EVALUATION OF XML DOCUMENTS QUERIES
BASED ON NATIVE XML DATABASE

RAGHAD YASEEN LAZIM

Master of Computer Science

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT
Author’s Full Name : __Raghad Yaseen Lazim
Date of Birth 1984-05-15
Title : __Evaluate XML Documents Queries Based on Native XML Database

Academic Session

I declare that this thesis is classified as:

CONFIDENTIAL (Contains-confidential information under the Official Secret Act
1997)

RESTRICTED (Contains restricted information as specified by the organization
where research was done)*

OPEN ACCESS [agree that my thesis to be pubiished as online open access (Full
Text)

I acknowledge that Universiti Malaysia Pahang reserve the right as follows:

1. The Thesis is the Property of Universiti Malaysia Pahang
2. The Library of Universiti Malaysia Pahang has the right to make copies for the purpose of
research only.

3. The Library has the right to make copies of the thesis fof dcaemic exc e.

Certified By: /

(Student’s Signature) (Super-vi‘% Signature)
A11248288 . Mzipe. MLWW)
New IC/Passport Number Name of Supervisor
Date: Date:

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

Universiti
P Malaysia
PAHANG

Enginasring * Technoody » Creativiy

SUPERVISOR’S DECLARATION

We hereby declare that I/We* have checked this thesis and in our opinion, this thesis is
adequate in terms of scope and quality for the award of the degree of Master in

Computer Science.

/
(Su_ngnature) i
Full Name : DR ADZHAR BIN KAMALUDIN
Position : SENIOR LECTURER
Date .

V4
(Co—supervier’s Signature)
Full Name : PROF MADYA MAZLINA ABDUL MAJID

Position : PROF MADYA
Date

Universiti
| Malaysia
PAHANG

Engineering « Techndlogy * Creaiidty

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for
quotations and citations which have been duly acknowledged. I also declare that it has
not been previously or concurrently submitted for any other degree at Universiti

Malaysia Pahang or any other institutions.

(Student’s Signature)
FullName :RAGHAD YASEEN LAZIM
ID Number : MCC11002
Date : 30 Noverber 2016

EVALUATION OF XML DOCUMENTS QUERIES
BASED ON NATIVE XML DAABASE

RAGHAD YASEEN LAZIM

Thesis submitted in fulfillment of the requirements
for the award of the degree of

Master of Compﬁer Science

Faculty of Computer System & Software Engineering
UNIVERSITI MALAYSIA PAHANG

NOVEMBER 2016

ABSTRACT

As the amount of data available on the Internet grows rapidly, more and more of the data
becomes semi structured. The Extensible Markup Language (XML), as a format for semi
structured data, has become a standard for the representation and exchange of data over
the Internet. Early in the XML history there were thoughts about whether XML is
different from other data formats that require a database of its own. The popularity and
wide-spread use of XML among a diverse set of organizations has engendered a
rethinking of the storage and retrieval practices for data. Most early XML storage
practices relied on mappings and transformations between XML data trees and relational
database tables within a Relational Database. Though relational databases can represent
nested data structures by using tables with foreign keys, it is still difficult to search these
structures for objects at an unknown depth of nesting; by contrary, it is a potential
advantage in XML. Also, the nested and repeating elements in XML documents can quite
easily result in an unmanageable number of tables. Furthermore, it is usually very difficult
after insertion to change the relational schema due to XML schema' changes. The
limitations of relational approaches are now well known. Moreover, local update to the
document should not cause drastic changes to the whole storage system. Therefore, the
design of the storage system should trade-off between the query performance and update
costs. This study is to evaluate the Native XML database (NXD) performance in a
comparison with XML_Enabled Database (XED), and then to enhance- Entity
Relationship (ER) algorithm of the relational schema for the improvement of Insert,
Delete, Update and Search XML document (XML files with a large number of elements)
and finally, to validate the algorithm in NXD and compare the performance of XED and
NXD, by implementing the same command and control data model. Five different sizes
of datasets have been used (65.8, 101, 117, 127, 183 MB). Benchmark techniques is used
to measure the performance. XMark and XMark-1 are two main tools of Benchmarks in
the research field, and they have used for the dataset. The performance of a system can
be measured by using datasets of.varying sizes, different documents with different
features. The size of XML documents and the number of elements have been determined
by the factor of the main driver of generation. The result of this study shown that XED
has better performance for the datasets <=117 MB. The performance of XED begins to
decline with the increase in the size of XML data (>127 MB), while NXD shown better
performance in for the data (=>127 MB). NXD produced better results i in the reporting
section, which implies that the NXD X-Query has performance gains from query
optimization. Most of the figures show that the XED starts better, but becomes worse as
data size grows. The dlfference becomes obvious as the query becomes more
complicated.

jii

ACKNOWLEDGEMENTS

First and foremost, all praise and deep thanks are to ALLAH to whom be ascribed all

"perfection and majesty, who helped and guided me through the challenges of my study.
Glory is to ALLAH who has given me strength, patience, and knowledge to continue and
finish my master journey '

I would like to express my sincerest gratitude to my supervisor, Dr. Adzhar Kamaludin,
who has supported me throughout my study and research, for his patience, motivation,
enthusiasm, and immense knowledge, whilst allowing me to work in my own way.
Thanks for his guidance helped me in all the time of research and writing of this thesis,
and make this research possible. One simply could not wish and imagine for a better or
friendlier supervisor. Besides my supervisor, I also would like to express my special
thanks to my co-supervisor Assoc. Prof. Dr. Mazlina Abdul Majid for her co-operation
throughout the study. I also sincerely thanks for the time spent proofreading and
correcting my many mistakes. Also, very special thanks to Dr. Qin Hongwu for his
advice, support and kindness during difficult periods of my study.

A special thanks to the special person -Liu Meng (Omar)-. Liu Meng is an amazing
person who has been supportive in every way. My sincere thanks go to all my lab mates
and members of the staff of the Faculty of Computer Systems & Software Engineering,
UMP, who helped me in many ways and made my stay at UMP pleasant and
unforgettable. Many special thanks go to all my friends for their excellent co-operation,
inspirations and supports during this study.

ABSTRAK

" Oleh kerana jumlah data yang wujud di Internet meningkat dengan cepat, semakin banyak
data menjadi separa berstruktur. The Extensible Markup Language (XML), sebagai suatu
format data berstruktur semi, telah menjadi satui standard bagi perwakilan dan pertukaran
data melalui Internet. Pada awal sejarah XML terdapat pandangan tentang sama ada XML
adalah berbeza daripada format data lain yang memerlukan pangkalan data yang
tersendiri. Populariti dan penggunaan meluas XML di pelbagai organisasi telah
melahirkan pandangan baru bagi amalam penyimpanan dan capaian data. Kebanyakan Di
peringkat pemula, amalam penyimpanan XML adalah bergantung kepada pemetaan dan
transformasi di antara pepohon data XML dan jadual pangkalan data hubungan dalam
pangkalan data hubungan. Walaupun pangkalan data hubungan boleh mewakili struktur
data sesarang dengan menggunakan jadual dengan kunci asing, ia masih sukar untuk
carian struktur objek pada kedalaman sesarang yang tidak diketahui; sebaliknya, ia adalah
satu kelebihan yang berpotensi dalam XML. Selain itu, elemen sesarang dan berulang
dalam dokumen XML boleh dengan mudah menyebabkan sejumlah jadual tidak terurus.
Seterusnya, ia biasanya sangat sukar selepas sisipan untuk menukar skema hubungan
disebabkan oleh skema pertukaran XML. Had bagi pendekatan hubungan ini, kini
diketahui umum. Selanjutnya, kemaskin setempat kepada dokumen itu tidak boleh
menyebabkan perubahan drastik kepada sistem penyimpanan keseluruhan. Oleh itu, reka

_bentuk sistem penyimpanan perlu saling bertukar peranan di antara prestasi pertanyaan
dan kos kemaskini. Kajian ini bertujuan untuk menilai prestasi pangkalan data XML natif
(NXD) dibandingkan dengan pangkalan data XML _Enabled (XED) dan untuk
meningkatkan Hubungan Entiti (ER) algoritma bagi skema hubungan untuk peningkatan
sisipan, buang, kemaskini dan carian dokumen XML (XML fail dengan jumlah elemen
yang besar) dan akhirmya untuk mengesahkan algoritma dalam NXD dan
membandingkan prestasi XED dan NXD melalui pelaksanaan arahan dan kawalan data
model yang sama. Lima saiz set data yang berbeza telah digunakan (65.8, 101, 117, 127,
183 MB). Teknik penanda aras digunakan untuk mengukur prestasi. XMark dan XMark-
1 adalah dua alat utama penandaarasan dalam bidang penyelidikan ini dan telah
digunakan untuk semua set data. Prestasi sesuatu sistem boleh diukur dengan
menggunakan set data yang berlainan saiz, dokumen yang berbeza dengan ciri-ciri yang
berbeza. Saiz dokumen XML dan bilangan elemen adalah ditentukan oleh faktor pemacu
utama penjanaan. Hasil kajian ini menunjukkan bahawa XED mempunyai prestasi yang
lebih baik bagi set data <= 117 MB. Prestasi XED mula menurun dengan peningkatan
dalam saiz data XML (> 127 MB), manakala NXD menunjukkan prestasi yang lebih baik
dalam untuk data (=> 127 MB). NXD menghasilkan keputusan yang lebih baik dalam
bahagian laporan, yang membayangkan bahawa NXD X-pertanyaan mempunyai dapatan
prestasi dari pengoptimuman pertanyaan. Hampir semua angka-angka ini menunjukkan
bahawa XED bermula lebih baik, tetapi menjadi lebih teruk bila saiz data meningkat.
Perbezaan menjadi jelas bila pertanyaan menjadi lebih rumit.

