

ENHANCING GENERIC CODE CLONE DETECTION MODEL THROUGH

PROTECTED ACCESS MODIFIER RULE AND WEIGHTAGE

SITI AN NASIHAH BINTI MOHD NAPI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Degree of Computer Science (Software Engineering) with Honors

Faculty of Computer Systems & Software Engineering

Universiti Malaysia Pahang

DECEMBER 2016

i

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : SITI AN NASIHAH BINTI MOHD NAPI

Date of Birth : 30 MAY 1994

Title : ENHANCING GENERIC CODE CLONE DETECTION

MODEL THROUGH PROTECTED ACCESS MODIFIER

RULE AND WEIGTHAGE

Academic Session : SEMESTER 1 16/17

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open

access (Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the

thesis for the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

940530-03-5092________

New IC/Passport Number

Date:

 (Supervisor’s Signature)

Name of Supervisor

Date:

ii

THESIS DECLARATION LETTER

Librarian,
Perpustakaan Universiti Malaysia Pahang,
Universiti Malaysia Pahang,
Lebuhraya Tun Razak,
26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of

three (3) years from the date of this letter. The reasons for this classification are as listed
below.

Thank you.

Yours faithfully,

 (Supervisor’s Signature)

Date:

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian,
Perpustakaan Universiti Malaysia Pahang with its copy attached to the thesis.

Author’s Name
Thesis Title

Reasons (i)

 (ii)

 (iii)

iii

SUPERVISOR’S DECLARATION

I hereby declare that I have read this thesis and in my opinion this thesis/ report is

sufficient in term of scope and quality for the award of the degree of Bachelor of

Computer Science (Software Engineering).

 (Supervisor’s Signature)

Full Name : Dr. Al-Fahim Bin Mubarak Ali

Position :

Date :

iv

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it

has not been previously or concurrently submitted for any other degree at

Universiti Malaysia Pahang or any other institutions.

 (Student’s Signature)

Full Name : SITI AN NASIHAH BINTI MOHD NAPI

ID Number : CB13058

Date : 06 DECEMBER 2016

v

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful

First and foremost, praise to Almighty Allah for all HIS blessings for giving me

patience and good health to complete this project successfully. With his blessing and

guidance, all obstacles and problems managed to be solved. Alhamdulillah.

Next, the deepest appreciation to my project supervisor, Dr. Al-Fahim Bin Mubarak

Ali for his supportive and useful guidance from start until finishes this project. I

really appreciated the support that was given by my supervisor throughout this

project development. The highest gratitude to my supervisor who never gives up

share with me relevant information related with my project title.

To my beloved family, who supports me all the times, thanks for the precious

motivations, priceless advices and finance support for me to finish this project and I

am grateful beyond words and supports for all that they have given me.

Lastly, I would like to express my high appreciation to my supportive friends who

always give me great ideas and solutions for my project. Thank you very much for

the endless support, the constructive criticism as well as help offered in completing

this project.

vi

ABSTRACT

Code clone is a common term used to refer codes that have been repeated

multiple times in a program. There are four types of code clone which are type I,

type II, type III and type IV. Code clone detection models have been used to detect

clones apart from code clone detection approaches by applying the protected access

modifier rule and weightage. The major challenge faced in detecting code clone

using models is the lack of generality in detecting all clone types. This is due to the

use of different code clone detection approaches in the models that represents

different representation of the source codes; hence it affecting the type of code clones

detected. Based on this weakness, it is essential to propose a code clone detection

model that can support different type of code. To overcome this weakness, Generic

Code Clone Detection model that consists of five processes which are Pre-

processing, Transformation, Parameterization, Categorization or called as pooling

and Match Detection process has been proposed. A prototype has been developed to

detect all code clone types in Java. The proposed method was evaluated in two case

studies comprised of three Java applications. The result shows the Generic Code

Clone Model prototype was able to detect Type I, Type II, Type III and Type IV

clone pairs. The results imply that the Generic Code Clone Model was able to detect

all code clone types in Java applications and the generated Generic Code Clone

Model have better visualization of the code clone detection results.

vii

ABSTRAK

Kod klon adalah istilah umum yang digunakan untuk merujuk kod yang telah

diulang beberapa kali dalam program. Terdapat empat jenis kod klon yang jenis I,

jenis II, jenis III dan jenis IV. Kod model pengesanan klon telah digunakan untuk

mengesan klon selain pendekatan pengesanan kod klon dengan menggunakan akses

peraturan pengubahsuai yang dilindungi dan pemberat. Cabaran utama yang dihadapi

dalam mengesan kod klon menggunakan model adalah kekurangan keluasan dalam

mengesan semua jenis klon. Ini adalah kerana penggunaan pendekatan pengesanan

kod klon yang berbeza dalam model yang menghasilkan perwakilan yang berbeza

daripada kod sumber; oleh itu ia memberi kesan kepada jenis klon kod dikesan.

Berdasarkan kelemahan ini, ia adalah penting untuk mencadangkan model

pengesanan kod klon yang boleh menyokong pelbagai jenis kod. Untuk mengatasi

kelemahan ini, model pengesanan Generic Code Clone yang terdiri daripada lima

proses yang Pra-pemprosesan, Transformasi, parameterization, Pengkategorian atau

dipanggil sebagai pengumpulan dan proses pengesanan Perlawanan telah

dicadangkan. prototaip telah dibangunkan untuk mengesan semua jenis kod klon di

Jawa. Kaedah yang dicadangkan telah dinilai dalam dua kajian kes terdiri daripada

tiga aplikasi Java. Hasilnya menunjukkan prototaip pengesanan Generic Code Clone

dapat mengesan Jenis I, Jenis II, Jenis III dan IV Jenis pasangan klon. Keputusan

membayangkan bahawa pengesanan Generic Code Clone automatik mampu untuk

mengesan semua jenis kod klon dalam aplikasi Java dan yang dihasilkan pengesanan

Generic Code Clone mempunyai visualisasi lebih baik keputusan pengesanan kod

klon.

