weightage of the protected access modifier is applied in the
match detection process. This is the final process in the Generic Code Clone
Detection Model. The objective of this process is to detect the code clone. The input
of this process is the pairs and groups of source units based on three categories. The
match detection process uses a hybrid detection technique of exact matching with
Euclidean distance. As mentioned before, there are three pools obtained from the
previous process. The match detection starts by finding the exact clone or better
known as Type | clone; and near exact clones or better known as Type Il clone.
Therefore, there are two stage of exact matching being used to detect Type | and

Type 1l clones.

The first stage is the exact matching technique is used in detecting the same
average ratio value of both source units in the first pool. The compared functions
that have the same average ratio value of both source units are detected as Type I.
The second stage is the exact matching technique is used in detecting the same
average ratio source units value is difference so the clones that are detected through
this stage are known as Type Il. The remaining average ratio source units value from

first and second will be combined for the next step of this process.

As for the remaining average ratio source units or classifie as header and
body value, Euclidean distance is applied. Assume there are two source units which

are A and B. Therefore, the Euclidean distance, ED, between A and B calculated as:
EDAB = \(headerA—headerB)2+(bodyA—bodyB)2

where,

EDAB is Euclidean distance of Function A and Function B

headerA = average ratio header of A

bodyA = average ratio body of A

headerB = average ratio header of B

32

bodyB = average ratio body of B

The calculation of the Euclidean distance is applied among the remaining average
ratio header and body values in the third process. Once the calculation is done, it is
the function is then grouped to Type Il and Type IV based on the distance obtained.
Type Il clone are taken from the range of 85% - 100% while the remaining is

defined as Type IV.

Consequently, the model is designed. Planning is the first design process, in
this phase, we should plan the design of the interface and how it can interact with the
user. Then analyses the user experience factors before develop the conceptual design.
If have any changes, refinement process will occur. The figure 3.4 shows the design
of the model while figure 3.5 shows the code will be insert in the tools and figure 3.6

shows the report that will be execute from NetBeans IDE 8.1.:

33

‘CODE CLONE DETECTION

Pre-process

(Poal |
L 1

<« ¥

T 7

Run Time: Run Time:

Transform
N

Pre-Detect
|

«T ¥

LTS

Run Time: Run Time:

Parameterize

Detect
|

T

AT 7,

AU Run Time:

A B

El

L]

Figure 3.4: The interface design of the generic code clone model

StartPage | &) TokenAlpha,java | [} TokenBetajava |

Source | Design History |@'E'|ﬁ%5‘%i|?&>tﬁ|§ﬁ>é|g D'“l

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282

@
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295 | |

DecimalFormat dfZ2 = new DecimalFormat ("#.#%"):; //set decimal format to 2
double petgl = ((double)initl/ (double)globallineNum) *100;
jTexctAreaS.append ("Pre-Detection of Type 1...done "+ nevline):;

jTextAreall.append ("Total =z of Type 1 : "4 initl 4+ " (" + df2.format(pctgl) + "%)" + newline);
tempText = tempText+ "Total lines of Type 1 @ "+ initl + " (" + df2.format (pctgl) + "%)" + nevlins;
jTexthAreall.append ("Total pairs of Type 1 @ "4+ pairl 4+ nswvline);

tempText = tempText+ "Total pairs of Type 1 @ "+ pairl + newline;

jTexthreall.append("Total class of Tyvpe 1 : "+ cTemp + nswlins);

tempText = tempText+ "Total class of Type 1 : "+ cTemp + newlins;

trvi{

File tempd4 = new File ("D:\\Tvpe2LSame.txt™):

FileWriter fw4 = new FileWriter (temp4):
BufferedWriter out4 = new BufferedWriter (fw4):

for(int j = 0;j <= globallineNum; j++) //detectting type2 (A same)
{

templ = j;
for (int k = 0;k <= numberd[j]; k++)

{

temp2 = groupAl[i][k]:

Figure 3.5: Example of code built in java

34

e |_c°o x]

CODE CLONE DETECTION

Pre-process Package and Import Statements remaval...done Pool Matching and Paoling in A...done 2

Comments removal...done [Matching and Pooling in B...done [

E Emptyline remaoval...done v E 3

Run Time: | 30 milliseconds Run Time: 62 milliseconds
TG TUT T U0 15 0

public class AboutAction extends AbstractApplicationAction {public final stati : | A match for line 667 is : 628 :
protected ResourceBundleUtil labels;private ApplicationModel model;private A match for line 667 is : 655
protected Project basicCreateProject() {return model.createProject();}public A match for line 667 is : 658
protected abstract void initProjectActions(Project p); public void stop() {for (Pr A match for line 667 is : 664
protected void initLabels() {labels = ResourceEluﬂdleuhI.gelLAFEIundIe(‘Urg.j \d Total Mo of Pooled A - 1264

EL) A Total No of Pooled B * 830 R4

Transform Keywords regularization...done S Pre-Detect Pre-Detection of Type 1...done &

Functions regularization...done [Pre-Detection of Type 2 (similar A)...done [

E Convertion to lowercase... done v E Pre-Detection of Type 2 (similar B)...done L