TABLE OF CONTENTS

Page
DECLARATION
ACKNOWLEDGEMENTS ii
ABSTRACT | ii
ABSTRAK ‘ ; ' iv
TABLE OF CONTENTS v
LIST OF TABLES , ix
LIST OF FIGURES)
LIST OF ABBREVIATIONS | xii
CHAPTER 1 INTRODUCTION : 1
1.1 Introduction | ' 1
1.2 Background . 3
1.3 Problem Statement o ' 6
1.4 The dbjective of the' Study; 7
1.5 The scope of the Study 7
1.6 Research Plan : ‘ 8
1.7 Thesis Organization 9
CHAPTER 2 LITERATURE REVIEW . 11
2.1 Introduction | 11
2.2 | XML : ‘ 11

2.3 Structured and Semi-structured Data ‘ . 18

2.4
.25

2.6

2.7

28

2.9

2.10
CHAPTER 3

3.1

3.2

33

34

Extensible Markup Language (XML)

Data-Quide for Xml Documents

XML Database Systems

2.6.1 XML-enabled Database System (NXDS)

2.6.2 Native xml Databasé System (NXDS)

2.6.3 Comparison between Native XML Database and

XML-Enabled Database Systems
Entity relationship algorithnﬂ |
Querying XML
2.8.1 Structured Query Language (SQL)
2.8.2 XML Query Language (XQuery)
2.8.3 Comparison of XQuery VS. SQL
Path Evaluation

Conclusion

METHODOLOGY
Introduction

Setting and Setup

3.2.1 Experimental Setting

3.2.2 System Setup and Memory Setting
3.23 Data Sets and Characteristics
Methods

33.1 Database Design

XML Database System Benchmark

3.4.1 XMark

vi

19
20
22
23
28

33

36
37
37
38
45
47

49

51
51
52
52
52
53
55
57
60

61

3.5

3.6

3.7

3.8

CHAPTER 4

4.1

4.2

43

4.4

4.5

3.4.2 XMark-1
3.4.3 XBench Benchmark
3.44 Performance Consideration

Benchmark Queries
Algorithm

Processing Operations

3.7.1 Storing XML Documents

3.7.2 Extracting XML Documents

3.7.3: Inserting XML Documents

3.74- Deleting and Updating XML Documents
3.7.5 Searching XML Documents

Conclusion

EXPERIMENTATION AND DISCUSSION
Introduction_ »
Discussion

Experimental Result

43.1 Storing and Extracting Complete XML Documents
432 Inserting Process

433 Updating Process

434 Deleting Process

4.3.5 Searching Process

4.3.6 Results -Discussions

Native XML Datébases Validation

Conclusion

vii

63

66

67

68

70

74

74

74

76

77

71

79

81

31

81

83

83

85

88

90

92

94

95

99

CHAPTER 5 EXTENSIVE DISCUSSION
5.1 Introduction
5.2 Analysis and Discussion for Evaluating the Native XML

Database Performance
53 Analysis and Discussion for Enhancing Entity

Relationship Algorithm of the Relational Schema

54 Analysis and Discussion for Validating the Algorithm in
Native XML Databases

5.5 Conclusion

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

6.2 . Research Contributions

6.3 Recommendation of Future Work

REFERENCES

APPENDIX A LIST OF PUBLICATIONS

APPENDIX B NATIVE XML DATABASE (eXist db)

viii

100

100

101

101

103

104

105

105

107

107

109

117

118

LIST OF TABLES

Table Title Page
2.1 Data Size _ 15
2.2 Query Processing Time 15
23 The time spent for mapping XML docﬁments and the time for 16

reconstructing them

2.4 Summary of the literature review related to XML databases 17
system issues that has been discussed in 2.2 and 2.6

2.5 Summary of Native XML database products - 31
2.6 Comparison between XML_Enabled databases and Native 35
XML databases
2.7 XQuery & SQL ekpressions 46
2.8 XQuery & SQL | 47'
3.1 Experﬁnental setting ' 52
32 Characteristics of the data set 53
3.3 The Nodes in the Base Data Set | 34‘
3.4 Queries Specified in the XMark Benchmark 62
3.5 Queries Specified in the XMark-1 Benchmark 65
3.6 Desired Functionalities of XML Query Languages 69
4.1 - Storing Complete XML Documents 84
4.2 Extracting Complete XML Documents 84

4.3 Provides a Summary of the Tests That Have Been Used 85.
Performance Evaluation

4.4 Summarized Result 99

5.1 The summary on the objectives and the outcomes 104

LIST OF FIGURES

Figure Title Page
1.1 Example of Bibliography Data 4
1.2 HTML and XML Representations of Data Example in Figure 4

1.1
1.3 Tree Representation of XML Data in Figure 1.2 6
1.4 Research plan ' 9
2:1 Timeline of the W3C technologies related to the XML 20
2.2 Data-Guide s of an XML tree 21
2.3 Example of XML Data Graph 21
2.4 Architecture of the XML_Enabled Database 23

2.5 ‘XML _Enabled database shredding XML documents into 24
relational tables

2.6 XML documents need schema translation to decompose XML 24
documents into relational tables

2.7 Shredding XML document in Figure 2.8 to relational tables 25

2.8 Shredding XML document to many relational tables 26

2‘.9 XML Books Document 27
2.10 Architecture of Native XML Database XML Engine | 29
2.11 eXist-db architecture system 32
2.12 Data definition language 36
2.i3 Main classification of query 40
2.14 Keyword query for Native XML Database ' 42
2.15 ~ Book.xml (each node is assoéiated with its Dewey number) 43
2.16 Example of an XML tree, a path query and a twig query 45

2.17 NFA Constructed from Paths //a and /a/b/c 48 - B

2.18

3.1

3.2

33

34

3.5

3.6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

Oracle Binary XML Streaming Evaluation Architecture
Relational Schema Of Sale And Report

Entity Relationship (EER) diagram of the relational schema
DTD Corresponding to the Relational Schema in Figure 3.1
DTD of XMach-1 Database

(a) an XML bib text (b) an XQuery query posted on bib text
and (c) the generated XML result

Results of extraction with a tree pattern that flags book and
author nodes.

Query}. Insert one substance record into the table
Query2. Insert complgte customer record into the tables
Query3. Insert Group of data

Query4. Insert Cor.nplete customer record

Querys. Update one record in the table

Query6. Update complete client record in the tables
Mass Update Subs.tance

Mass Update complete client record

Query9. Delete one Substance record from the table
Query10. Delete complete client record from the tables
Queryll. Mass delete Substance

Query 12. Mass delete complete client record

Query13. Searchinig an Substance in the table
Query14. Searching complete client record in the tables

Queryl15. Searching complete bill record in the tables

Xi

49

57

58.

60

64

86

86

- 87

87
88
89
89
90
91
91
éz'
92
93

93"

LIST OF ABBREVIATIONS

DBMS Database Management System
DTD Document Type Definition
EER Enhanced Entity Relationship
NXD Native XML Database

RDB Relational Database

SQL Structured Query Language
XED XML _Enabled Database

XQuery XML Query

Xii

CHAPTER 1

INTRODUCTION

1.1 Introduction

As the amount of data available on the Internet grows rapidly, more and more of
the data becomes semi structured and hierarchical. The data has no absolute schema fixed
in advance, and its structure is irregular or incomplete. Semi structured data arises when
the source does not impose a rigid structure, and when the data is obtained by combining
several heterogeneous data sources during the process of data integration. Semi structured
data is often called schemaless or self-describing, because there is no separate description

of its type or structure and its data (Ganguly, Sarkar, 2012).

The Extensible Markup Language (XML), as a format for semi structured data,
has become a standard for the representation and exchange of data over the Internet. Using
XML as a data representation standard, it is possible to represent not only the data itself,
but also its semantics. XML was designed specifically to describe content, rather than .

presentation. It is a textual representation of data (Seligman and Rosenthal, 2001).

The popularity and wide-spréad use of XML among a diverse set of organizations
has engendered a rethinking of the storage and retrieval practices for data. Most early
XML storage practices relied on mappings and transformations between XML data trees

and relational database tuples within a conventional Relational Database Management

Systems (RDBMS).

_As a consequence, a single business operation might require numerous
translations of the data from XML to relational table formats and vice versa at a
significant cost in speed, reliability and efficiency of representation (Nicola and John,

2003; SC Haw, 2007) .