viii

TABLE OF CONTENTS

CONTENTS PAGE

THESIS DECLARATION LETTER ... ii

SUPERVISOR’S DECLARATION .. iii

STUDENT’S DECLARATION ... iv

ACKNOWLEDGEMENTS .. v

ABSTRACT ... vi

ABSTRAK .. vii

TABLE OF CONTENTS ... viii

LIST OF FIGURES .. xi

LIST OF TABLES ... xii

CHAPTER 1 INTRODUCTION .. 1

1.1 INTRODUCTION .. 1

1.2 PROBLEM STATEMENT ... 3

1.3 RESEARCH OBJECTIVES ... 6

1.4 RESEARCH QUESTIONS ... 6

1.5 RESEARCH SIGNIFICANCES ... 7

1.6 RESEARCH SCOPES ... 7

1.7 RESEARCH ORGANIZATION .. 8

CHAPTER 2 LITERATURE REVIEW .. 9

2.1 INTRODUCTION .. 9

2.2 IMPACT OF CODE CLONE ... 11

2.2.1 Increased Probability of Bug Propagation .. 11

ix

2.2.2 Increased Probability of Bad Design .. 11

2.2.3 Increased Difficulty in System improvement .. 11

2.2.4 Increased maintenance cost ... 12

2.2.5 Increased resource requirements.. 12

2.3 CODE CLONE DEFINITION .. 12

2.4 CODE CLONE DETECTION APPROACHES ... 13

2.4.1 Text-based Detection Approach ... 13

2.4.2 Token-based Detection Approach .. 14

2.4.3 Tree-based Detection Approach ... 14

2.4.4 Metrics-based Detection Approach .. 15

2.4.5 Program Dependency Graph-based Detection Approach 15

2.5 ACCESS MODIFIER .. 15

2.5.1 Public Access Modifier .. 16

2.5.2 Protected Access Modifier ... 17

2.5.3 No Access Modifier .. 18

2.5.4 Private Access Modifier ... 19

2.5.5 The Differences of characteristics of Access Modifier Methods 20

2.6 RELATED WORK .. 21

2.6.1 Generic Clone Model ... 21

2.6.2 Generic Pipeline Model ... 22

2.6.3 Unified Clone Model .. 24

2.6.4 Advantages and Disadvantages of Models ... 24

2.7 SUMMARY .. 26

CHAPTER 3 METHODOLOGY ... 27

3.1 INTRODUCTION .. 27

3.2 RESEARCH METHODOLOGY ... 28

3.2.1 Literature Analysis .. 29

3.2.2 Design and Develop Model .. 30

3.2.3 Evaluation ... 35

x

3.3 Data Set ... 35

3.4 Hardware and Software .. 36

3.4.1 Hardware Development ... 36

3.4.2 Software Development ... 36

3.5 Gantt Chart .. 37

3.6 SUMMARY .. 37

CHAPTER 4 EVALUATION ... 38

4.1 INTRODUCTION .. 38

4.2 MODEL EVALUATION .. 38

4.3 CLONE PAIR DETECTION .. 39

4.4 OVERALL RUNTIME PERFORMANCE ... 39

4.5 SUMMARY .. 41

CHAPTER 5 CONCLUSION ... 42

5.1 CONCLUSION .. 42

5.2 LESSON LEARNT .. 43

5.3 RESEARCH LIMITATIONS ... 44

5.4 FUTURE WORK ... 44

5.5 SUMMARY .. 45

REFERENCES ... 46

APPENDICES .. 49

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 1.1: The Types of Code Clone .. 2

Figure 1.2: Example Output of Text-based Approach ... 4

Figure 1.3: Example Output of tree-based approach ... 5

Figure 2.1: A situation demonstrating Java visibility modifiers 16

 17

Figure 2.3: Example of Protected access modifier... 18

Figure 2.4: Example of No access modifier ... 19

Figure 2.5: Example of Private access modifier .. 20

Figure 2.6: The overview of generic clone model (Giesecke, 2007) 21

Figure 2.7: An overview of process in Generic Pipeline Model 23

Figure 2.8: An overview of the flow of Unified Clone Model 24

Figure 3.1: Research Methodology .. 28

Figure 3.2: Literature Review and Analysis .. 29

Figure 3.3: Design of the Generic Code Clone Model... 30

Figure 3.4: The interface design of the generic code clone model 33

Figure 3.5: Example of code built in java .. 33

Figure 3.6: The sample of code clone detection report .. 34

Figure 4.1: Line graphs for shows the overall run time performance of Generic Code

Clone detection model.. 40

xii

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1: The difference of characteristics of Access Modifier Methods 20

Table 2.2: SWOT analysis of the models.. 25

Table 3.1: The Characteristics of the Tools ... 36

Table 3.2: Hardware Development .. 36

Table 3.3: Software Development.. 37

Table 4.1: Result of the detected code clone.. 39

Table 4.2: The evaluation of the overall run time performance of code clone

detection model .. 40

1

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Refer to IEEE standard; definition of software development process is

concerned primarily with the production aspect of software development, as opposed

to the technical aspect, such as software tools. These processes exist primarily for

supporting the management of software development, and are generally skewed

toward addressing business concerns. Many software development processes can be

run in a similar way to general project management processes. A clone occurs when

a code fragment is an identical to another code fragment according to some basic

criteria. These criteria may be syntactical, semantical, or both of them (El-Matarawy,

El-Ramly, & Bahgat, 2013). In software project management, it is common to reuse

some code fragments by copying with or without minor modifications for use in

different programs or maintained by the same entity.

Most of the software systems consist of a large number of identical code

segments. These identical code segments are known as code clones. According to

previous research, a software system consists of about 7% to 23% of cloned code

(Yuan & Guo, 2011). There are four types of code clone which are type I, type II,

2

type III and type IV. Below is the diagram to show the difference of four types of

code clone.

Figure 1.1: The Types of Code Clone

For type I for above figure, these two fragments are textually after removing

the whitespace and comments. Next, for the type II of code clone in above figure

shows that the two code segments change a lot in their shape, variable names and

value assignments. However, the syntactic structure is still similar in both segments.

Type III in the figure of types of code clone above shows that the two fragments and

from the corresponding difference, all the original statements are used directly or

after being changed in their identifiers or literals with one insertion in the first line,

making this code fragment as Type III of code clone. Without this inserted statement,

this copied fragment could be a Type II code clone. For type IV of code clone in the

figure above shows that from the semantics point of view both the code fragments

3

are similar in their functionality and termed as Type IV semantic clones although one

is a simple code fragment and another is a recursive function with no structural

similarities between the statements of the two fragments.

Clones are considered harmful in software maintenance and should be

removed or detected at least. However, it would have been much better if there is no

clone at all in the developed system so that we would not have to think about neither

removal nor detection of clones. The idea is to use a clone detection tool in the

normal development process to avoid cloning in the software right from the

beginning. There are two ways of how to use a clone detection tool in the

development process for avoiding clones. One way is the preventive control where a

new function is added to the system only after being confirmed that this new function

is not a clone to any existing one or there are specific reasons of adding that function

as a clone to the system. The other way is the problem mining where any

modification to a function must be consistently propagated to all of its similar

functions in the system. Therefore, no clones are created unnecessarily, and the

probability of update anomalies is reduced significantly(Roy & Cordy, 2007).

1.2 PROBLEM STATEMENT

Over the last decade many techniques and tools for software clone detection have

been proposed. This includes textual approaches and semantic approaches. Most of

them are oriented to a specific computer language and they range from high precision

to low precision, and from high recall to low recall (El-Matarawy et al., 2013). There

are five approaches that have been used in code clone detection which are text-based

approach, token-based approach, tree-based approach, metrics-based detection

approach and program dependency graph-based (PDG-based) detection approach.

The figures below explain of all the code clone detection approach:

4

Figure 1.2: Example Output of Text-based Approach

The above figure shows text-based approach, two code fragments are compared

with each other to find sequences of same strings. Once two or more code fragments are

found to be similar in their maximum possible extent are returned as clone pair or clone

class by the detection technique. Because of the purely text-based, detected clones do not

correspond to structural elements of the language. A small or no normalization is

performed on the source code before starting the actual comparison and most of the

cases; the original source code is directly used in the clone detection process. However,

to validate the following normalizations are applied on some approaches which are

comments removal, whitespace removal and normalization of the code(Roy & Cordy,

2007).