Run Time: | 4141 milliseconds. Run Time: |92 milliseconds.
TOTIZUUIUIZOUIUT £Z [OUSUS DUV U T TZUSZUU 20D TO T T 200 1 R L R A R T L
151315200503200504 0312011919 241212231809200518{161815200503 Total pairs of Type 1: 37
161815200503200504 22150904 0609140112092605 200818152319 200 Total class of Type 1:27
161815200503200504 0312011919 26151512010320091514 0524200514/ Total pairs of Type 2 (similar A) : 180
161815200503200504 0312011919 261515120504092015180103200915 Total pairs of Type 2 (similar B) : 17
| 4 Total pairs of Type 2 197 v
EL S L L
Parameterize Detection of B...done 8 Detect Detection of Type 3._done &
Separating A and B..Done:: L Detection of Type 4...done [
— v I — .
FinTime:| 3060 miliseconds. Run Time: | 2839 milliseconds.
A B
161815200503200504 0312014 | [161815200503200504 0609140112 1{4 Type 318 pairs
No of words is © 5 No of words is © 89 Type 4: 9 pairs

average ratio Ais : 1263071007 average ratio B is . 3638397216977.0

< e < T

Figure 3.6: The sample of code clone detection report

Then, the interface of model will be developed. Next activity is the model
implementation. The protected access modifier rule and weightage will be conduct
during this phase. There are considering several steps to be define which linguistic
variables, construct membership function are, construct knowledge of the rule and
evaluate the result. After we proposed the method will be uses in the Generic Code
Clone Detection Model, we suggest the rule and the weightage to evaluate the better

result.

Besides, during this phase, Java code will be acts as a programming language
to coding the models using NetBeans IDE 8.1 software. Lastly, model testing is
conducted to test the system functionality whether the model achieve the main goal

of this research. All this steps are will be implementing for the next semester.

35

3.2.3 Evaluation

Evaluation phase is the last phase in this research methodology. This phase is
conducted based on the verification and validation process. Fundamentals (2011)
stated that, verification is the process of evaluating work product of the system
development to ensure we are on right track of creating the final product while
validation is the process of evaluating the final product to check whether the software
Is satisfies the specific requirement. On the other hand, verification is conducted by
comparing two different datasets. The datasets is divided into two, which are real
data and synthetic data. Real data is obtained from the related references while
synthetic data is gained from the expert opinion. Then, the results of these two

datasets will be compared.

For validation, we are mapping the requirement to model to evaluate the
result based on code clone type and run time performance of three applications. The
evaluation will be carried out by design the model and explanation of the finished

model.

3.3 Data Set

The data set for this project is taken from the three tools which are JHotDraw
7.0.6, SableCC 3.7 and ANTLR 3.0.1. JHotDraw tool is used to the code fragment
that needs to use the graphic user interface application. For SableCC and ANTLR
tools, they will be used for parses generators (Ishio, Date, Miyake, & Inoue, 2008).
Table 3.1 below shows the length of code and the total of files belong to the three

tools:

36

Table 3.1: The Characteristics of the Tools

Name Version Length of Code Total of File
JhotDraw 7.0.6 90166 309
SableCC 3.7 35388 196
ANTLR 3.01 59687 522

3.4 Hardware and Software

This section covers the hardware and software requirement needed to develop
and design the model of the code clone detection. The hardware tools used should be

convenient with the development of the model.

3.4.1 Hardware Development

The hardware requirement and their purposed for this project is shown in
Table 3.2.

Table 3.2: Hardware Development

Hardware Purpose
Acer Aspire 4752Z Device to develop the prototype
Printer To print sheets and documents

3.4.2 Software Development

The software requirement and their purposed for this project is shown in
Table 3.3.

Table 3.3: Software Development

37

Software

Purpose

Windows 7

Platform of operating system

Microsoft Word 2010

Prepare proposal and documentations

Microsoft Visio 2010

Create Gantt Chart

Microsoft Power Point 2010

Design and draw the diagrams

NetBeans IDE 8.1

Develop the model

Mendeley Desktop

Manage reference and citation

35 Gantt Chart

The Gantt chart shows the estimate duration from the start of the project until

the end of the project (refer to Appendix Al).

3.6 SUMMARY

The conclusion of Chapter 3 is we have reached the methodology to develop

the model of the research with determined the methods of access modifier that use in

the code clone detection. The protected access modifier is chose to be used in

enhancing the code clone detection model. Therefore, we have to develop the model

through follow the model design in development part of Gantt chart.

38

CHAPTER 4

EVALUATION

41 INTRODUCTION

In this chapter, it presents all the evaluations of the research by apply the
preferred method. The chapter outlines the output data about the research undertaken
to address the objectives posed in chapter one. It explores the research objectives in
more depth. Consequently, the content of this chapter are evaluation of the datasets
that used in enhancing generic code clone detection model through protected access
modifier rule and weightage. In this chapter, the evaluation of the output is

explained.

4.2 MODEL EVALUATION

This section shows the code clone detection result by enhancing the
generic code clone detection model through protected access modifier rule and
weightage.

43 CLONE PAIRDETECTION

39

Table 4.1 shows the overall result of the detected clone by enhancing generic
code clone model through protected access modifier rule and weightage for
JHotDraw 7.0.6, SableCC 3.7 and ANTLR 3.01.

Table 4.1: Result of the detected code clone

Application Type | Type Il Type 11 Type IV
JHotDraw 7.0.6 37 197 18 9
SableCC 3.7 3 0 0 2
ANTLR 3.0.1 87 212 58 44

From the table above, we can conclude that all of the code clone type is
detected in the chosen application. In JHotDraw application, there is 37 match
detection of type I, 197 match detection of type Il, 18 match detection of type I1l and
9 match detection of type IV. For SableCC application, there is 3 match detection of
type I while it does not have type Il and type 111 of the code clone then it has 2 match
detection of type 4. In addition, ANTLR have 87 match detection of type I, 212
match detection for type 11, 58 match detection for type Il and 44 match detection
for type IV. ANTLR is the most have the significant of all the type of code clone as
ANTLR have 522 java file than JHotDraw application only have 309 java file while
SableCC have the least java file which is only have 196 java file.

44 OVERALL RUNTIME PERFORMANCE

Table 4.2 and figure 4.1 shows the overall run time performance for data

evaluation of this research.