. XML documents in relational systems would be simply mapped into existing
relational database structures like “Large Objects” (LOBs), with XML being stored intact
as plain unparsed text. Another approach used by RDBM:s has been to create appropriate
relational schemas and “shred” XML documents into many tables. The limitations of
these two approaches are now well known. While inserting and extracting full XML
dbcuments is relatively fast in the case of LOB storage, this approach can be relatively
slow during query processing and fragment extraction due to the need for XML parsing
at query execution time (Nicéla, and Linden, 2005; Zhang, and et al, 2009). While the

' “shredded” approach can provide reasonable performance given a good mapping,
mapping an XML schema to an equivalent relational schema is usually a complicated job.
Also, the nested and repeating elements in XML documents can quite easily result in an
unmanageable number of tables. Furthermore, it is usually very difficult after insertion to
change the relational schema due to XML schema changes. Thus, the flexibility of XML
is essentially lost with this approach (Shao, 2010; Fiebig et al, 2002).

XML data is a challenge for relational databases. Hence the need to develop

- appropriate storage systems to store XML data and have the ability to speed the access of
relevant and accurate information (Oracle 2012) Therefore, Native XML database
becomes more and more popular and gained popularity as a flexible storage format. In
Native XML database, XML data stored in the internal solid data model which retains the
structure of the XML data. When storing XML data in a database, many questions arise:

(i) How to store the data in the databases?
(i) How to express queries and updates?
(i) How can XML data be indexed to speed up frequent queries?
(iv)y How to detect if a modifying operation affects an established index
and must therefore be updated to keep it consistent?
(v) How can indexes that are best for a given application determined

automatically?

Thus, the querying process in XML data has become a challenge (Qtaish and
Ahmad, 2014), and there has been a strong demand for improved query languages for
processing XML documents. XML data is hierarchical structure (tree structure), and
document data represented in XML comprise a sequence of possibly nested tags which
can be expressed by a tree structure, and querying and transforming XML data from one

format into another will be a frequent task.

This thesis focus on the path expressions in native XML databases. The main focus
will be enhancing path expressioné as expressive for database management systems
(Native XML database and XML_Enabled database); path expressions specify special
regular expressions on trees. In addition, path expressions as ubiquitous in many XML
query languages (e.g., XPath (Berglund and Boag), XQuery (Boag et .al) and XSLT
(Clark). ' ‘ :

1.2 Background

XML stands for extensible Markup Language, which is originated from Standard
Generalized Markup Language (SGML, ISO 8879). It is a markup language designed to
be relatively human-legible. Hypertext Markup Language (HTML) i§ another
predominant markup language for web page design. It is also originated from SGML prior
to the inception of XML. However, XML is not a replacement for HTML, as they are
designed for different objectives, XML is designed to describe data and to focus on what
data is. HTML is designed to dislz;lay data and to focus on how data looks. In other words,
HTML is about displaying information, while XML is about describing information.

Consider the bibliography information shown in Figure 1.1, and the corresponding
HTML and XML representations in Figure 1.2. We can observe some differences
between HTML and XML. In HTML, the tags and document structures are fixed. Only
the tags which are defined in the HTML standard (e.g., (hi), (p)) can be used. In XML,
however, users can define their own tags (e.g., (book), (title)) and document structure. As
a result, it is more flexible and powerful. XML schema languages, e.g., Document Type
Definition (DTD) and XML schema, are proposed to provide a high level abstraction of

XML documents in terms of constraints on both structure and content.

3

Bibliography
Foundation of Database.Abibeboul, Hull, Vianu Addison Wesley, 1995

Data on the Web.Abiteboul, Buneman, Suciu Morgan Kaufman, 1999

Figure 1.1. Example of Bibliography Data

HTML DOCUMENY XML DOCUMNENT
<h1> Bibliography of Database </hi> | <bibliography>
<p> <book>
<i> Foundation of Database </i> <title> Foundation of Database </title>
Abibeboul, Hull, Vianu <Auther> Abibeboul </Auther>

 Addison Wesley, 1995 <Auther> Hull </Auther>
<p> <Auther> Vianu </Auther>
<i> Data on the Web </i> <Publisher> Addison Wesley </publisher>
Abiteboul, Buneman, Suciu <year> 1995 </year>

Morgan Kaufman, 1999 </book>
</bibliography>

Figure 1.2. HTML and XML Representations of Data Example in Figure 1.1

XML is widely used in various scopes of applications: XML plays an important
role in data exchange between different information systems. It can reduce the complexity
of exchanging incompatible data formats; XML facilitates communications and data
sharing between different systems and programming languages; XML is widely used for
content management; with extensible Stylesheet Language Transformations (XSLT),
XML documents can be transformed into other XML or "human readable" documents
such as HTML, WML, PDF, flat file and EDI, etc.; XML enables integration of Web

application; and many others.

. With the popularity of XML and increasing amount of information stored and
exchanged using XML, efficient hosting of XML stores and efficient processing of XML
queries becomes important in the database community. To utilize the mature relational
database technologies such as persistent storage, transactional consistency,

recoverability, security, efficient search and update operations, many- approaches are

4

proposed to store XML data in relational databases. They are typically based on shredding
DTD/schema into relations. Typical examples include STORED, Edge (Florescu and
Kossmann, 1999), XISS/R (Harding and Moon, 2003), XParent(Jiang et al, 2002),
MonetDB(Schmidt et al, 2000), MOA (Van Zwol et al, 1999), XRel(Yoshikawa et al,
2001; Zhou et al, 2001) etc.

Also, conventional database vendors provide relational support for XML data,
e.g., DB2 (IBM), Microsoft SQLXML (Microsoft) and Oracle 9i (Oracle). However,
there is inherent impédance mismatch between the relational (sets of tuples) and XML
(unranked trees) data models. An alternative approach to using relational databases for
XML data is to build a specialized XML data manager, i.e., one which can reflect the
hierarchical structure of the XML data. This is referred to as a native XML database. In
native XML databasés, XML data is generally modelled as trees, where tree nodes
represent XML elements, attributes and text data, and edges for element/sub-element
relationship. The tree representation of the XML document in Figure 1.2 is shown in
Figure 1.3. Timber (Jagadish et ai, 2002), XBase(Wang, et al, 2002), Lore (McHugh, and
et al, 1997) (for Lightweight Object Repository) and several industrial pl;oduc;ts such as
Tamino(Scheming., 2001) and XYZFind are native XML database systemé. Our research

focuses on query processing over native XML databases.

A novel data'model requires query languages to take advantage‘ of the 'storage
features of that model. To retrieve tree-shaped XML data, different XML query languages
have been proposed such as Lorel (Abiteboul etv al, 1997), XPATH (Berglund et al),
UnQL(Buneman, et al, 1996), XQUERY (Chamberlin et al. 2001), Quilt (Chamberlin
and etr al, 2000), XML-QL (Deutsch, et al, 1993) and Strudel (Fernandez, et al, 2000).
XPATH and XQUERY are recomm@nded by W3C and are regarded as the state-of-the-
art query languages for XML databases. XQUERY on XML tree is analogous to SQL on
relational tables. XPATH is a major subset of XQUERY and path expreséion is the core
of XPATH. For example, the following path expression /paper -[@conf=
"ICDE"J[@year= "2000"j"/author returns all author elements which -have paper(s)
published in ICDE 2000.

{nogaqiqy
lInH

nueip
S66T

ASBF3aAA UCSIPPY

m
o
o
3
%
Y]
=
o
3
Q
=8
o
o
I~
Q
o
V]
B

Figure 1.3. Tree Representation of XML Data in Figure 1.2

1.3 Problem Statement

_ _There are several desirable features for the XML database storage systems. First,
the difficulty of converting the shredding of XML data into relational tables increased
with increasing the data size (Zhang and Tompa, 2004). Secondly, the storage system
should be robust enough to store any XML documents with arbitrary tree depth or width,
with any element-name alphabet, and with or without associated schemata. Moreover,
lo‘cal ﬁpdate to the document should not cause drastic changes to the whole storage
system. Therefore, the design of the storage system should trade-off between the query

performance and update costs.

"There are three important problems related to the processing of path expressions:
1. What is the storage system for XML documents to support efficient evaluation
as well as storing and updating XML documents?
2. How to evaluate path expressions efficiently for different types of queries?
3. How to choose which physical operators are the best ones given a path

expression and an XML database?

Due to the mismatch between the nature of the structure of the database and the
XML data structure. The problem for this study is:

i) Decline in the performance of the XML_Enabled database

(i) Degradation of performance of XML _Enabled database, when-search of
XML documents (Group of data).

1.4 The Objective of the Study
This research has three main objectives:

(i) To evaluate the Native XML database performance in a comparison with
XML _Enabled database. . _
(i) To enhance entity relationship (ER) algorithm of the relational schema for the
improvement of Insert, Delete, Update and Search XML documeﬁt.
(iii) To validate the algorithm in Native XML databases, and compare the performance
of XML _Enabled database and Native XML database, by implementing the same

command and control data model

1.5 The scope of the study

(i) XML language which is the standard language for the exchange of information,
materials across the web more easily and smoothly than it was before. They also
have an important role in building and sharing bibliographic searches,
registrations resulting management systems, as well as exchange online. .

(i) XML language which holds great importance in the field of internet and

information, it can achieve greater results with the use of new techniques for

storing XML data and one of these techniques is a Native XML Database (NXD).
(iii) The use of Native XML database systems not only means evaluating the
performance of current products, but also is regarded as an incentive for further

development of XML database systems.