In the token-based detection approach, the entire source system is transformed to

a sequence of tokens. This sequence is then scanned for finding duplicated sub

sequences of tokens and finally, the original code portions representing the duplicated

sub sequences returned as clones. Compared to text-based approaches, a token-based

approach is usually more robust against code changes such as formatting and spacing.

Next, Tree-based approach is pared to a parse tree with a parser of the language of

interest. Similar sub trees are then searched in the tree with some tree matching

techniques and the corresponding source code of the similar sub trees are returned as

clones pairs or clone classes. The parse tree or Abstract Syntax Tree contains the

complete information about the source code. The figure below shows the example of

tree-based approach:

5

Figure 1.3: Example Output of tree-based approach

The above figure shows the argument to the first occurrence is lexical

because it includes only a leaf and, perhaps, a unary node that identifies the type of

the leaf. The argument to the second occurrence is, however, structural because it

includes a binary based-tree node. Thus, it is clear that structural abstraction is more

general than based-tree and hence, can find gapped clones by abstracting of a based-

tree with the cost of much larger search space. Program Dependency Graph (PDG)-

based approaches go one step further in obtaining a source code representation of

high abstraction than other approaches by considering the semantic information of

the source. PDG-based contains the control flow and data flow information of a

program and hence carries semantic information.

Once a set of PDG-based are obtained from a subject program, isomorphic

sub graph matching algorithm is applied for finding similar sub graphs which are

returned as clones. Another approach of clone detection is metric-based approach.

Metrics-based approaches gather different metrics for code fragments and compare

these metrics vectors instead of comparing code directly. There are several clone

detection techniques that use various software metrics for detecting similar code.

First, a set of software metrics called fingerprinting functions are calculated for one

or more syntactic units such as a class, a function, or a method or even statement and

then the metrics values are compared to find clones over these syntactic units.

A clone detector must try to find pieces of code of high similarity in a

system's source text. The main problem is that it is not known beforehand which

6

code fragments can be found multiple times. The detector thus essentially has to

compare every possible fragment with every other possible fragment. Such

comparison is very expensive from a computational point of view and thus, several

measures are taken to reduce the domain of comparison before performing the actual

comparison. Moreover, after finding the potential cloned fragments, further analysis

and tool support is required to detect actual clones (Roy, Cordy, & Koschke, 2009).

1.3 RESEARCH OBJECTIVES

The main objectives to be achieved on this research are the following:

i. To propose a method in enhancing the generic code clone detection

model.

ii. To implement the proposed method of enhancing the generic code clone

detection model.

iii. To evaluate the result based on code clone type and run time performance

of three applications.

1.4 RESEARCH QUESTIONS

There are several things that should be considered in achieving the objectives

in this research:

i. What is the appropriate access modifier method to detect the type of code

clone?

ii. How to implement the proposed access modifier method in generic code

clone detection?

iii. How to evaluate the code clone detection result?

7

1.5 RESEARCH SIGNIFICANCES

There are a few of significances of this research:

i. The analysis of access modifier are useful as a medium to evaluate a huge

of data and as a baseline reference for future research.

ii. The applied method of access modifier in detection of code clone can

assist the expert in gaining the new program without duplication of code

fragment.

iii. The applied method of access modifier in detection of code clone also can

increase the confidence of the developer to create their own program

without duplication of code fragments.

iv. Monitoring and removal of code clones are important in software

development.

1.6 RESEARCH SCOPES

The boundary of the research as follows:

i. This research is focusing on workability of access modifier in detection of

code clone.

ii. The datasets of the code is real codes that obtained from the existed code

in library, internet sources or develop the code from programming tools

for use in detection of code clone.

iii. Determine of applied method of access modifier in detection of code

clone.

iv. The evaluation of the proposed method of access modifier in detection of

the code clone.

8

1.7 RESEARCH ORGANIZATION

This research consists of five chapters. Chapter One which is introduction,

that give briefly explanation to the readers about the research topic, related issues

and objectives of this research. Next, chapter Two which is literature review, this

part will explain in details about the selected topic, analyse the related work and

make the comparison. Besides, this part also will explain the method that is

suitable to be included in the research. Chapter Three which is methodology that

will discuss about the research methodology, parameter of datasets, selected

method, development technique and tools that used in this research. Then, we

continue to the Chapter Four where the prototype is developed. From the

prototype, we evaluate the result based on the code clone type and run time

performance of the three application. Next, we move to Chapter Five which is the

conclusion of the research. In conclusion, we conclude all the objective either it

achieve or not achieve.

9

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

It is very common in computer programming to copy part of the program

from one place and paste it in another place and then adapt it to fit in the new place.

This happens for a variety of reasons. As a result, software systems often contain

sections of code that are very similar, called code clones. Sometimes code clones are

created for legitimate reasons, but other times they are not and they deteriorate the

quality of the code. One of the main drawbacks of code clones is that the developer

should modify multiple copies of the same pieces of code if a change is needed in a

piece of code that has been cloned. Often this does not happen with good quality

because the programmer forgets where they duplicated the code and leaves some

clones unchanged. Fortunately, several techniques for detecting code clones have

been proposed to help the programmer find code clones and locate the locations of

duplicate code (El-Matarawy et al., 2013).

 Code cloning is found to be a more serious problem in industrial software

systems. In presence of clones, the normal functioning of the system may not be

affected, but without countermeasures by the maintenance team, further development

may become prohibitively expensive. Clones are believed to have a negative impact

on evolution. Code clones may adversely affect the software systems’ quality,

10

especially their maintainability and comprehensibility. For example, cloning

increases the probability of update anomalies. If a bug is found in a code fragment,

all of its similar cloned fragments should be detected to fix the bug in question.

Moreover, too much cloning increases the system size and often indicates design

problems such as missing inheritance or missing procedural abstraction. Although

the cost of maintaining clones over a system’s lifetime has not been estimated yet, it

is at least agreed that the financial impact on maintenance is very high. The costs of

changes carried out after delivery is estimated at 40% - 70% of the total costs during

a system’s lifetime (Latoza, 2005).

Existing research shows that a significant amount of code of a software

system is cloned code and this amount may vary depending on the domain and origin

of the software system. For instance, Baker has found that on large systems between

13% - 20% of source code can be cloned code. Lague et al. have studied only

function clones and reported that between 6.4% - 7.5% of code is cloned code

whereas Baxter et al. have reported that 12.7% of code being clones of a software

system. Mayrand et al. have also estimated that normal industrial source code

contains 5% – 20% of duplicated code. Kapser and Godfrey have experienced that as

much as 10% –15% of source code of large system is cloned. For an object-oriented

COBOL system, the rate of duplicated code is found even much higher, about 50%

(Roy & Cordy, 2007).