40

Table 4.2: The evaluation of the overall run time performance of code clone

detection model

Run time Performance (milliseconds)

Application JHotDraw SableCC ANTLR
Process

Pre-process (ms) 30 204 109
Transform (ms) 4141 81461 12336
Parameterize (ms) | 3060 609 5651

Pool (ms) 62 0 73

Pre-detect (ms) 93 218 141

Detect (ms) 2839 16 6162
[

90000

80000 /\

70000 / \

60000 / \

50000 / \

40000 JHotDraw

30000 / \ SableCC

/ \ ANTLR
20000 / \
10000 / \
0 ./\.K T *4\
S .42 AN X
& & & & ¢
& & Q /
KR & & R

‘ Q’@ & Q{‘b"@‘ R

Code Clone Detection Process

Figure 4.1: Line graphs for shows the overall run time performance of Generic Code
Clone detection model

Based on the table 4.2 and the figure 4.1, the transform process has the

highest runtime performance. The match detection which are combination of detect

and pre-detect process has the second highest runtime while the parameterize process

has the third highest runtime performance. The pool process which is categorization

41

process has the lowest runtime performance while the pre-processing process has the

second lowest runtime performance.

Based on the comparison diagrammatically shown in Table 4.2 and Figure
4.1, the two highest runtime performance has been recorded by the transformation
and parameterization process. It is essential that the transformation process to have a
high runtime due to the transformation of the source codes into numerical form.
There are a lot of source code that needs to be transformed. Therefore, a large Java
applications that have a lot of line of codes such as J2sdk1.4.0-javax-swing takes a
lentgh amount of time to be transformed. It essential for the match detection process
to have a high runtime performance due to the task of the process in detecting all the

code clone types.

45 SUMMARY

Chapter 4 is a discussion on evaluation of the result in enhancing generic
code clone detection model through protected access modifier rule and weightage
where the result is taken from the prototype. The discussion of the result is explained

based on the result taken.

42

CHAPTER 5

CONCLUSION

51 CONCLUSION

In conclusion, protected access modifier rule and weightage is purposely use
for enhancing the generic code clone detection model in order to analyse its
efficiency classifying of the code clone type. This study also displays the analysis of
accuracy so that we can know how accurate this algorithm to enhance the generic

code clone detection model.

In this thesis, all the three main objectives stated in the early of the project

development are achieved successfully as mention below.

I. To propose a method in enhancing the generic code clone detection
model. This objective has been achieved and discuss at Chapter Three

since we approve that framework over there.

43

i To implement the proposed method of enhancing the generic code clone
detection model. This objective has been achieved and discuss at chapter

Four since we approve that framework over there.

Ii. To evaluate the result based on code clone type and run time performance
of the three applications. As we can see after experiment data was
handled, we can conclude that the total of code clone type and the run

time performance have the significant result to be observed.

5.2 LESSON LEARNT

Throughout the project period, | learnt a lot of things. In terms of project
planning, | believe that having a proper project milestone is a crucial criterion for any
successful project. Milestone should be realistic and achievable on time. Delay on
milestone will cause the whole project to be done later than expected. Thus, it is
essential to always stick to the milestone and continuously check the next coming

milestone to get done on time.

Secondly, getting the right idea on what to be done is also important. Never
assume ideas or opinion without any proofs. Be critical and inventive when dealing
with ideas. This is because any research always requires a formula or algorithm to
prove whether it is right or wrong. Research without any critical analysis will ruin

the research result as a whole.

Lastly, | learnt that consistency and self-explorative are two compulsory
behaviour to get the research done on time. One, being consistent will ensure that |
will never delay my work, and always stick with the milestone that was scheduled.

Being self-explorative helps me to understand my research subject faster.

5.3

44

RESEARCH LIMITATIONS

While completing this research, there are lots of limitations that need to be

handled in order to have a significant data and to achieve all the research objectives.

Below are the limitations that we need to handle in this research:

5.4

i Limited Time

To have a significant output and to achieve the all of the objectives,
the long period of time is needed as we need to finish every chapter by define

the methods and tools to have the significant output.

ii. Limited knowledge

This research need a lot of knowledge about the definition of code
clone, the impact of the code clone, the approach of the code clone and etc.
We need a lot of reference based on the code clone methods and tools so that

we can decide the methodology to achieve the good result.

FUTURE WORK

The future work is focus on:

. Improve the code clone detection process and performance can be
done through improvement of the pre-processing process in
supporting code clone detection in other structural and procedural
programming language so generic code clone detection can support

code clone detection in other programming languages too.

ii. Build a more dynamic view of the code clone detection result through
visualization methods and the utilization of parallel algorithms in

improving the runtime performance.

45

55 SUMMARY

Chapter 5 is a discussion on conclusion of the project research in enhancing
generic code clone detection model through protected access modifier rule and

weightage and its future work.

46

REFERENCES

Approach, A. N. E. W. (n.d.). Code Clone Detection. Retrieved from

http://mondego.ics.uci.edu/projects/clonedetection/

Arnold, B. K., Gosling, J., Holmes, D., Arnold, B. K., Gosling, J., & Holmes, D.
(2005). No Title.

Baxter, 1. D., Yahin, A., Moura, L., Sant’Anna, M., & Bier, L. (1998). Clone
detection using abstract syntax trees. Proceedings International Conference on
Software Maintenance Cat No 98CB36272, 98, 368-377.
http://doi.org/10.1109/ICSM.1998.738528

El-Matarawy, A., EI-Ramly, M., & Bahgat, R. (2013). Parallel and Distributed Code
Clone Detection using Sequential Pattern Mining. International Journal of
Computer Applications, 62(10), 975-8887.
http://doi.org/10.5120/ijca2015906324

Giesecke, S. (2007). Generic modelling of code clones. Duplication, Redundancy,
and Similarity in Software, (6301), 1-23. Retrieved from
http://drops.dagstuhl.de/opus/volltexte/2007/960

Harder, J. (2013). The limits of clone model standardization. 2013 7th International
Workshop on Software Clones, IWSC 2013 - Proceedings, 10-11.
http://doi.org/10.1109/IWSC.2013.6613034

Ishio, T., Date, H., Miyake, T., & Inoue, K. (2008). Mining coding patterns to detect
crosscutting concerns in Java programs. Proceedings - Working Conference on
Reverse Engineering, WCRE, 123-132. http://doi.org/10.1109/WCRE.2008.28

47

Jia, Y., Binkley, D., Harman, M., Krinke, J., & Matsushita, M. (2009). KClone: a
proposed approach to fast precise code clone detection. Third International
Workshop on Detection of Software Clones (IWSC).