1.6 Research Plan

The research has two phases as shown in Figure 1.4:

(M)

(i)

(@)

(i)

First phase: Explore the functionality of a Native XML Database in handling
XML documents.
Second phase: Enhance the performance of the data queries based on Native XML

Database, in comparison with XML_Enabled database.

The research is implemented as follows:
The database size is measured for both databases to evaluate how efficient the

database server to store XML documents. The size of building indexes is

_measured in megabytes.

_Examine the efficiency and the time for XML document reconstruction from the

database (XML _Enabled database and Native XML database) is measured in

seconds.

Literature review

XML Data collection and preparation 3
Explore the functionality of a Native XML Database

Enhancéd the performance of the data queries based on Néti{fe XML |
Database and XML_Enabled database by using database benchmark

L

Compare the result of both databases for better performance

i

Figure 1.4 Researchplan

1.7 Thesis Organization

This thesis contains five chapters following this introductory chapter, structured

as follows:

In the Chapter 1, the framework of my thesis is presented such as introduction,

problem statements, objectives and research scopes.

Chapter 2: This chapter discussed the literature review gives a quantity of
Extensible Markup Language (XML) and its associated standards. The chapter starts with
an exploration of the emergence of XML language and its advantages and disadvantages.
The chapter explains the main primary types of XML, databases, and how these databases
handle with XML documents. Additionally, conventional approaches discuss the query

execution and the problems it face when processing queries on collections of XML

documents.

Chapter 3: This chapter, shows the detailed view of the thesis methodology. The
details on the concrete implementation of the storage and indexing components by using
XML database systerh benchmark. Finally, explain benchmark queries engine uses the

data sets collected.

Chapter 4: This chapter, shows the experimental settings to the detail view of
database design and the data sets that used in the thesis experiment. The empirical part
contains the testing of the research variables and discussion that involves synthesizing the
results obtained and evaluates the effectiveness of both databases (XML__Enabled
database and Native XML database). '

Chapter 5: In this chapter, the extensive discussion is presented for storing and
extracting complete xml documents, inserting process, updating process, deleting

process and searching process. Also, validation results is further analyzed.

Chapter 6: This chapter contains the conclusion and a few suggestions for

potential future work.

10

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter introduce a brief description two databases: Native XML Database
(NXD) and XML_Enabled Database (XED). The methods for both databases of dealing
with XML data (Store, Extract and Search). This chapter also presented some of the
previous studies since 1999 to 2014 and focus more on relational database shredding
process problem because of the differences in the structures of the XML data. Finally, the
briefly review these approaches as they relate to the following issues: representation,

compression, labeling, and path processing and indexing

2.2 XML

As XML becomes a standarci data representation and exchange format (Harrusi,
et.al, 2006; Yang, et.al, 2010), because it’s a flexible text format used to create structured
documents and the way to describe the data and also contain the data as-well: With the
development of the Internet and breadth of knowledge, a significant amount of XML
documents is being added to the network continuously in various application domains.
As a result, effective management of XML data became an important technology, and a
lot of difficulties and challenges faced by such as: storage method for XML and queries
for these data, and these challenges draw increasing attention and cannot be oveflooked.

(Jing, et.al; 2011 and Yang, et.al, 2010).

11

For this purpose, many alternative ways to store XML data. Existing ways can be
classified as native, semi structured, object-oriented, relational and object-relational.
There common way is storing XML data in relational databases (DeHaan, et al, 2003;

Florescu, et al, 1999; Shanmugasundaram, et al, 2001; and Shanmugasundaram, et al,

1999).

Relational approaches proposed to date are predicated on some pre-defined
mappings between XML documents and relational tables. These mapping schemas are
sometimes tailored to specific documents or document collections by using available
DTDs- (Document Type Definitions) (Shanmugasundaram, et.al, 1999)), identifying
structure patterns in XML documents (Deutsch, et al, 1999), or utilizing XML data
statistics and query workloads in a cost based manner (Wang, et al, 2003; and Bohannon,
2002). Alternatively, mappings can be defined generically to reflect the components of
an arbitrary XML document (Florescu and Kossmann, 1999; and Florescu, et al 2001).
However, the fact that XML documents do not require the existence of DTDs causes the
DTD-dependent mapping methods to be inapplicable, and the generic mapping often
exhibits poor performance in query processing, especially when “shredded” documents

- must be recomposed in answer to a query.

Other mapping methods may have some advantages for specific workloads, the
common problem with RDBMS solutions in storing XML data is simply that they are
relatiohal, not hierarchical which reflects the XML true storage structure. Ultimately,
some level of mapping to relational structures is required. RDBMS vendors over the last
number of years, particularly the ones indicated in (Ha, Sing Lee, 2011), have appeared
to alter their native database engine to allow. XML documents to be parsed more like their
native XML counterparts. Aside from simply storing whole.XML documents in relational
data structures, in (Jiang, 2011), it proposed two other methods, relational or table based
mapping and object-relational mapping. The relational mapping approach sometimes
referred to as "shredding" by decomposing a document, let us say, by element, attributes,
and other document information. The databases mentioned above subscribe to this
convention, but have recently made product improvements to limit some of the inherent
weaknesses. One of these weaknesses, (Cahlander, et.al, 2010) points out, is limited

support for complex XML structures. Also proposed, was the O-to-R mapping convention,

12

which maps the document like a "tree of objects" which could overcorﬁe some of the
limitations of the shredding approach. However, the performance suffers if they are
applied to a wide, unknown range of XML environments. Most unfortunately, in all of
these approaches, once a mapping is defined, it cannot be changed without a major data
reorganization and corresponding application reimplementation (Chaudhri, et.al, 2003;

Cahlander, et.al, 2010; Jiang, 2011; Ha, Sing Lee, 2011).

The entire process of mapping XML is divided into different phases as following:
(1) Parsing The XML document
(i) Mapping the XML document into the database

(iii) Query implementation on the database

The storage representation affects the efficiency of the query process. For a long
time most of the data is stored in SQL databases, managed and queried by using the SQL
language (Haw and Lee, 2011). Traditional databases using SQL (Structured Query
Language) do not translate easily to transport formats that would allow them to be used
across the World Wide Web (Houman, 2004). This thesis shows that Nativé XML
database views combined with XQuery can provide surprisingly effective solutions to the

problem of supporting query performance comparing with SQL in relational database.

Shanmugasuﬁdaram, et.al, (1999) have used the more conservative apprbach of
using traditional relational database engines for processing XML documents conforming
to Document Type Descriptors (DTDs). This approach has developed an algorithm that
converts XML documents to reiational ‘tuples, translates semi-structured queries over
XML documents to SQL queries over tables, and converts the results to- XML. It turns
out that the approach: can handle mest (but not all) of the semantics of semi-structured

queries over XML data, but is likely to be effective only in some cases.

Yoshikawa and Amagasa, (2001) have used a novel approach called XRel to
storage and retrieval of XML documents using relational databases. In this approach, an
XML document is decomposed into nodes based on its tree structure, and stored in
relational tables according to the node type, with path information from the root to each
node. Using XRel enabled to easily construct XQL interface on top of the (object)

relational databases. In this research limited extensions to types and functions, and did

13

not need any special indexing structure for query processing. However, some extensions
- could be needed; for example, abstract data types for synthesizing query results would be
required if it implement XML—QL interface. Further, because the approach does not use
a special full text search system, it may not achieve high performance on query retrieval.

It is therefore important to develop abstract data types for improvement of performance.

Tatarinov and D. Viglas, (2002) have shown that XML's ordered data model can
indeed be efficiently supported by a relational database system. This is accomplished by
encoding order as a data value. In addition, they have proposed three order encoding
methods that can be used to represent XML order in the relational data model.

Furthermore propose algorithms for translating ordéred XPath expressions into SQL

using these encoding methods. Ordered XPath and XQuery queries were used to measure - -

query performance, while XML element insertions were used to measure update
performance. The results show that a relational database system can efficiently support

most ordered XML queries.

Zhang and Wm. Tompa, (2004) have proposed an alter Native approach that
builds on relational database technology, but shreds XML documents dynamically. This
approach is to avoid many problems in maintaining document order and reassembling
XML data from its fragments after shredding. Where are querying XML documents by
dynamic shredding. Then the algorithm used to translate a sigﬁiﬁcant subset of XQuery
into an extended relational algebra that includes operators defined for the structured text
data type, which is required for XML to be supported by relational database technology.
The documents will be store in a column of text rather than chopping them into pieces to
be mapped to relational tables (If a document is often updated, it may be desirable to
~ partition the text into several “update units,” such as chapters, that can be stored and
modified individually, rather than editing and re-indexing the whole. However, the
document doesn’t need to be as highly fragmented as is typical when using static
shredding). However, this approach is only feasible if appropriate structured text

operators are supported.

14

Xing, et.al, (2007) have used an XML document management system which
supports efficient storage, retrieval and key constraints for XML documents. The
system is based on a mapping algorithm that translates a DTD to a relational schema.
Based on the mapping, node groups are range indexed and shredded into the database.
This study has been used two different sizes of datasets (0.5 and 10 MB), as shown in
Table 2.1, and evaluate them by 18 Queries. It has been shown that queries are executed
several times faster than using the methods in literature, and space usage is significantly

reduced. Table 2.2 shows the time.