Most previous work on code-clone detection has focused on finding identical

clones, or clones that could be made identical via consistent transformations of

identifiers and literals. However, code segments that are similar but not identical

occur often in practice, and finding such non-identical clones can be as important as

finding identical code segments. For example, while automated code compaction

may require finding identical clones, studies of the evolution of a codebase over time

require finding clones that vary in their similarity. One of the central issues with

finding non-identical clones is assessing when two pieces of code are close enough to

be considered “similar”. Because this is likely to depend on the context in which the

clone-detection clone detection tool is used, we believe that such tools should

11

provide a quantitative measure of clone similarity, leaving the ultimate decision of

classification to the user of the tool (Smith & Horwitz, 2009).

2.2 IMPACT OF CODE CLONE

Code clone happened when the developer build a large software programme.

While it is beneficial to practise cloning, code clones can have severe impacts on the

quality, reusability and maintainability of a software system (Roy & Cordy, 2007).

Several of impacts of code clone are listed as follows:

2.2.1 Increased Probability of Bug Propagation

 On the off chance that a code portion contains a bug and that fragment is

reused by adapting and gluing without or with minor adjustments, the bug of the first

section may stay in all the glued fragments in the framework and accordingly, the

likelihood of bug proliferation may increment fundamentally in the framework.

Expanded of presenting another bug in numerous cases, just the structure of the

copied piece is reused with the designer's obligation of adjusting the code to the

present need. This procedure can be blunder inclined and may present new bugs in

the framework (Kapser & Godfrey, 2008).

2.2.2 Increased Probability of Bad Design

 Cloning may present terrible configuration, absence of good legacy structure

or deliberation. Hence, it gets to be hard to reuse part of the usage in future tasks. It

likewise severely effects on the viability of the product (Roy & Cordy, 2007; Roy et

al., 2009).

2.2.3 Increased Difficulty in System improvement

 As a result of copied code in the framework, one needs extra time and regard

for comprehend the current cloned code and worries to be adjusted, and in this way,

12

it gets to be hard to include new functionalities in the framework, or even to change

existing ones (Morshed, Rahman, & Ahmed, 2012).

2.2.4 Increased maintenance cost

 If a cloned code segment is found to be contained a bug, all of its similar

counterparts should be investigated for correcting the bug in question as there is no

guarantee that this bug has been already eliminated from other similar parts at the

time of reusing or during maintenance. Moreover, when maintaining or enhancing a

piece of code, duplication multiplies the work to be done (Kapser & Godfrey, 2008).

2.2.5 Increased resource requirements

Code duplication introduces higher development rate of the framework size.

Same time framework measure might not make a huge issue for a portion domains,

others might require expensive equipment overhaul for a programming overhaul.

Accumulation times will build in that's only the tip of the iceberg code need to a

chance to be translated which need An adverse impact on the edit-compile-test cycle.

The overall effect of cloning has been described by Johnson as a form of software

aging or “hardening of the arteries” where even small changes on the architectural

level become very difficult to achieve in the actual code (Kapser & Godfrey, 2008;

Morshed et al., 2012; Smith & Horwitz, 2009).

2.3 CODE CLONE DEFINITION

Code clone definition is refer to the characteristics in code clone which is

code clone have four types of detection. There are Type I, Type II, Type III and Type

IV. Furthermore, the granularity in code clones detection which are clone pair and

clone class.

Code clone Type I is define as identical code fragments except for variations

in whitespaces, layout and comments. Refer to this journal, (Latoza, 2005) Type II

of code clone is Structurally identical fragments except for variations in identifiers,

13

literals, types, whitespaces, layout and comments. Next, the code clone Type III is

Copy and paste the code fragments with further modifications. Statements can be

changed, added or removed in addition to variations in identifiers, literals, types,

layout and comments (Prem, 2013). From this journal (Approach, n.d.), Type IV is

defined that two or more code fragments that perform the same computation but

implemented through different syntactic variants. These types of clones not only

define an increasing level of subtlety from Type I through Type IV but also the

analytical complexity and sophistication in detecting such clones increases from

Type I through Type IV with Type IV being the highest. The detection of Type IV

clones is the hardest even after having a great deal of background knowledge about

the program construction and software design. This increasing level of analytical

complexity from Type I through Type IV does not vary whether the process is

automatic or not(Roy & Cordy, 2007).

The granularity of code clone which are clone pair and clone class. Clone pair

is defined as a pair of code fragments is called a clone if there exists a clone-relation

between them while clone class is the maximal set of code fragments in which any

two of the code fragments hold a clone-relation (Roy & Cordy, 2007)

2.4 CODE CLONE DETECTION APPROACHES

Various clone detection techniques are presented in the literature. While a

few of them are commercial, most of them are for research purposes aiming at

assisting the development and maintenance processes (Van Rysselberghe &

Demeyer, 2003).

2.4.1 Text-based Detection Approach

 There are a few clone location strategies that depend on immaculate content

based techniques. In this approach, the objective source system is considered as

grouping of lines or strings. Two code pieces are contrasted with each other with

discover groupings of 44 same strings. When two or more code pieces are observed

14

to be comparative in their most extreme conceivable degree are returned as clone

match or clone class by the recognition system. Because of the purely text -based

approach, detected clones do not correspond to structural elements of the language

(Roy & Cordy, 2008). Below are the characteristics in code fragments that needed to

evaluate the detection of code clone using text -based technique:

a) Comments Removal: Ignores all kinds of comments in the source code

depending on the language of interest.

b) Whitespace Removal: Removes tabs, and new line and other blanks spaces.

c) Normalization: Some basic normalization can be applied on the source code

2.4.2 Token-based Detection Approach

In the token-based detection approach, the entire source system is

transformed to a sequence of tokens. This sequence is then scanned for finding

duplicated sub sequences of tokens and finally, the original code portions

representing the duplicated subsequence returned as clones. Compared to text-based

approaches, a token-based approach is usually more robust against code changes

such as formatting and spacing (Roy et al., 2009).

2.4.3 Tree-based Detection Approach

In the tree-based approach a program is pared to a parse tree of the language

of interest. Similar sub trees are then searched in the tree with some tree matching

techniques and the corresponding source code of the similar sub trees are returned as

clones pairs or clone classes. The parse tree contains the complete information about

the source code. Although the variable names and literal values of the source are

discarded in the tree representation, more sophisticated methods for the detection of

clones still can be applied (Baxter, Yahin, Moura, Sant’Anna, & Bier, 1998; Jia,

Binkley, Harman, Krinke, & Matsushita, 2009; Roy et al., 2009).

15

2.4.4 Metrics-based Detection Approach

Metrics-based approaches gather different metrics for code fragments and

compare these metrics vectors instead of comparing code directly. There are several

clone detection techniques that use various software metrics for detecting similar

code. First, a set of software metrics called fingerprinting functions are calculated for

one or more syntactic units such as a class, a function, or a method or even statement

and then the metrics values are compared to find clones over these syntactic units

(Roy & Cordy, 2008; Van Rysselberghe & Demeyer, 2003).