Kapser, C. J., & Godfrey, M. W. (2008). “cloning considered harmful” considered
harmful: Patterns of cloning in software. Empirical Software Engineering,
13(6), 645-692. http://doi.org/10.1007/s10664-008-9076-6

Latoza, T. (2005). A Literature Review of Clone Detection Analysis.

Morshed, M., Rahman, M., & Ahmed, S. (2012). A Literature Review of Code Clone
Analysis to Improve Software Maintenance Process. arXiv Preprint
arXiv:1205.5615. Retrieved from http://arxiv.org/abs/1205.5615

Prem, P. (2013). A Review on Code Clone Analysis and Code Clone Detection,
2(12), 43-46.

Roy, C. K., & Cordy, J. R. (2007). A Survey on Software Clone Detection Research.
Queen’s School of Computing TR, 115, 115. http://doi.org/10.1.1.62.7869

Roy, C. K., & Cordy, J. R. (2008). Scenario-based comparison of clone detection
techniques. IEEE International Conference on Program Comprehension, 153—
162. http://doi.org/10.1109/ICPC.2008.42

Roy, C. K., Cordy, J. R., & Koschke, R. (2009). Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach. Science of
Computer Programming, 74(7), 470-495.
http://doi.org/10.1016/j.scico.2009.02.007

Smith, R., & Horwitz, S. (2009). Detecting and Measuring Similarity in Code
Clones. Workshop Proceedings of the 13th European Conference on Software

Maintenance and Reengineering, 28-34.

Thesis, D. O. F., Shahrizal, A., Muhamad, B. I. N., Scheduling, R. P., Access, O.,
Supervisor, S. O. F., & Supervisor, N. O. F. (2015). “ I hereby declare that I
have read this thesis and in my opinion this thesis is sufficient in terms of scope
and quality for the award of the degree of Doctor of Philosophy (Computer

Science).” Signature Principal Supervisor : Prof . Dr . Safaai bin De,

48

16(August).

Van Rysselberghe, F., & Demeyer, S. (2003). Evaluating Clone Detection
Techniques. Evolution of Large-Scale Industrial Software Applications (ELISA),
(i), 1-12. http://doi.org/10.1109/ASE.2004.1342759

Yuan, Y., & Guo, Y. (2011). CMCD: Count matrix based code clone detection.
Proceedings - Asia-Pacific Software Engineering Conference, APSEC, 250—
257. http://doi.org/10.1109/APSEC.2011.13

APPENDICES

49

Al: Project Gantt chart

50

‘ Mo 2006 | N6 | Ml | dnd0lg ‘ W6 | Ogos2016 l Spr0l6 | Ok | Nov2ols | Dis 016
D Task Name Start Finish Duration

[T T LB [T [T B [P T T1 TP (T TTIT 10

Rl : 5022 31032 2

L_:;_E\m*&.wmsw e R gy M—
R e A
|~ |research and project base
3 l)ehne‘resenrclmea:\n dentify w0 | o0 10 A
| |the topic
4 | Finalizing the research tile /022016 | 22022016 1d ol
5| Search for related work 23022016 | 24/022016 u A
6 Searc?l for refuted methods and 250006 | 38006 2 i1
| [techniques
7 |Earing Exd NokandGoogle |0 | gygmnte | 20 il
[|Scholar
§ {Identify the problem statements | 02032016 | 02032016 Id ',I
9| Address the objectives 03032016 | 03/032016 1d B |
10 | Submit draft of chapter | 04032016 | 040302016 0d 4
i hnalmng}heprohlemsmtemem mov0t6 | oso3ie 2 :"l

andthe abjectives
1 Editing chapter T and outline W | s 3 "
o2 ‘

hn‘dmng' the related methods o | 16006 P I
| |and techniques :
14| Editing chapter 2 17032016 | 21032016 R e |
| Submit correction of chapter)

0312 80312
landdml\ol’c?lasler! T Rl 2 q
ASE 2: DESIGN AN
2032 0972 |

EDE"ELOPPROTOT\’PE N el 1
17 Data collection 20032016 | 24032016 3 -,I_-‘

»\nalyzmg the selected variables 2[00 | 29032016 3 LE
| |and outline chapter 3
19| Editing chapter 3 30032016 | 05042016 5 L!-[
20 | Subrmit draft on chapter 1-3 06042016 | 06042016 0d L!
21 |Comection draft on chapter 1-3 | 07042016 | 200412016 10d L!
22| Design the protatype 20042016 | 111052016 154 -r_]
23 | Design the nterface 211042016 | 111052016 15d q
24 Submit chapter 3 12052016 | 12052016 0d L§|
25 |Finalize chapter [-3 18052016 | 26/052016 T L!
26| PSM 1 Report subission 271052016 | 271052016 (d LQ-l
27 Develop the prototype 02062016 | 020092016 674 L—
28| PHASE 3: EVALUATION 06092016 | 301122016 §4d —
29| VERIFICATION 06/092016 | 13109/2016 6d —-'_]
30 | Compare sets of data 14/092016 | 19/092016 Ll L&
31 | Compare results 200092016 | 231092016 4 L.J
32| VALIDATION 26092016 | 211102016 W0 -
33 | Mapping the requirement 24/102016 | 2871072016 5d L.,J
4ol ofhater o | onme | M L!]
35 [Liditing chapter 3-4 03112016 | 08112016 4 L&
36 | Submmit chapter 1-4 09112016 | 09/1112016 0d ’5
37 | Obtain the requirement 07112016 | 221112016 124 L!
3% | utlin chapte e | e | 6 LI_I
39 | Editing chapter § 01/122016 | 151122016 I1d L__-,
40 | Submit chapter 5 161122016 | 16122016 (d Iﬁ
41| Finiize chapter 1-5 19/122016 | 29/122016 9 Lq:[
42 | Full report submission 02012017 | 02012017 0d |~Q