Table 2.1 Data Size
Name Size
SigMod 0.5 MB
XMark IO-MB
Table 2.2 Query Processing Time
Queries _ Time/Secpnd
Q1 11
Q6 10
Q8 _ 20
Q13 18

Source: Xing, et.al; (2007)

Dweib, et.al,A (2008; 2009) proposed a new method for mapping XML
documents to RDB. The method doesn’t need a DTD or XML schema. Experimental
results on this method shows its ability to maintain document structure at a low cost
price and easily, building of the original document is straight forward, performing first
level semantic search is achievable either on a single document or on all documents.
The proposed method able to maintain document structure at a low cost price and easily,
building the original document is straight forward, performing first level semantic
search is also achievable either oﬁ a single document or on all documents. The study has
been used datasets (4, 28, 64, 602 KB and 1 MB). Table 2.3 shows the détaset's size and

the time for mapping and reconstructing the documents.

15

Table 2.3 The time spent for mapping XML documents and the time for reconstructing

them -

‘Document size 4 KB 28 KB 64 KB 602KB IMB

) Mapping 0.01988238 0.14977736 0 3.574335 5.85278136
é 3551445
E'E-‘ Reconstructing 0.018990234 0.44980958 1.926836 18.305544 32.06255104

Source: Dweib, et.al; (2008)

Alghamdi, et.al, (2014) have adopted an optimization approach that takes into
consideration the semantics of the data set in order to deal with the complexity of multi-
disciplinary domains in Big Data, in particular when the data is represented as XML
documents. The method for this study particularly addresses a twig XML query (or. a
branched path query) in relational database, as it is one of the most costly query tasks
due to the complexity of the joint operation between multiple paths. The study focuses
on optimizing the structural and the content part of XML queries by presenting a
" method for indexing and processing XML data based on the concept of objects that is

formed from the semantic connectivity between XML data nodes.

The mismatch between the nature of the structure of the relational database and
the XML data structure, leads to some problems and important issues such as: involved
in storing data, retrieval from databases, and prevents some requests from being
instantaneously accessible in the database. Thus, there is a problem of designing the
database, and this defect in databases prevents the maximum utilization of flexible
XML which leads to problems in performance such as: minimize the expected access
time and degrade the performance (Oracle, 2014). Found that traditional databases are
dealing with most (but not all) of the data (Such as semi-structured data), and it is

suitable only for certain cases, and the disadvantages of these databases appear in the
case of big amount data, thus much of the query and retrieval of data. Current research
focuses more and more on how to manage XML data effectively. This led to the
emergence of many XML database products, and XML is become gaining popularity as

a.flexible storage format and so are Native XML databases (Yu, 2005).

16

Table 2.4 Shows the summary of the literature review related to XML databases
system issues that has been discussed in 2.2 and 2.6

Author Year Contribution _
Shanmugasundara 1999 In this approach that has been developed an algorithm that
m, et.al converts XML documents to relational tuples, translates

semi-structured queries over XML documents to SQL
queries over tables, and converts the results to XML. It turns
“out that the approach can handle most (but not all) of the
semantics of semi-structured queries over XML data, but is
likely to be effective only in some cases ‘

Yoshikawa and 2001 In this approach, an XML document 'is decomposed into

Amagasa nodes based on its tree structure, and stored in relational
tables according to the node type, with path information
“from the root to each node. Using XRel enabled to easily
construct XQL interface on top of the (object) relational
databases. The approach does not use a special full text
search system. Thus, it may not achieve high performance
on’query retrieval

Tatarinov and D. 2002 In this approach shown that XML's ordered data model can

Viglas -indeed be efficiently supported by a relational database
system. This is accomplished by encoding order as a data
value. The results show that a relational database system can’
efficiently support most ordered XML queries)

Zhang and Wm. 2004 This approach is to avoid many problems in maintaining

Tompa document order and reassembling XML data from its
fragments after shredding because it is proposed an alter
Native approach that builds on relational database

, technology, but shreds XML documents dynamically.

Xing, et.al 2007 In this approach used an XML document management
system which supports efficient storage, retrieval and key
constraints for XML documents. It has been shown that
queries are executed several times faster than using the
‘method in literature on 2001

Dweib, et.al 2008, In this approach proposed a new method for mapping XML.

12009 documents to RDB. The method doesn’t need a DTD or
XML schema. Experimental results on this method shows its
ability to maintain document structure at a low cost price and
easily, building of the original document is straight forward.

17

Table 2.4 Continued

Author Year Contribution

Alghamdi, et.al 2014 This approach have adopted an optimization approach that
takes into consideration the semantics of the data set in order
to deal with the complexity of multi-disciplinary domains in
Big Data, in particular when the data is represented as XML
documents.

Based on the previous Table 2.4, this research issue is found from the researcher
Zhang and Wm. Tompa in 2004 which used a Native XML approach in relational
database and as following:
(i) Decline in the performance of the XML_Enabled database

(ii) Degradation of perfdrmance of XML_Enabled database, when search
XML documents (Group of data)

2.3 Structured and Semi-structured Data

Searching for information is an indispensable component of our lives. Web
search engines are widely used for searching textual documents, images, and videos.
There are also vast collections of structured and semi-structured data both on the Web
and in enterprises, such as relational databases, XML, data extracted from text

documents, workflows, etc.

Structured data is a general name for all data that abides by a predetermined set
of rules. These rules include defining types of data and also the relationships between
them. This includes data contained in relational databases and spread sheets. Structured
data first depends on creating a data model- a model with the data that will record and

how they will be stored processed and accessed. This includes defining what fields of

data will be stored and how that data will be stored data type (numeric, BOOK,
alphabetic, name, date, address) and any restrictions on the data input (number of

characters; restricted to certain terms such as Mr., Ms. or Dr.;MorF).

4 Semi-structured data is data that may be irregular or incomplete and have a
“structure that may change rapidly or unpredictably. In semi structured data, the
information that in normally associated with a schema in contained within the data,

which is called "schema-less or self-describing,” In some forms of semi-structured data

18

there is no separate schema, in others it exists, but only places loose constraints on the
data. It generally has some structure, but does not conform to a fixed schema. The best

example of semi-structured data is XML.

2.4 Extensible Markup Language (XML)

XML is the standardized language used for transporting both data and the data
definition across the web. This language started out more than fifteen years algo ina
design status by the W3C (World Wide Web Consortium) in 1996, and was originally
used by very few. However, currently, XML has a permanent place in IT systems and
it’s hard to imagine any application that doesn’t use XML for either its cpnﬁguration or
data to some degree (Houman, 2004). This fast growth is driven by its ability to provide
a standardized, extensible means of including semantic information within documents
describing semi-structured data. XML came to address the shortcomings of many
markup languages such as HTML and support data exchange in e-business

environments.

XML itself is a structured description language. XML is a simplified subset of
Standard Generalized Markup Language (SGML) that its main purpose is to facilitate
data sharing between different systems, which HTML (Hyper Text Markup Language)
is also part of it. However, HTML, simply can be good for is formatting text, imageé,
and forms. It can't store variables, while XML in essence designed to describe the data

itself with focus on how data looks (Bishop, et.al. 2003 and Akmal, et.al. 2003).

Unlike HTML, XML data is stored in plain text format. This provides a
software- and hardware-independen't way of storing data. This makes it much easier to
create data that can be shared by different applications with focus on what data is
(W3C, 2011). XML readily enables the definition, transmission, validation, description,
and interpretation of data between different computing systems and applications. XML
uses in many fields, such as chemistry, music, finance, or environmental data collection,
simply it's become the universal standard for information interchange (Leigh, 2001,

Bray, et.al., 2006).

19

Vet s LY
ALY Rt Y1340

Intoduced

AL LD Pl 1.0
Wi Hwery Hodre
. XQuery 1.0 XQuery Update
X XSLT20 XQuFerﬁ(XPath
B YSIT 10 wMLLo XPath20 T XQuery 3.0
g ¥Path1.0 XMLSchema 10 WMLy 2007 Mischemats [P2th30
5 Nov, 1933 May 2000 chema 1.1 Aor, 20W
N - A«x}/ Sl‘.at 2006 A?I‘ 01 M
] ! !]] J] | i !]] ! i] ! ! i \ by
1 T 1 T T 1 1 T i i 1 1 i T i T i T T
196 mg 2000 2002 2001 2006 2008 2010 W00 20M

Figure 2.1 Timeline of the W3C technologies related to the XML.
Source: W3C.(2011).“News Archive”.

2.5 Data-quide for XMLDocuments

Data-Guide is concise and accurate summaries of XML databases which
describe different paths of XML documents, enabling schema exploration and
improving query processing and processing in an XML database management system.
Figure 2.2 show the Data-Guide which are working to ensure that each label path in
XML data graph in Figure 2.3 research one node. However the Data-Guide but didn’t
prevent multiple label paths from reaching the same Data-Guide node (Kalinin, 2009).