2.4.5 Program Dependency Graph-based Detection Approach

Program Dependency Graph (PDG)-based approaches representation a source

code with a high abstraction than other approaches by considering the semantic

information of the source. PDG-based approach contains the control flow and data

flow information of a program and hence carries semantic information. Once a set of

PDG-based approaches are obtained from a subject program, isomorphic sub graph

matching algorithm is applied for finding similar sub graphs which are returned as

clones (Roy et al., 2009; Smith & Horwitz, 2009).

2.5 ACCESS MODIFIER

 Access modifiers are keywords in object-oriented languages that set the

accessibility of classes, methods, and other members. Access modifiers are a specific

part of programming language syntax used to facilitate the encapsulation of

components. If every member of every class and object were accessible to every

other class and object then understanding, debugging, and maintaining programs

would be an almost impossible task. The contracts presented by classes could not be

relied on because any piece of code could directly access a field and change it in

such a way as to violate the contract. One of the strengths of object-oriented

programming is its support for encapsulation and data hiding. To achieve these we

need a way to control who has access to what members of a class or interface, and

16

even to the class or interface itself. This control is specified with access modifiers on

class, interface, and member declarations.

Figure 2.1: A situation demonstrating Java visibility modifiers

2.5.1 Public Access Modifier

 A public class is publicly accessible. Anyone can declare references to

objects of the classor access its public members. Without a modifier a class is only

accessible within its own package (Arnold et al., 2005). Changing them can be

impossible after that code relies on public or protected functionality. Package and

private access are part of your implementation, hidden from outsiders. Below is the

example of public access modifier:

17

Figure 2.2:

2.5.2 Protected Access Modifier

Protected means it can be accessed by classes that extend that class, but that

is loose language. More precisely, beyond being accessible within the class itself and

to code within the same package, a protected member can also be accessed from a

class through object references that are of at least the same type as the classthat is,

references of the class's type or one its subtypes. An example will make this easier to

understand (Arnold et al., 2005). Below is the example of protected access modifier:

18

Figure 2.3: Example of Protected access modifier

2.5.3 No Access Modifier

No modifier is called as default bydefault. The default modifier is accessible

only within package. Below is the example of no access modifier:

19

Figure 2.4: Example of No access modifier

In this example, we have created two packages pack and mypack. We are

accessing the A class from outside its package, since A class is not public, so it

cannot be accessed from outside the package.

2.5.4 Private Access Modifier

Private Members declared private are accessible only in the class itself. apply

only to members not to the classes or interfaces themselves. For a member to be

accessible from a section of code in some class, the member's class must first be

accessible from that code (Arnold et al., 2005). Below is the example of private

access method.

20

Figure 2.5: Example of Private access modifier

Based on the above figure, we have created two classes A and Simple. A

class contains private data member and private method. We are accessing these

private members from outside the class, so there is compile time error.

2.5.5 The Differences of characteristics of Access Modifier Methods

There are several difference characteristics of using the methods of access

modifier. Table 2.1 below shows the advantages and disadvantages of all of access

modifier methods.

Table 2.1: The difference of characteristics of Access Modifier Methods

Access Modifier Within

class

Within

package

Outside package

by subclass only

Outside

package

1. Public Yes Yes Yes Yes

2. Protected Yes Yes Yes No

3. No

modifier

Yes Yes No No

4. Private Yes No No No

21

2.6 RELATED WORK

 Code clone detection model is used detect code clones by using the proposed

access modifier rule and weightage to have the significant result. Therefore, model

was proposed to have unified code clone detection and results. There are three code

clone models used in code clone research domain. The models are generic clone

model, generic pipeline model and unified clone model.

2.6.1 Generic Clone Model

 The generic clone model is a model that defines the clones that exist in a

program. The model has a division of concerns on clone detection, description and

management using layers. The main function of this model is to describe the clones.

Furthermore, the advantage of this model is can reduces the effort in the

implementation of tools supporting these activities. The figure of overview of the

generic clone model is shown below (Giesecke, 2007).

Figure 2.6: The overview of generic clone model (Giesecke, 2007)

22

 There are two type of elements linked to the model which are elements

correspond to system artifacts and artefacts representing the part of the clone data

that is generated by a clone detection algorithm based on the system artifacts. Project

instance is the highest level representation of the model. An instance is structured

into selection units and comparison unit through a selection function and an

enumeration function. This instance is known as clone data. The clone pairs exist in

two granulities that are the selected units and the comparison units. Clone pairs are

grouped into clone sets by a presentation function. The clone sets used here are sets

with a distinguished reference element to reduce redundancy in a clone set.

 The implementation of this model is done as plugin to eclipse. Eclipse is an

integrated development environment (IDE) that is used for development standalone

programs and web applications. In addition, this model has a clear separation of

clone detection process definition using layers. Moreover, this model is more focused

on management of code clone that was driven by operational aspects of code clone

detection and removal. It is only available only as a plugin for IDE rather than a

separated code clone detection tool.

2.6.2 Generic Pipeline Model

 A Generic Pipeline Model is a combination of processes to detect code clone

with all the necessary steps in a code clone detection process (Thesis et al., 2015).

There are five processes involved in this generic pipeline model which is shown in

the figure below.

23

Figure 2.7: An overview of process in Generic Pipeline Model

The first process is parsing process and its transforms source code into source

units. This process revolves in transforming source codes into source units.

Representations of source units uses sub trees of an Abstract Syntax Tree. The input

of this source file and the output of this process is the source units. Next, the source

units are used as input for the second process of the generic pipeline model. Pre-

processing process is to normalize the source units and to add additional annotations

to the source units. Normalization turns the source units into a regular form and

makes different source units more similar. It uses Abstract Syntax Tree as input and

pre-processed Abstract Syntax Tree as output. It is implemented using several-

cascaded processor. The output of this model is the pre-processed source files. The

pre-processed source files then proceed to the third process which is pooling process.

 Pooling process is the process of grouping pre-processed Abstract Syntax

Tree source units into sets of groups according to defined characteristics based on

criteria set by the user. The output of this model process is pools. Then comparing

process is come after the pooling process. Comparing process is a recursive

comparison process of source units in all pools using a division rules. The output of

this process is clone similarity groups. These groups are then used as input for the

final input which is the filtering process. The function of filtering process is to

remove irrelevant clone candidate sets from the result set.

 The use of the generic pipeline model is created by Java Code Clone

Detector. It is a code clone detection tool designed and developed to detect code

clones in Java.

24

2.6.3 Unified Clone Model

 Unified Clone Model is a generic model that can represent all the results of

all code clone tools (Harder, 2013). Below is the figure shows the flow of the Unified

Clone Model.

Figure 2.8: An overview of the flow of Unified Clone Model

 The figure 2.8 above is still in design phase. It was designed through different

clone representations of existing tool. As a concept analysis, uses case from eleven

applications has been used. The outcome of the analysis has been divided into four

groups which are detection for clone detection techniques. The disadvantage of this

model is the model is still in design phase and it is lacks of a proper file format for

data representation.

2.6.4 Advantages and Disadvantages of Models

Every model has its own advantages and disadvantages. Table 2.2 shows the

Strength Weakness Opportunity Threat (SWOT) analysis of the models.