51

A2: Sample output of code clone detection JhotDraw application

fl T —

Comments removal...done

AU ¥

CODE CLONE DETECTION
Pre-process Package and Import Statements removal...done Pool Matching and Pooling in A...done

Matching and Pooling in B...done :

FLa e

protected ResourceBundleUtil labels;private ApplicationModel model;private
protected Project basicCreateProject() {return model.createProject()}public
protected abstract void initProjectActions(Project p);public void stop() {for (Pr
protected void initLabels() {labels = ResourceBundleUtil getLAFBundle("org.j v

Amatch for line 687 is : 655
A match for line 667 is : 658
Amatch for line 657 is : 664
Total No of Pooled A 1264

ﬁ Emptyline removal...done ﬁ
Run Time: 30 milliseconds. Run Time: | 62 milliseconds.
N ATIAILITTOr e oo e U uls i
public class AboutAction extends AbstractApplicationAction {public final stati A match for line 667 is : 628 -

161815200503200504 0312011919 241212231809200518{161815200503
161815200503200504 22150904 0609140112092605 200818152319 200

161815200503200504 0312011919 26151512010320091514 0524200514
161815200503200504 0312011919 261515120504092015180103200915

Total pairs of Type 1: 37
Total class of Type 1:27
Total pairs of Type 2 (similar A): 180
Total pairs of Type 2 (similarB): 17

ELN O Total No of Pooled B: 830
Transfarm Keywords regularization...done o Pre-Detect Pre-Detection of Type 1..done o
Functions reqularization...done [Pre-Detection of Type 2 (similar A)...done [
ﬁ Convertion to lowercase...done v ﬁ Pre-Detection of Type 2 (similar B)...done v
Run Time: 4141 milliseconds Run Time: 93 milliseconds.
TOTO TOZUUIUSZUUTUS L2 TJUIUg UOUT T8U T TZUTL0UT ZUUD TO TOLS3 T ZUU TUEarmesS ur TyPe 1.7 (T T.UUmy

Padd

161815200503200504 06091401121
Mo of words is: 89
average ratio B is : 3638397216977.0

161815200503200504 031201
Noofwords is: 5
average ratio Ais : 126307100

5 Total pairs of Type 2: 197
7 Ad hd
Parameterize | | Detection of B..done 3 Detect Detection of Type 3...done 4
Separating A and B...Done : Detection of Type 4...done [
1 4 ———1 e
Blney 3060 miliseconds Run Time: | 2839 milliseconds.
A B

Type 318 pairs
Type 4: 9 pairs

52

A3: Sample output of code clone detection JhotDraw application

CODE CLONE DETECTION MODEL
=

Pre-process Package and Import Statements removal...done

Comments removal...done

ﬁ Emptyline removal...done

Pool Matching and Paoling in A...done

Matching and Pooling in B._done -

LTS

PLi

RunTime: | 204 milliseconds Run Time: 0 milliseconds

protected class depthfirstadapter extends analysisadapter{protected void ins & B match for line 22 is: 4 :
protected class depthfirstadapter extends analysisadapter{protected void ing B match for line 22 is: 19
protecied class depthfirstadapter extends analysisadapter{protected void ins B match for line 22 is : 20
protected class depthfirstadapter extends analysisadapter{protected void ins Amatch forline 23 is: 12
v Total Mo of Pooled A 14

T(‘_/ I Total Mo of Pooled B : 18 ¥

Transform Keywards regularization...done £ Pre-Detect Pre-Detection of Type 1...done 2

Functions regularization...done [Pre-Detection of Type 2 (similar A)...done [

ﬁ Convertion to lowercase..done A ﬁ Pre-Detection of Type 2 (similar B)...done ¥

Run Time: 81461 milliseconds. Run Time: 218 milliseconds.

A T .
161815200503200504 0312011919 040516200806091819200104011620 Totallines of Type 1: 6 (27.27%)
161815200503200504 0312011919 040516200806091819200104011620 Total pairs of Type 1:3
161815200503200504 0312011919 040516200806091818200104011620 Total class of Type 1:1

161815200503200504 150210050320 03011920 150210050320 15 {1805: Total pairs of Type 2 (similar A): 0
v Total pairs of Type 2 (similarB) : 0
ELNV T

Total pairs of Type 2: 0
Parameterize Detection of B...done : A Detect Detection of Type 3...done
Separating A and B..Done : t
— v

ﬁ Detection of Type 4...done

TUTO TOZUUTUSZUUTUS US T20 T 19 19 USUT TUZU0oU0US 10 19200 TUFU T TUZU 2

ELAS

FLETS

Run Time: | 608 milliseconds. Run Time: | 16 milliseconds.

A B

161815200503200504 22150904 091
Mo of words is : 5574
180520211814 0512051209140615 1
Mo of words is : 70358

Type 3: 0 pairs
Type 4: 2 pairs

161815200503200504 150210
Mo of words is 1 5
average ratio Ais: 0.20

53

A4: Sample output of code clone detection JhotDraw application

CODE CLONE DETECTION

Pre-process Package and Import Statements remaoval...done

Comments removal...done

Pl g o

. Pool .