20

First;ﬁe]ki- Sy '
"'.' LN
1) /4. 17 (18)
Figure 2.2 Data-Guide s of an XML free
bib

(Q
Papf_g_/_:/ﬁ_@ '_;\,

M»
Refervences

wferczices/
Ti{le s

ear — THe Plplisher

-

Kalinin

Figure 2.3 Example of XML Data Graph

21

The Figure 2.2 is an example of Data-Guide which one providés a classification

of nodes or objects in the data:

(1) Node 2 and 4 are papers
(i) Node 5, 10 and 11 are authors of papers
(iii) Node 2 and 3 are referenced by papers
(iv) Node 6 and 8 are titles of objects referenced by papers
(v) Node 3 is both a book and an object that is referenced by an object that is

referenced in a paper
Data-Guide for XML document properties as follows:

(i) For every path in the document, there is a unique equivalent path in the
Data-Guide
(i) For every path in the Data-Guide there is an equivalent path in the

document

2.6 XML Database Systems

A database is a collection of data well organized in digital format, and can
access to such data and manipulated by a data - processing system
(Tzvetkov and Xiong, 2005; Jeffrey and Jennifer, 1997). Thus, the question arises: “Is
XML a database?”

An XML document is a database only in the strictest sense of the term. XML is
actually just a file containing a collection of data, and these files can be used as
databases, although has no database functionality, because XML is a language made to
contain and transport smaller amounts of information, in a logical, human readable,
platform independent way (Harold, 2003). The XML used to create files that need to be
sent to other applications. XML is more suited as a data interchange format than as data
storage format, because it is self-describing, portable (because of the use of Unicode),

and that it can describe data in tree or graph structures (Glas, 2002).

22

The integrity management, such as multi-user access control and security
management, backup and recovery management, things that belong to a Database
Management System (DBMS) (Rob-Coronel, 2000). The DBMS base on a combination
of the XML document with all kinds of XML related tools, like XML schema, Query
languages and programming interfaces, still not be as efficient and thorough as a real
DBMS. Therefore, DBMS is the best way to store the XML documents for fast and

accurate multi user.

2.6.1 Xml-Enabled Database System (XEDs)

Figure 2.4 shows The XML _Enabled database as a relational database that
transfers data between XML documents and relational tables. It retrieves data for
maintaining the relational properties between tables and fields, rather ‘than-to model

XML documents (Pardede, 2008).

Figure 2.4 Architecture of the XML_Enabled Database.

Source : Hiddink (2001) .“ADILE: Architecture of a Database-Supported Learning
Environment” '

XML_Enabled database (Bourret, 2002) firstly, broken down (Shredding) XML
document in small pérts into their component elements, attributes, and other nodes for
storage these parts into columns as 2 basic objects data in one or more relational tables

as shown (Figure 2.5) (Akmal, et.al,, 2003; Leigh, 2001;Papamarkos, 2011). Depend in

23

Figure (2.6) on mapping the XML document schema (XML Schemas, DTD, etc.)
database schema (Papamarkos 2011) in design time which called shredding. The
process between XML _Enabled database and XML documents needs schema
translation, this translation helps in sharing data with other systems, and interoperability

with incompatible systems.

- |

| Figure 2.5 XML documents need schema translation to decompose XML documents
into relational tables

RDB

Category
Computer Science
2 Human Society
3 Engineerin

XML
Shredding Processing
Shredding Processing

Figure 2.6 ~ XML_Enabled database shredding XML documents into relational tables

Shredding process means convert the data from a document in the database and

then reconstructing the document from that data, often results in a different document.

24

In addition, some problems that occur are as a result of the need for mapping, because
of any changes in the XML schema that will lead to changes in the mapping as well
(Henk, 2006). ' ‘

Shredding can be done in a very naive manner, such as defining a SQL table for
each element type (at least those allowed to have mixed content) in a document, with
columns for each attfibute, the non-element content of those elements, and the content
of child elements that are not allowed to have element content themselves

(Shanmugasundaram, et.al, 2011). As shown in Figure 2.7.

XML data shredded into relational tables:

CREATE TABLE book table {
1 |book id . INTEGER PRIMARY KEY,
FOREIGN KEY (book id) REFERENCES Dbook table (book id))

CREATE TABLE book table {

Book id INTEGER PRIMARY KEY,
ISBN ' INTEGER,

2 Title CHARACTER VARYING(100),
publisher id _ INTEGER,
Year INTEGER,
author id ' INTEGER)

CREATE TABLE Author table (

Author_id " INTEGER PRIMARY KEY,

> givenName _ CHARACTER VARYING(50),
familyName CHARACTER VARYING(50))
CREATE TABLE Publisher_table (
Publisher id INTEGER PRIMARY KEY,

: Name ' CHARACTER VARYING(50),
Year . INTEGER)

Figure 2.7. Shredding XML document in Figure 2.8 to relational tables

25

Figure 2.8 is an example the process of reconstructing and assembling the
original structure to restore the XML document is a difficult task requires complex
multi way joins (Nicola and Kumar, 2010). Figure 2.9 shows a coding of complicated
query discover the names of the tables and columns, and then join the various tables
together on their respective PRIMARY KEY and FOREIGN KEY relationships.
Usually, has provided a variety of ways of restructuring the XML documents from the
shredded parts by vendors of the products. However, the large number of shredded data
in the tables can lead to a complex and unnatural objects that makes application
development difficult and error-prone. In addition, complex XML documents don't lend
themselves to naive shredding techniques, and this may expend greater CPU power and
cause performance degradation (Henk, 2006; Fernando, 2012; Melton and Buxton,
2006). '

- Booktable ..
Seok id

1

2

Book table .
book_id ISBN Title Publisher_id Year Author_id
1 04587403 Beginning 157 2007 64
XML
2 70156878 XML in 57 2010 34

Technical

Communication

Author table

~ Avtorid

Givenname = | .. Surname . .
64 Joe Fawecett

34 Charles Cowan

Publisher table

:; Publisher:id : Jarms sl oo Yen
' 157 Wrox 2007

57 Institute of 2010
Scientific and

Technical Co

Figure 2.8. Shredding XML document to many relational tables

26

1 [A<bookss

2 S<book TSEN="04587403">

3 | <titlesgeginning xiL</title>

4 | <publisherswrox</publisher>

5 | <year>2007</year>

6 [B<Author> _

7 | <givenname»Joe</givenName>

g | <FamilyNamesFawcett</familyName>

g </Authors>

10 F</book> :

11 [<book ISBN="70156878">

12 | <citlesxL in Technical communication</title>
13 | <Publisher>Institute of scientific and Technical Co </publisher>
14 | <year>2010</year> o
15 E<Author>

16 | <givenName>Charles</givenName>

17 | <FamilyNamesCowan</familyNane>

18 t</director>

19 </book>

20 “</books>

Figure 2.9 XML Books Document

Relational databases are not predictable or reliable in terms of consistent

performance for different reasons:

(i)

(i)

(iif)

Performance: A major problem and thus disadvantage by using relational
databases is system performaﬁce. The number and size of tables and also the
relationshibs between the tables to be established affect the performance in
responding to the SQL queries. ,

Complexity: The strength of the Relational model is the Simplicity of tabular
data-model, and it's al§0 in some circumstances its weakness. Because of it is
not an easy task to compress some of the complex relationshipé whic';h exist in
the real world into tables.. For example, relational database ddesn't allow the
inclusion of complex object types such as graphics, video, audio, or
geographic information. The need to include such complex objects in the
database led to the development Native Database. ' ‘

Physical Storage Consumption: A relational database requires consumé

computer memory and processing time (Cugnasco, et.al, 2013 and Xu, 2013).

27

The data within a traditional relational database is the data that exhibit the following

characteristics:

(i) Repeating many fields and structures, even. in a simple hierarchical

| representation of the data, this leads to a large number of tables in the
representation of the second and third model.

(i) The wide variety of structures.

(ili) Sparse tables (Vavliakis, 2013).

2.6.2 Native XMLdatabase System (NXDs)

Native XML Database (Figure .2.11>) is a data storage format that appears in the
field of XML data processing and allows XML data to be maintained in their format
(tree structure). Then the data can be queried and processed as XML without the need to
transform it into traditional database. Native XML databases developed from standards
developed by the World Wide Web Consortium (W3C). Which create a powerful
architecture for connecting XML data management services as shown in Figure 2.10.
The XML databases that use and support these standards provide capabilities couldn’t
find in other database technology (such as relational databases), including efficient
access, query, storage, and processing (Mabanza, 2010, Bourret, 2005 and

Pokomy, 2008).

Undoubtedly the use of Native NXD is a new challenge for both developers and
researches of database systems, and it has been brought great opportunities, making
expansion of the database technology and research into data management on the WEB

possible (Kolarand Loupal, 2006).

28

XHL oulput uery ¥HL obJect /UTD

R ‘, \] XML
Query XML Parsero SPRine
Interpretere
; : .
_ Data MAP+ Object .
B, S 'S S —— processers _:l
Object R -
 composers [Utilitiese
| _ _
External/Internal |

. datastorages |

Figure 2.10 Architecture of Native XML Database XML Engine

Native XML database is high-speed storage and designed for rﬁanip;llation of
very numbers of XML documents by using a set of fixed structures, aﬁd store XML
documents in an integrated, highly scalable, and high performance. In addition
processing and storage XML data within their applications, because NXD model is
based on XML and not something else, and can store any XML document such as

structured and semi structured data . (Bourret, 2007;Bourret, 2005; Xiaomei and Heng,

2010; Apache XML Project Group, 201 1).