25

Table 2.2: SWOT analysis of the models

Feature Generic Clone Model Generic Pipeline

Model

Unified Clone Model

Strength This model has clear

separation of clone

detection process

definition using layers

which makes description

of the clones possible.

This model consists of

step by step process to

detect clones in Java

applications. It allows

customization for the

user to manipulate the

model.

This model is created

through the different

clone representations

of existing tools.

Weakness Generic clone model not

allow manipulation on it

layers to extend the

effectiveness of this

model.

The extension of this

model is limited

because of the

manipulation on the

pre-defined sets and

rules in the model.

This model is still in

design phase and lacks

of proper file format

for the data

representation.

Opportunity The description of the

generic clone model can

be improved.

The clone type

detection and the

process can be

improved to get the

better code clone

detection result.

The realization of the

model using user

defined process.

Threat The implementation of

the changes of the model

is impossible as its nature

of being a plugin.

The application used

for evaluation will

have different results

compared to existing

work.

Different tools might

cause variation to the

end results.

Based on the SWOT analysis above, the basic weakness of the model is the

extendibility of the existing models. The generic clone model is not allowed the

manipulation on its pre-defined layers to extend the effectiveness of its model while

the generic pipeline model only allows the manipulation within its process so its limit

the extendibility of the model to enhance the code clone detection. The realization of

the model is another major weakness of the generic pipeline model. It is very

different with the struggles in realizing the prototype or tools for the unified clone

model.

26

2.7 SUMMARY

 The conclusion of Chapter 2 is we have review the code clone area which is

what is the disadvantages of code clone, the definition of code clone, and the all

types of code clone. Then, we review about what access modifier is and how to

practice in the research with describe the properties of the every access modifier.

Moreover, we do the review of the models of clone include their advantages and the

disadvantages of every models. From all the methods of access modifier, we only

chose one method to be used in the code clone detection model which is protected

access modifier. We moved to next chapter which is Chapter 3, the methodology in

details of developing the model design.

27

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

 In this chapter, it represents all the necessary information. The chapter

outlines the details about the research undertaken to address the question posed in

chapter one. It explores the research question in more depth and discusses what

method are the most appropriate, given the aims and nature of the research.

Consequently, the content of this chapter are methodology and dataset of the method

used in enhancing generic code clone detection model through the protected access

modifier rule and weightage. In this chapter, the explanation of the methodologies is

explained.

 Dataset is discussing briefly about the parameter that we are going to use in

this research. Besides, the technique that we are going to use in improving code

clone detection is protected access modifier. This technique already briefly discussed

in chapter two. Furthermore, the development tools is describe about the tools that

we used during this research and justifying the importance of hardware and software

chosen. Then, the Gantt chart is draw using appropriate tools.

28

3.2 RESEARCH METHODOLOGY

 Figure 3.1 presents the overview of enhancing generic code clone detection

model through the protected access modifier rule and weightage. The methodology is

divided into three phases which are the literature review and analysis, design and

develop the model and evaluation phase.

Figure 3.1: Research Methodology

29

3.2.1 Literature Analysis

Figure 3.2: Literature Review and Analysis

 The figure 3.2 above is the summary of literature review. During this phase,

a study on code clone and access modifier field is conducted. Consequently, all the

related literature papers and journals are gathered and reviewed in order to analyse

the issues and challenges in code clone detection. We have concluded the definition

of code clone, the approach of code clone and the whole of methods of access

modifier. However, we are focusing more to code clone detection. All of them are

difficult to diagnose but access modifier is the most challenged. Therefore,

enhancing the generic code clone detection model through modifier access is selected

to be studied. The clone model to be used in code clone detection is identified.

30

 Furthermore, data related to the code clone detection is obtained from a

relevant source which is can act as a real data. After selected the field of studied, the

related technique are appointed to be implement in code clone detection. There are a

few relevant access modifier are analysed such as public access modifier, protected

access modifier, no access modifier and private modifier. However, protected access

modifier would be the best methods to be used for enhancing the code clone

detection due to the ability in identify the ambiguous data. Hereby, the problem

statements, objectives, questions, significant and scope are identified in this phase.

3.2.2 Design and Develop Model

Figure 3.3: Design of the Generic Code Clone Model

From the figure 3.3 above, this phase consists of four main activities which

are requirement design and analysis, model design, model implementation and model

testing. During requirement design and analysis, data is composed from related

references and be analysed. The data is the further analysed based on the protected

access modifier rule and weightage. Apart from it, functional and non-functional

requirements for the model also are determined during this activity. After getting and

analysing the requirement needed, the system design is begin.

31

The rule and weightage of the protected access modifier is applied in the

match detection process. This is the final process in the Generic Code Clone

Detection Model. The objective of this process is to detect the code clone. The input

of this process is the pairs and groups of source units based on three categories. The

match detection process uses a hybrid detection technique of exact matching with

Euclidean distance. As mentioned before, there are three pools obtained from the

previous process. The match detection starts by finding the exact clone or better

known as Type I clone; and near exact clones or better known as Type II clone.

Therefore, there are two stage of exact matching being used to detect Type I and

Type II clones.

The first stage is the exact matching technique is used in detecting the same

average ratio value of both source units in the first pool. The compared functions

that have the same average ratio value of both source units are detected as Type I.

The second stage is the exact matching technique is used in detecting the same

average ratio source units value is difference so the clones that are detected through

this stage are known as Type II. The remaining average ratio source units value from

first and second will be combined for the next step of this process.

As for the remaining average ratio source units or classifie as header and

body value, Euclidean distance is applied. Assume there are two source units which

are A and B. Therefore, the Euclidean distance, ED, between A and B calculated as:

EDAB = √(ℎ𝑒𝑎𝑑𝑒𝑟𝐴−ℎ𝑒𝑎𝑑𝑒𝑟𝐵)2+(𝑏𝑜𝑑𝑦𝐴−𝑏𝑜𝑑𝑦𝐵)2

where,

EDAB is Euclidean distance of Function A and Function B

headerA = average ratio header of A

bodyA = average ratio body of A

headerB = average ratio header of B

32

bodyB = average ratio body of B

The calculation of the Euclidean distance is applied among the remaining average

ratio header and body values in the third process. Once the calculation is done, it is

the function is then grouped to Type III and Type IV based on the distance obtained.

Type III clone are taken from the range of 85% - 100% while the remaining is

defined as Type IV.

 Consequently, the model is designed. Planning is the first design process, in

this phase, we should plan the design of the interface and how it can interact with the

user. Then analyses the user experience factors before develop the conceptual design.

If have any changes, refinement process will occur. The figure 3.4 shows the design

of the model while figure 3.5 shows the code will be insert in the tools and figure 3.6

shows the report that will be execute from NetBeans IDE 8.1:

33

Figure 3.4: The interface design of the generic code clone model

Figure 3.5: Example of code built in java

34

Figure 3.6: The sample of code clone detection report

 Then, the interface of model will be developed. Next activity is the model

implementation. The protected access modifier rule and weightage will be conduct

during this phase. There are considering several steps to be define which linguistic

variables, construct membership function are, construct knowledge of the rule and

evaluate the result. After we proposed the method will be uses in the Generic Code

Clone Detection Model, we suggest the rule and the weightage to evaluate the better

result.