Matching and Pooling in A...done
Matching and Pooling in B...done

Pl g o

ﬁ Emptyline removal...done ﬁ
Run Time: 109 milliseconds. Run Time: 93 milliseconds.
] O TIgLmIor e Tur I . TuoSy F]
publicinterface ANTLRErorListener {public void syntaxError{Recognizer=?, 7 B match for line 1079 is : 1068 -

pratected String fileName;public ANTLRFileStream(String fileName) throws |
protected charf] data;

protectedint n;

protected int p=0;public String name;public ANTLRInputStream() { Jpublic AN ¥

B match for line 1079 is : 1072
B match forline 1079 is : 1074
B match for line 1079 is : 1076
Total No of Pooled A 4410

< Te| Total No of Pooled B : 9666
Transform Keywords regularization...done 2 Pre-Detect Pre-Detection of Type 1...done E
Functions regularization...done [Pre-Detection of Type 2 (similar A)...done [
ﬁ Convertion to lowercase...done v ﬁ Pre-Detection of Type 2 (similar B)...done v

RunTime: | 12336 milliseconds.

Run Time: 141 milliseconds.

TUTO TXEUUIUSLUUIUS US LU T T T 28 TUU TLUUO LU TZUSUSU T TOUSU T TS,
161815200503200504 0312011919 241601200823091204030118040512
161815200503200504 0312011919 040207 05242005140419 1521201621
161815200503200504 0312011919 2232018050507180112120118052403
161815200503200504 0312011919 2241601181905180524030516200915

a
o
v

UGS UT TYRE T+ 1T {100 0]
Total pairs of Type 1: 87

Total class of Type 1: 39

Total pairs of Type 2 (similar A) - 177
Total pairs of Type 2 (similar B) : 35
Total pairs of Type 2: 212

EL xS

Separating Aand B..Done :

. Parameterize | | Detection of B...done E
v

Run Time: 5651 milliseconds.

A B

161815200503200504 19201809140
No of words is: 18
average ratio Bis - 153920519960384,

3200504 031201
No ofwords is: 5
average ratio Ais - 2230879198

Detect Detection of Type 3...done
ﬁ Detection of Type 4..done

P g B

Run Time: 6162 milliseconds.

Type 3 58 pairs
Type 4: 44 pairs

A5: Codings

public class Tokenilpha extends javax.swing.JDrame {

static Jtring newline = Jystem.getProperty("line.separator™);
Fif/This will retrimve lins separator dependent omn O3.

static Jtring predeconds=; //for preprocess=ing

static Jtring transJeconds; fffor tran=formation

static float =econds = 0; // for preprocessing

static float =secondstemp; // for preprocessing

static float =econd=2 = 0; // for transformation

static float secondstemp?; J/f for transformation

static Jtring prl = "Package and Import Jtatement=s not done™
+ newline; //hold=s re=ult pr

static Jtring prZ = "Comments removal not done® + newline;
{/holds result pr

static Jtring prd = "Emptyline removal not done®; f/holds
result pr

static Jtring trl = "Feywords reqularization not done™ +
newline; fihold=s result &r

static Jtring trZ = "function reqularization oot done™ +
newline; fihold=s result &r

static Jtring trd = "Coovertion to lowercase not done®;
fihold=s result &r

ffcreate file=s array that can store 1000 file=s at max

static File[] files = new File[1000];

static boolean determiner = false; fito stop execution in
PartOneTokenigedavaFile main before selecting files in
FileChooser

static Jtring transText = "%; ff=tring to hold transformation
text

static Gtring paraText = "7"; //string to hold
parameterization text

static Jtring templine = "7"; // to hold string for readline
to change to lowercase

static Jtring readline = "9";

static int countline = 0;

3‘44

a

J.lll.

public TokenAlpha(l {

initComponents= [} ;

Creates new form TokenBeta

lll-J.J.
% Thi=s method is called from within the constructor to

initialize the form.

54

55

setDefaultClosefperation
[javax. swing.Windowlonstants EXIT_ON_CLO3E] ;

jPanel]l . setBorder
[javax. swing.Borderfactory. createTitledBorder (Al Fahim V.1%}};

jButtonl . setlext ["Fre—process™} ;
jButtonl . adddouselistener (new java.awt.event MounssAdapter

public wvoid mousePressesd(java.awt.event HouseEvent

evt} |
jButtonlHonsePressed (=vt) ;
¥
¥
jButtonz . setText ("Transform™} ;
jButtonz . adddouselistener (new java.awt.event_ Mousehdapter
r
public void mousePressed (java.awt. event . HouseEvent
evt} {

jButtonZdounsePressed (evt) ;

L3
jButtonz . addictionlistener (new
java.awt.event Actionlistener ()] {
public woid actionPerformed
[jJava.awt. event . ActionEvent evt)
jButton2ActionPerformed (evt]) ;

¥¥;

jButtond . setText ("Farameterize"} ;
jButtond. adddouselistener (new java.awt.event_ Mousehdapter

public void mousePressed (java.awt. event . HouseEvent
jButtonidousePressed (evt)
i
jButtong . setText ["Detect™) ;
jButtonS. setText ("Visualize™]) ;
jlexthAreal . setColums=s (20} ;

JTexthreal setRows (5}
jicrollPanel setViewportView [jlextAreall ;

56

private wvoid jButtonZMpousePressed(java.awt.event MHouseEvent
evt]) {//GEN-FIR3T:event jButtoniMousePressed

try 1

Thread. sleep (500} ; .-".-"::I.Ezp 500 milliseconds to wait
for progress bar

jProgressBar? | setValue= (50} ;

Thread. sleep (1500} ; §//=leep 1000 millisecond=s to wait
for progress bar

jProgressBar? | setValue (100} ;

S71000 millimmcond=s is one second sleep.