Native XML database store XML documents as a unit and create a model which
is consistent closely with them, which allow the query and manipulate those documents
as a group. In addition, can be stored any XML document in the group, regardless of the

scheme, and this is called schema-independent.

Native XML database is in order to meet the following three conditions:

29

)

(i)

(iii)

The pattern is defined as an XML document; the XML document is stored and
retrieved according to the model.

XML document as a basic storage unit, such as the row in the tables as the basic
unit of storage in the relational database.

XML data does not require any special underlying physical storage model

(Jiang, 2011; Ha, Sing Lee, 2011).

Native XML database provides numerous features to help you process and

handle XML documents, including:

0

(ii)

(iif)

(iv)

v)
(vi)

(if)

(iif)

(iv)

An XQuery engine for retrieving specific parts of a document, whereas almost
all Native XML databases support one or more query languages, such as XPath
and XQuery.

A versioning mechanism for tracking differences within your XML data.
Varijous indexing methods to optimize access (as a way to increase query speed)
to frequently used XML data and to enable full text search. |

A Native XML Database resolves the problem of semi-structured data (Semi-
structured data is just data that do not fit neatly into the relational model).

A transformer and formatter for publishing XML data in XHTML or PDF.

An improved cache page replacement algorithm for enhanced performance.
Where is a Native XML Database used?

Native XML databases are most commonly used to store document-centric
documents. The main reason for this is their support of XML query languages,
which allow you to ask queries that are clearly difficult to ask in a language like
SQL.

Native XML databases are also commonly used to integrate data. Native XML

databases handle schema changes more easily than relational databases and can

- handle schemaless data as well.

Native XML Database is used with semi-structured data, such as is found in the
fields of finance and biology, which change so frequently that definitive
schemas are often not possible.

Native XML Database is used in handling schema evolution.

30

2.6.2.1 Native XML Database Prbducts

Table 2.5 shows the two types of Native XML data product. The first type is

open source such as: Lore, 4Suite, Xindice, eXist and DBDOM. The second type is
commercial products such as: DOM-=Safe, Tamino, XIS, GoXML DB, TEXTML Server
and Berkeley DB XML. Table 2.5 introduces open source Native XML database

products.
Table 2.5 Summary of Native XML Database Products

Product Develope Yea Data Type Develope Platform Query

d by r r Languag

es
Lore Stanford 2000 Semi-stuctured Stanford SUN - Lorel

University data University Unix,Linus _

eXist Wolfgang 2009 Stucturedand Wolfgang Windows, XPath,X -

8 Meier Semi- Meier Unix,Linus Upte,XQ

§ Stuctured data uery

2 4Suie, Forethouht 2001 Stuctured and FourThou Windows, XPath

9 4Suite , Inc Semi- ht Unix

O Server : Stuctured data
DBD K.An 2002 Stucturedand K.An Windows, XPath
OM Krupnikov Semi- Krupniko Unix,Linus

Stuctured data v
Xindi Apache 2002 - Apache Windows, XPath,X
ce Software Software Unix,Linus = Upte

Foundatio Foundatio :

n n .
= GoX XML 2002 Stuctured and XML Windows, XPath,X
'® ML Global Semi- Global Unix,Linus ~ Query
% DB Technolog Stuctured data Technolog
g ies ies _ -

O Tamin Softeware 1999 Softeware Windows, = XPath,X
0 AG AG Unix,Linus Query:
TEXT DITA 1998 Stuctured and IXIA.Inc Windows XPath
ML CMS Semi-

Server Group ‘Stuctured data

2.6.2.2 EXist-db Architecture

The overview of eXist-db system architecture is shown in Figure 2.11. Be dealt

with all calls backend storagevby broker class, implementing the database broker.

Applications may access a remote eXist server via the interfaces such as: XMLRPC

31

XML, SOAP, Rest, and WebDAV. AP1 interface supported by eXist, which supports

the embedding the database into an application without running an external server.

Currently, eXist’s XML RPC interface makes multiple RPC calls for retrieving
the XQuery results. The first RPC just gets the ids of the XML document and the
positions of the nodes to be displayed within each document. Then a loop is run where
in each iteration an RPC call is made by passing the XML document id and the position
of the node id fo get the actual XML node content. This was modified to have a s‘ingle
RPC call to get all the required nodes of the XML document as a string. This enabled
collation of results from various distributed servers without congesting the network. The
XPath engine is used to parse the XPath to find the clusters which are to be queried
(Chaudhri, et.al, 2003; Cahlander, et.al, 2010).

| XQuery/XPath [XUpdate/XQuery |3

Engine | update Extensions |

Collection
store

Indexes

DOM Store

Figure 2.11 eXist-db Architecture system

32

2.6.3 Comparison between Native XML Database and XML-enabled Database
Systems

Native XML database and XML_Enabled database are both used to store XML
document, but they both have different techniques. XML _Enabled database method is
to transform XML documents into relational tables by map document's schema to a
database schema, and transfer the data by using this mapping, which can then be
queried by using SQL. XML _Enabled database has its own data model to map XML
instances into the détabase, and depending on this model creates tables (Papémarkos
et.al, 2011). In another word, XML documents have to map into another data structure
that can be stored in a traditional database system (Pavlovic, 2007). While Native XML
database method store XML documents by using a fixed set of structures that can store
any XML document regardless of the scheme. NXD uses XML model directly to map
XML instances into the database. NXD uses tables for holding arbitrary XML document
like Elements, Attributes, Text, etc., and XML documents are regarded as a basic

storage unit (Bourret, 2007; Egbért, 2007, Yu, 2005).

The storing process for XML data in a relational model that based on two
dimensional tables is one of the more main differences between the relational databases
model and XML structure. The two dimensional model is not, neither hierarchy nor
significant order, while XML is a hieratchical structure (Tree-Structure) in which order
is significant, that use the sequence ways to represent the information (Robie, 2003). In
addition, storing the XML data in a Native XML database the internal representation of
the data retains the structure of the XML data, and this make NXDs useful, because the
structure of them is closely matched the structure of XML data. Retaining the structure
of the XML data removes the need for creating a mapping for the XML data. Changes
in the XML schema or DTD of thé XML data do not lead to the problems that are
encountered with relational storage. Native XML stofage can handle all types of XML
documents without any problems (Hérder and Haustein, 2008; Egbert,.2007). .Table 2.6

summarized all advantage and disadvantage of both systems.

In general, XML-enabled database systems are generally relational RDBMS or
object oriented OODBMS systems that contain extensions for transferring data between

XML documents and native storage constructs. For the strength of existing algérithms,

33

there is little doubt that available commercial databases such as Oracle (10G), MS SQL
Server, and IBM DB2 have cornered the market with regard to large enterprise database
offerings on varied platforms (MAINFRAME, WINTEL, UNIX, LINUX, etcetera).
However, until recent years they were under represented when offering native XML
storage solutions. This increasing predominance of XML as a growing industry standard
for the exchange of data as well as the storage of data in XML format, has led to
development of a number of offerings (6r extensions to existing DBMSs) that support
the native storage of XML. Furthermore, these database systems are generally designed
to store and retrieve data-centric documents rather than whole XML documents,
although they do have that capability. Both for RDBMS and OODBMS there is inherent
need for transformation between XML formats and native formats, and in the case of

Oracle 10g, relational table-columns and XML documents.

34

Table 2.6 Comparison between XML_Enabled databases and Native XML databases

Type

Description

Advantage

Disadvantage

Tradit
ional
Relati
onal
databa
se
Objec
t-

XML_Enabled Database

orinte
d

File
Syste
m

storag

File System

e
Nativ
e
XML
databa

Database

Native XML

S€

Map the data to

relational sheet

Consider the data
as CLOB field and
store into relational
database

Store directly into
the file system in

document form-

Store directlil
database dedicated
to process XML

documents

Guarantee consistency
and security, store
index and query is very
mature from theory to

application

Similar to file system
storage, but guarantee
consistency and
security

Simple storage, lossless

data, multi-
dimensinonal and
network relational
preserved

Has the advantage of
the file system, easily
index and query the
data

Likely to cause data
distortion, many null
values and redundant
in conversion process

of the relational sheet

Difficult to archive

mass data index and

query
Not guarantee
consistency and

security, difficult to

archieve mass data
index and query

Most Native XML
database can only
return -the . data as
XML -

According to analysis of the existing algorithms in Table 2.6, while the major

drawback for XML-enabled databases is the representation of XML documents

relational form, the major strengths include the impressive support users get with the

underlying database, such as Oracle 10g: scalability, concurrency, recovery, multiple

support applications, etcetera. This one benefit cannot be overstated, in that it has led to

the universal presence of these XML storage solutions in the marketplace. In multi-

document scenarios, -since NXDs are tasked with storing a collection document, the

matter of equivalence is important here. Some NXDs, like eXists, provide utilities to

compare stored documents.