Besides, during this phase, Java code will be acts as a programming language

to coding the models using NetBeans IDE 8.1 software. Lastly, model testing is

conducted to test the system functionality whether the model achieve the main goal

of this research. All this steps are will be implementing for the next semester.

35

3.2.3 Evaluation

 Evaluation phase is the last phase in this research methodology. This phase is

conducted based on the verification and validation process. Fundamentals (2011)

stated that, verification is the process of evaluating work product of the system

development to ensure we are on right track of creating the final product while

validation is the process of evaluating the final product to check whether the software

is satisfies the specific requirement. On the other hand, verification is conducted by

comparing two different datasets. The datasets is divided into two, which are real

data and synthetic data. Real data is obtained from the related references while

synthetic data is gained from the expert opinion. Then, the results of these two

datasets will be compared.

For validation, we are mapping the requirement to model to evaluate the

result based on code clone type and run time performance of three applications. The

evaluation will be carried out by design the model and explanation of the finished

model.

3.3 Data Set

 The data set for this project is taken from the three tools which are JHotDraw

7.0.6, SableCC 3.7 and ANTLR 3.0.1. JHotDraw tool is used to the code fragment

that needs to use the graphic user interface application. For SableCC and ANTLR

tools, they will be used for parses generators (Ishio, Date, Miyake, & Inoue, 2008).

Table 3.1 below shows the length of code and the total of files belong to the three

tools:

36

Table 3.1: The Characteristics of the Tools

Name Version Length of Code Total of File

JhotDraw 7.0.6 90166 309

SableCC 3.7 35388 196

ANTLR 3.0.1 59687 522

3.4 Hardware and Software

 This section covers the hardware and software requirement needed to develop

and design the model of the code clone detection. The hardware tools used should be

convenient with the development of the model.

3.4.1 Hardware Development

 The hardware requirement and their purposed for this project is shown in

Table 3.2.

Table 3.2: Hardware Development

Hardware Purpose

Acer Aspire 4752Z Device to develop the prototype

Printer To print sheets and documents

3.4.2 Software Development

 The software requirement and their purposed for this project is shown in

Table 3.3.

37

Table 3.3: Software Development

Software Purpose

Windows 7 Platform of operating system

Microsoft Word 2010 Prepare proposal and documentations

Microsoft Visio 2010 Create Gantt Chart

Microsoft Power Point 2010 Design and draw the diagrams

NetBeans IDE 8.1 Develop the model

Mendeley Desktop Manage reference and citation

3.5 Gantt Chart

 The Gantt chart shows the estimate duration from the start of the project until

the end of the project (refer to Appendix A1).

3.6 SUMMARY

 The conclusion of Chapter 3 is we have reached the methodology to develop

the model of the research with determined the methods of access modifier that use in

the code clone detection. The protected access modifier is chose to be used in

enhancing the code clone detection model. Therefore, we have to develop the model

through follow the model design in development part of Gantt chart.

38

CHAPTER 4

EVALUATION

4.1 INTRODUCTION

 In this chapter, it presents all the evaluations of the research by apply the

preferred method. The chapter outlines the output data about the research undertaken

to address the objectives posed in chapter one. It explores the research objectives in

more depth. Consequently, the content of this chapter are evaluation of the datasets

that used in enhancing generic code clone detection model through protected access

modifier rule and weightage. In this chapter, the evaluation of the output is

explained.

4.2 MODEL EVALUATION

This section shows the code clone detection result by enhancing the

generic code clone detection model through protected access modifier rule and

weightage.

39

4.3 CLONE PAIR DETECTION

Table 4.1 shows the overall result of the detected clone by enhancing generic

code clone model through protected access modifier rule and weightage for

JHotDraw 7.0.6, SableCC 3.7 and ANTLR 3.01.

Table 4.1: Result of the detected code clone

Application Type I Type II Type III Type IV

JHotDraw 7.0.6 37 197 18 9

SableCC 3.7 3 0 0 2

ANTLR 3.0.1 87 212 58 44

From the table above, we can conclude that all of the code clone type is

detected in the chosen application. In JHotDraw application, there is 37 match

detection of type I, 197 match detection of type II, 18 match detection of type III and

9 match detection of type IV. For SableCC application, there is 3 match detection of

type I while it does not have type II and type III of the code clone then it has 2 match

detection of type 4. In addition, ANTLR have 87 match detection of type I, 212

match detection for type II, 58 match detection for type III and 44 match detection

for type IV. ANTLR is the most have the significant of all the type of code clone as

ANTLR have 522 java file than JHotDraw application only have 309 java file while

SableCC have the least java file which is only have 196 java file.

4.4 OVERALL RUNTIME PERFORMANCE

Table 4.2 and figure 4.1 shows the overall run time performance for data

evaluation of this research.

40

Table 4.2: The evaluation of the overall run time performance of code clone

detection model

Application

Process

JHotDraw SableCC ANTLR

Pre-process (ms) 30 204 109

Transform (ms) 4141 81461 12336

Parameterize (ms) 3060 609 5651

Pool (ms) 62 0 73

Pre-detect (ms) 93 218 141

Detect (ms) 2839 16 6162

Figure 4.1: Line graphs for shows the overall run time performance of Generic Code

Clone detection model

Based on the table 4.2 and the figure 4.1, the transform process has the

highest runtime performance. The match detection which are combination of detect

and pre-detect process has the second highest runtime while the parameterize process

has the third highest runtime performance. The pool process which is categorization

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

JHotDraw

SableCC

ANTLR

R
u

n
 t

im
e

P
er

fo
r
m

a
n

c
e
 (

m
il

li
se

co
n

d
s)

Code Clone Detection Process

41

process has the lowest runtime performance while the pre-processing process has the

second lowest runtime performance.

Based on the comparison diagrammatically shown in Table 4.2 and Figure

4.1, the two highest runtime performance has been recorded by the transformation

and parameterization process. It is essential that the transformation process to have a

high runtime due to the transformation of the source codes into numerical form.

There are a lot of source code that needs to be transformed. Therefore, a large Java

applications that have a lot of line of codes such as J2sdk1.4.0-javax-swing takes a

lentgh amount of time to be transformed. It essential for the match detection process

to have a high runtime performance due to the task of the process in detecting all the

code clone types.

4.5 SUMMARY

 Chapter 4 is a discussion on evaluation of the result in enhancing generic

code clone detection model through protected access modifier rule and weightage

where the result is taken from the prototype. The discussion of the result is explained

based on the result taken.

42

CHAPTER 5

CONCLUSION

5.1 CONCLUSION

 In conclusion, protected access modifier rule and weightage is purposely use

for enhancing the generic code clone detection model in order to analyse its

efficiency classifying of the code clone type. This study also displays the analysis of

accuracy so that we can know how accurate this algorithm to enhance the generic

code clone detection model.