catch [InterruptedException ex)
Thread. currentThread (} . interrupt () ;

jTexthrea? append(trl); §/di=play to textareal
JTexthAreal . append (tr2) ;

jlexthrea? . append (trd) ;

jTexthrea?.append (transText); f/display latest code up
down on text area €

JlextField? . setText (transdeconds + ® milliseconds. ™) ;

ffdi=play the running time for pre-processing
VGEN-1LAAT :m vent_jButtonZMouseFressed

private wvoid jButtoniMpousePressed(java.awt.event MHouseEvent
evt) {//GEN-FIRIT:event jButtonlMousePressed

fiMake the jframe that hold the filechoo=er visible

JErame frame = new MainClas=s=(};
frame setDefanltClosefperation (JErame EXIT ON CLO3E] ;

frame_ pack(};

frame setVisibhle (true=);

determiner = true;
3/ /GEN-LAST :event jButtonlMousePressed

private wvoid jButtonZActionPerformed
[jJava.awt.event . ActionEvent evt) | f fGEX-
FIR3T:event_jButtoniictionPerformed
J i TODD add your handling code hers:
¥/ /GEN-LA3T :event jButtonlActionPerformed

private wvoid jButtondMousePressed(java.awts.event MouseEvent
vt} {J/EEN-FIRAT: mvent :'Butt-un&}{uhaz?rzs:zd

private void jButtonlMouseFressed(java.awt.event.MouseEvent evt) {//GEN-FIR3T:event_jButtonlMouseFressed

//Make the jframe that hold the filechooser wisible
Jframe frame = new MainClas==(};
frame setDefaultlCloselperation [JErame EXKIT OW CLOSE] ;

frame.pack(];
frame . setVisible [true);

determiner = trus;
}/ /GEN-LAST : event_jButtoniMouscPressed

private void jButtonlActionPerformed(java.awt.event.ActionEvent evel {//GEN-FIRST:event_jButtonZictionFerformed
// TODO add your handling code here:
} ."'.-"SEN-LI;E'I:='.'=:n'._:'Bu:r.nn:};:t:iun?:rfurm:d

private void jButtoniMousePressed(java.awt.event MouseEvent evt) {//GEN-FIRST: event_jButtondMouseFressed
jTexthreal.append (paraText] ;
+SEER-L23T: event_jButtoniMousefressed

J//IFIlechoo=er main cla==
public class MainCloss extends JErame {

public MainCla==(} {

//Make the filechoozer wisible

JFileChooser fileChooser = new JfileChoosex(l;

S f=how current directories

fileChooser. setfilefelectionMode (JEileChooser FILES ONLY) ;
fileChooser.setDialogTlitle ("Choose a £ile”);

thi=_ getContentPane [} _add(fileChoo=er);
fileCThooser. setVisible (true) ;

Sfenable multi files =melection=
fileCThooser. setMultidelectionEnabled (true} ;

//Determine the approve, cancel, and error option action
int result = fileChooser.showOpenDialeg(null};

=witch [result} {

case JPileChooser. AEPROVE_OBPTION:
System_out.println("Approve [(Open or Javel was clicked™);

fiput =elected file= into file= array
files = fileChooser. getielectedFiles(};
J/{3y=tem.out.println (Array=.toString(file=l};
break;

case JPileChooser. CANCEL OFTICH:

FileWriter £w = mew TileWriter(sempl;
BuffersdWriter cut = new BufferedWritss [£w);

boolean =of = false;
do {
readline = in.readline(};
if [readline != pull} {
readline = readline.trim(}; // remove leading and trailing whitespace
//BPreprocessing rules-—stars
long predtartTime = Jystem. currentTimeMillis(}; /fealeulate current time for preprocessing
if [readline.length(} == 0} {
Fy=tem. out.printlnireadline + "contl®); // which rule n=ed

pri = "Emptyline removal done”;
continue; // Remove emptyline

if (readline_start=With("import"} || readline_startsWith("package™}} {
System.cut.println(readline + “"contI”);
prl = "Package and Import Jtatements removal done™ + newline;
continue; // Bemove packages and imports

if [readline_contain=("//"}} {
System.out.println(readline + "contd");

pr2 = "Comments removal done” + mewline;
continue; // Remove comments

if [readline.startsWish("*"] || zeadline.startsWith("/ "] || zeadline.staztsWizh("//"}] {
System.out.println(readline + "contd”];
pri = "Comments= removal done® + newline;
continue; // Remove comments

if [readline.startaWith("/*"} && readline_end=With("*/"} || readline_startaWith("/*"} || readline.endaWith("*"}}
System_out.println(readline + "cont3");

pr2 = "Comment= removal done” + newline;
continue; / Remove comments

if [readline_start=With("//"] || readline.comtain=("*"}] {
3ystem.out.println(readline + "conté);

pr2 = "Comments removal done” + mewline;
continue; // Remove comments

58

{/{ Preproces==ing rules ———end
long preEndTime = System. currentTimeMilli=(}; //calculate end time of preproce==ing
/{ change to =econd =econd= = [endTime - =tartTim=} / 1000F;

jTexthread append(readline + newline); [/write to joemxcfieldé

=zcondstemp = (preEndTime - predtartTime); //hold temporary time for preprocess=ing

=zconds = =econds + secondstemp; f/adds all preproces=ing time in the loop
i Transformation rules ——— IJtart
long trans3tartlime = Jystem. currentTimeMillis(}; ffealenlate current time for transformation

templine = readline. tolowerCase(); ff{change 211 to lower case
readline = templine; //copy templine to readline
trd = "Convertion to lowercase done®™;

if [readline.contains("string "} } {

readline = readline.replace("String”, "[31"}; // Remove 3tring with [3]

readline = readline.replace("string ", "[3] "};
trl = "Feywords regularisation done™ + newline;

if (readline_contain=s("int "}} // Remove int with [I]