In this thesis, all the three main objectives stated in the early of the project

development are achieved successfully as mention below.

i. To propose a method in enhancing the generic code clone detection

model. This objective has been achieved and discuss at Chapter Three

since we approve that framework over there.

43

ii. To implement the proposed method of enhancing the generic code clone

detection model. This objective has been achieved and discuss at chapter

Four since we approve that framework over there.

iii. To evaluate the result based on code clone type and run time performance

of the three applications. As we can see after experiment data was

handled, we can conclude that the total of code clone type and the run

time performance have the significant result to be observed.

5.2 LESSON LEARNT

Throughout the project period, I learnt a lot of things. In terms of project

planning, I believe that having a proper project milestone is a crucial criterion for any

successful project. Milestone should be realistic and achievable on time. Delay on

milestone will cause the whole project to be done later than expected. Thus, it is

essential to always stick to the milestone and continuously check the next coming

milestone to get done on time.

Secondly, getting the right idea on what to be done is also important. Never

assume ideas or opinion without any proofs. Be critical and inventive when dealing

with ideas. This is because any research always requires a formula or algorithm to

prove whether it is right or wrong. Research without any critical analysis will ruin

the research result as a whole.

Lastly, I learnt that consistency and self-explorative are two compulsory

behaviour to get the research done on time. One, being consistent will ensure that I

will never delay my work, and always stick with the milestone that was scheduled.

Being self-explorative helps me to understand my research subject faster.

44

5.3 RESEARCH LIMITATIONS

While completing this research, there are lots of limitations that need to be

handled in order to have a significant data and to achieve all the research objectives.

Below are the limitations that we need to handle in this research:

i. Limited Time

To have a significant output and to achieve the all of the objectives,

the long period of time is needed as we need to finish every chapter by define

the methods and tools to have the significant output.

ii. Limited knowledge

This research need a lot of knowledge about the definition of code

clone, the impact of the code clone, the approach of the code clone and etc.

We need a lot of reference based on the code clone methods and tools so that

we can decide the methodology to achieve the good result.

5.4 FUTURE WORK

The future work is focus on:

i. Improve the code clone detection process and performance can be

done through improvement of the pre-processing process in

supporting code clone detection in other structural and procedural

programming language so generic code clone detection can support

code clone detection in other programming languages too.

ii. Build a more dynamic view of the code clone detection result through

visualization methods and the utilization of parallel algorithms in

improving the runtime performance.

45

5.5 SUMMARY

Chapter 5 is a discussion on conclusion of the project research in enhancing

generic code clone detection model through protected access modifier rule and

weightage and its future work.

46

REFERENCES

Approach, A. N. E. W. (n.d.). Code Clone Detection. Retrieved from

http://mondego.ics.uci.edu/projects/clonedetection/

Arnold, B. K., Gosling, J., Holmes, D., Arnold, B. K., Gosling, J., & Holmes, D.

(2005). No Title.

Baxter, I. D., Yahin, A., Moura, L., Sant’Anna, M., & Bier, L. (1998). Clone

detection using abstract syntax trees. Proceedings International Conference on

Software Maintenance Cat No 98CB36272, 98, 368–377.

http://doi.org/10.1109/ICSM.1998.738528

El-Matarawy, A., El-Ramly, M., & Bahgat, R. (2013). Parallel and Distributed Code

Clone Detection using Sequential Pattern Mining. International Journal of

Computer Applications, 62(10), 975–8887.

http://doi.org/10.5120/ijca2015906324

Giesecke, S. (2007). Generic modelling of code clones. Duplication, Redundancy,

and Similarity in Software, (6301), 1–23. Retrieved from

http://drops.dagstuhl.de/opus/volltexte/2007/960

Harder, J. (2013). The limits of clone model standardization. 2013 7th International

Workshop on Software Clones, IWSC 2013 - Proceedings, 10–11.

http://doi.org/10.1109/IWSC.2013.6613034

Ishio, T., Date, H., Miyake, T., & Inoue, K. (2008). Mining coding patterns to detect

crosscutting concerns in Java programs. Proceedings - Working Conference on

Reverse Engineering, WCRE, 123–132. http://doi.org/10.1109/WCRE.2008.28

47

Jia, Y., Binkley, D., Harman, M., Krinke, J., & Matsushita, M. (2009). KClone: a

proposed approach to fast precise code clone detection. Third International

Workshop on Detection of Software Clones (IWSC).

Kapser, C. J., & Godfrey, M. W. (2008). “cloning considered harmful” considered

harmful: Patterns of cloning in software. Empirical Software Engineering,

13(6), 645–692. http://doi.org/10.1007/s10664-008-9076-6

Latoza, T. (2005). A Literature Review of Clone Detection Analysis.

Morshed, M., Rahman, M., & Ahmed, S. (2012). A Literature Review of Code Clone

Analysis to Improve Software Maintenance Process. arXiv Preprint

arXiv:1205.5615. Retrieved from http://arxiv.org/abs/1205.5615

Prem, P. (2013). A Review on Code Clone Analysis and Code Clone Detection,

2(12), 43–46.

Roy, C. K., & Cordy, J. R. (2007). A Survey on Software Clone Detection Research.

Queen’s School of Computing TR, 115, 115. http://doi.org/10.1.1.62.7869

Roy, C. K., & Cordy, J. R. (2008). Scenario-based comparison of clone detection

techniques. IEEE International Conference on Program Comprehension, 153–

162. http://doi.org/10.1109/ICPC.2008.42

Roy, C. K., Cordy, J. R., & Koschke, R. (2009). Comparison and evaluation of code

clone detection techniques and tools: A qualitative approach. Science of

Computer Programming, 74(7), 470–495.

http://doi.org/10.1016/j.scico.2009.02.007

Smith, R., & Horwitz, S. (2009). Detecting and Measuring Similarity in Code

Clones. Workshop Proceedings of the 13th European Conference on Software

Maintenance and Reengineering, 28–34.

Thesis, D. O. F., Shahrizal, A., Muhamad, B. I. N., Scheduling, R. P., Access, O.,

Supervisor, S. O. F., & Supervisor, N. O. F. (2015). “ I hereby declare that I

have read this thesis and in my opinion this thesis is sufficient in terms of scope

and quality for the award of the degree of Doctor of Philosophy (Computer

Science).” Signature Principal Supervisor : Prof . Dr . Safaai bin De,

48

16(August).

Van Rysselberghe, F., & Demeyer, S. (2003). Evaluating Clone Detection

Techniques. Evolution of Large-Scale Industrial Software Applications (ELISA),

(i), 1–12. http://doi.org/10.1109/ASE.2004.1342759

Yuan, Y., & Guo, Y. (2011). CMCD: Count matrix based code clone detection.

Proceedings - Asia-Pacific Software Engineering Conference, APSEC, 250–

257. http://doi.org/10.1109/APSEC.2011.13

49

APPENDICES

50

A1: Project Gantt chart

51

A2: Sample output of code clone detection JhotDraw application

52

A3: Sample output of code clone detection JhotDraw application

53

A4: Sample output of code clone detection JhotDraw application

54

A5: Codings

55

56

57

58

59

60

61