{
readline = readline. replace(®int ", "[I] "};
trl = "Eeywords reqularization done® + newline;

if (readline.contains(®char "}} {
readline = readline.replace(®char ", "[C] "}; // Remove char with [C]
trl = "Feywords regularisation done™ + newline;

if (readline.contains("double "}} {
readline = readline.replace("double ®, "[D] "}; // Remove double with [D]
trl = "Eeywords reqularization done® + newline;

if [readline_ contain=s("floats "}} {
readline = readline_ replace("float ", "[F] "}; /{ Bemove float with [F]
trl = "Eeywords reqularization done® + newline;

if [readline.contains("puklic "}} |
readline = readline.replace("public ", "protected ")}; // Jtandardize acces= function to protected
tr2 = "Functions regularization done™ + newline;

if [readline.contains("private "}} {

readline = readline.re=place["private ", "protected ")}; // Jtandardize acces== function to protected

readline = readline.replace("a®™, "017}
readline = readline_ replace("b®, ®02%)

r

'
readline = readline.replace("c®, "03%};
readline = readline._ replace("d®, ®04%);
readline = readline.replace("e", "053%};
readline = readline_ replace("£%, "0&7);
readline = readline.replace("g®, "07%};
readline = readline_ replace("h®", "08%);
readline = readline.replace("i®, "05%};
readline = readline replace(®"j%, ©10%};
readline = readline.replace("k", "11%};
readline = readline_ replace (1", ®12%);
readline = readline.replace ("m®, "12%};
readline = readline._ replace("n®, *14%};
readline = readline.replace ("o, "153%};
readline = readline._ replace("p®, "1&%);
readline = readline.replace("g®, "17%};
readline = readline_ replace("c®, "18%);
readline = readline.replace("=", %157}
readline = readline_ replace("t", "207};
readline = readline.replace["u®, "21%};
readline = readline replace (<", "227);
readline = readline.replace ["w®, "23%};
readline = readline. replace("x", "24%);
readline = readline.replace("y", 257}

'

readlins readline replace("z", "2E&%)
templine = readline_ replaceRll [™\)\=+7, =7}
readline = templine;
paralext = paralext + readline + newline;

for (int i = 0; i < readline_ length(}; i+¥} {

ff3y=atem_out._println(countline + "\t" + originalline + "\t" + inputLine +"\n"};
f/3y=tem_out._println(countline + "\t" + wordocount + "\n"};

out . write [readline} ;
else

ecf = true;
while [!=of];

r

in.close=

if [(readline._ contains|"protected™}} {

out .write [newLine); ff Bdd separator for line write
out . write [newline); Ff Rdd separator for line write

£
if [(readline._startsWith ("protected™}} {
countline = countline + 1;
readline = readline. replace ["=", "%};
readline = readline. replace("(}", ""};
readline = readline. replace("{", "%}
readline = readline. replace("}", "%};
readline = readline. replace(™,", "%};
readline = readline. replace(".", "%};
readline = rzadlinz.rzplanz[“_“, bl
readline = readline. replace("!®, "%};
readline = readline. replace ["<%, "%};
readline = readline. replace (">", "%};
readline = readline.replace["2&™, "%};
readline = readline. replace (&%, ""};
readline = readline.replace ["=", "%};
readline = readline. replace(™[3]1%, =31%};
readline = readline. replace (" [I]1%, "32%);
readline = readline. replace ™ [Z]1%, "33%);
readline = readline. replace (" [D]", "34%);
readline = readline.replace (" [F]", "353"};
readline = readline . replace (" [=]1%, =317}
readline = readline. replace (™ [i]%, "32%};
readline = readline. replace (" [c]®, "337);
readline = readline. replace (™ [d]™, "34%};
readline = readline . replace ("[£]1%, "35%);
readline = readline. replace("a®, "01%);
readline = readline.replace ("b", "02%
readline = readline. replace ("c®, "03%
readline = readline. replace ["d", =047}
readline = readline. replace (=", "05%
readline = readline. replace ("£%, "0E"
readline = readline . replace("g®, "07%
readline = readline.replace ("h®", "08™
readline = readline. replace ("i®, 053"
readline = readline. replace ["j%,

readline = readline . replace ("kE",

61

JlextAreal . setColums= (20} ;
jlexthAreas. setRows (5] ;
FJ3crollPanel setViewportView [jTextireal) ;

JlextAreald . setColums= (20} ;
jlexthAread. setRows (5] ;
FJ3crollPaned setViewportView [jTextiread) ;

JlextAread. setColums= (20} ;
jlexthAread. setRows (5] ;
J3crollPaned setViewportView [jTexthread]) ;

JlextAread. setColums= (20} ;
jlexthAreaS. setRows (5] ;
F3crollPanes . setViewportView [jTexthreaS) ;

jlabell setText ("Fun Time:"};
jlabell setText ("Fun Time:"};
jlabel? . setText ("Fun Time:"};
jlabeld . setText ("Fun Time:"};
jLlabelll. setText ("Fun Time:");

JlextAreat. setColums= (20} ;
jlexthAreat. setRows (5] ;
FJ3crollPanef setViewportView (jTexthrea€) ;

JlextArea?. setColums= (20} ;
jlexthArea?. setRows (5] ;
F3crollPaneT setViewportView (jTextireaT]) ;

JlexthAreal . setColums= (20} ;
jlexthAreal . setRows (5] ;
FJ3crollPanel . setViewportView (jTexthreaf) ;

javax_=wing.Grouplayout jPanelllayout = new
javax._=swing.Grouplayout [jPanell} ;
jPanell setLayout (jPanelllayout} ;
jPanelllayout. setHorisontalGroup [
jPanelllayout.createParallelGroup
[javax. swing . Grouplayout. Al ignment . LEADING]
.addGroup (jFanelllayout . createdequentialEroup ()
.addContainerGap (]
. addGroup (jFane=l :I.Il:l.:,rnut- .createParallelEroup