35

2.7 Entity Relationship Algorithm

document schemas and data, the user-defined types needed to make hierarchical

operations efficient, and the algorithm used to map XPath expressions to their

The rescarcher used object-relational DBMS schema used to hold the XML

corresponding SQL-3 queries.

different sub-set of XML data will store in separate pairs of tables. Each of these tables

is implemented to model aspect of the XML schema and data model specification. The

The figure 2.12 shows Data Definition language that has been required. Each

Specification included the following types of XML document nodes:

@
(ii)
(iii)
(iv)
™)
(vi)
(vii)

Decument
Element
Atiribute

Namespace

Processing Instruction

Comment

Text

In addition, XML Data Model includes a set of 19 primitive atomic types. Each

of these atomic type value in the document must be one of these types

A

e

Table: DATA
Colemn Name Column Type
\ SchemaNode (Node
flrﬂ{ Document Node| Node
Value XSDString

Table: SPEC

Column Name Column Type
SF’:’_)‘{ Schema Node Node

tocal_Name String

XML Node Type |XML_Node_Type

Data Type XMi_Data_Type

Arity XMviL_Node Type

Figure 2:12 Data Definition language

36

2.8 Querying XML

Query languages are speciéiized language that used to make querics into
database and information system (Gabriel and Mycroft, 2013). The query language
provides the ability to send data manipulation and formatting requests to the data
source, and ensure that the returned data structure and contents match the expected

structure (Google De\.felopers Grouh, 2013).

The eXiensible Markup Language (XML) is a standardized notation for
documents and othef structured data (Mam&enko, 2004), and XML has become as a
standard for the exchange of data via the Internet (Chienping, et. al., 2011), and XML
will become the format of tomorrow’s data and web resources. Thus, the querying
process in XML data has become 2 challcnge (Qtaish and Abmad, 2014), and there has
been a strong demand for improved query languages for processing XML documents.
YML data is hierarchical structure (tree structure), and document data represented in
XML comprise a sequence of possibly nested tags which can be expressed by a tree
structure, and querying and tran;sforming XML data from one format into another will

be a frequent task.

The traditional methods suffer from two drawbacks: (1) Weaknesses in
enhancing the performance of the query without an adjustment the existing query
processing engine; and (2) an Inability to be suitable for different structures and usage
characteristics. Query languages can be classified into two types: Structured. Query

Language (SQL), and XML Query languages (XQuery) (Bourret, 2010).

XQuery and SQL/XML are two standards that use declarative, portable queries
to return XML by querying data. In both standards, the XML can have any desired
structure, and the queries can be arbitrarily complex. XQuery is XML-centric, while

SQL/XML is SQL-centric (Robie, 2003).

2.8.1 Structured Query Language (SQL)

SQL is the most mature query language for XML _Enabled databases (Houman,
2004), and it can only be used with relational databases (Bourret, 2009). SQL. cannot
37

use XML data yet, but with the use a set of extensions that are extending the SQL to
handle XML. These extensions give a possibility to SQL for creating XML documents
(Ki Min, et.al, 2008). Structured Query Language depend on probabilistic model for
information, that's where this model is working to estimate probability of relevance of

each document given a query.

SQL queries allow creating XML structures with a few powerful XML
publishing functions. SQL is flat and needs to specify a value for each field in a record
set (even nuil in case of an empty field). Thus, SQL is not useful for semi-complex
XML files. For example, one characteristic of XML is having an element that can have
of sub elements, each sub element can again have sub elements (free can contain sub
trees) and so on. Thus, makes one record set have a large or even theoretically unlimited

range of depth, and this is this is impossible for relational databases (Houman, 2004).

The figure describes an XML structurc that would be very awkward in a
relational database. A warehouse has a category, which has several different products
(in this example books and papers), The more data moves into an XML document, the
more complex it gets, the limitations of SQL become clearer and the importance for

another query language becomes more obvious.

2.8.2 XML Query Language (XQuery)

XQuery is the language of queries, concise and easy to understand, and it's to
XML what SQL is to database tables, and it is designed to query XML data (Searching,
finding, extracting, retrieval for any elements, attributes, data source within XML
documents (Ykhlef and Alqahtani, 2007) with at least the functionality of SQL, where
it's flexible enough to query a broad spectrum of XML information sources, such as
querying collections of XML data and not only XML files, but anything that can appear
as XML, including databases. XQuery is a Native XML query language. XQuery is
optimal for processing XML naturally unlike SQL. In addition, XQuery is also useful
for process XML data in XED not just in NXD, fo query XML stored inside or outside
the database. This makes most of the major database vendors intend to support XQuery

(Robie, 2003).

38

XML is an iﬁherently recursive data structure (Trees contain sub-treés), and
XQuery is a functional language, where it's built on XPath expressions, so many
XQuery functions for transforming documents are best designed using recursion.
XQuery is supported by all major databases (Vendors like IBM, Oracle, and Microsoft)

because it’s a W3C recommendation,

XQuery is unique in the development stacking in that it replaces both SQL and
the traditional software layers 'that convert SQL into presentation formats such as
HTML, PDF and ePub. XQuery can both retrieve information from yoﬁr dat'ab'ase and
format it for presentation. Much research has been done on XML query-languages and
XQuery is compatible with several W3C standards, such as XML, Namespaces, XSLT,
XPath (Berglund, et.al. 2010), and XML Schema, XQuery (Erwig, 2003), Quilt (El-
Sayed, 2005), in addition XMI. query algebras such as Lore (McHugh. et.al,; 1997),
XAL (Frasincar, 2002) and YATL (Christophides, 2002). XML algebra as a formal
basis for an XML query language provides a solid ground to define the semantics of a
query language and describes the procedures to obtain the answer by its power of
expression. On the other hand, XML query languages provide the means to extract and
manipulate data from XML documents. Although most of the query languages differ in
detailed grammars and rcpresentati;on, they share a common feature, that is, queries

usually make use of a path expression for query evaluation (Haw and Lee, 2011).
The principal benefits of XQuery are:

(iy Expressiveness - XQuery can query many different data structures and its

recursive nature makes it ideal for querying tree and graph structures

(i) Brevity - XQuery generate summary reports because its statements are shorter
than similar SQL or XSLT pfograms.

(i) Flexibility - XQuery can query both hierarchical and tabular data

(iv) Consistency - XQuery can used with other XMI. standards such as XML
Schema data types because it is a consistent syntax -

(v) Search and extract Web documents for relevant information to use in a Web

Service.

39

XQuery depends on expressions; these expressions include seven major types:
path expressions, element constructors, expressions involving operators and
functions, conditional expressions, quantified expressions or expressions that
test or modify data types, and the most important expression is “FLWOR”

expression.

A FLWOR expression is a query construct composed of the following, in order,
from which FL.WOR takes its name: FOR, LET, WHERE, ORDER BY, and RETURN,

XQuery has become the standard query language for XML databases, and has
received the support of most of the XML database systems. However, using XQuery,
users need to understand the mode of the XML document and need to grasp the
complexity of the query language syntax directly using XQuery XML database query is
very difficult for non-professional users (Jiang, and Yang, 2011; Zhongyi, 2009; Jijun,
and Shan, 2005; Jinggiang , et.al, 2004; Xiaomin and Yanlin, 2005). There are two
basic types of user queries (XML is semi-structured data), keyword-based queries (Full-
text search), and structural queries (complex queries specified in free-like structure) as

depicted in Figure 2.13.

Figure 2.13 Main classification of query.
Source: Haw and Lee (2011). Data storage practices and query processing in XML
databases:

40

A keyword search is somehow similar to content retrieval in information
retrieval technology, where is a type of search looks for matching documents that
contain one or more words specified by the user to find specific passages of text where
query keywords co-occur. Conversely, a structural search is to retrieve matches on the
tree where it has the tags and structure (relationship) specified in the query criteria.
Structural query Structural queries can be classified further into path query and twig
query and processing refers to finding all occurrences of a given set of structural
relationships, such as: Parent—Child (P-C), Ancestor—Descendant (A-D), or mixed types
of both relationships, in an XML database (Haw and Lee, 2011; Xin, et.al, 2010),

2.8.2.1 Keyword Search

The weaknesses of traditional document-oriented search techniques in the
traditional databases, which rely heavily on heuristics that are intuitively appealing, that
often, lead to retrieve false positive answers that overlook correct answers. In addition
to their inability to properly arranée the answers led to the search for high precision
query search technique for XML data. The use of XML language interfaces and
keyword search techniques in Native XML databases which take advantage of XML
structure, make it very easy to query XML databases. The independent design of Native
XML databases and its use of the method for XML keyword queries that is based on an
extension of the concepts of data dependencies and mutual information solved the

problems for data-centric XML.

Keyword search is a practice used by search engine optimization professionals
to find and research actval search terms people enter into the search engines when
conducting a search. Search engine opﬁmization professionals research keywords in

order to achieve better rankings in their desired keywords.

41

Query Query

requeste resulte
- XQuery engine. . Query Interfaces = |

A

o

Figure 2.14 Keyword query for Native XML Database

Keyword search is considered to be an effective information discovery method
for structured and semi-structured data. It allows users without prior knowledge of
schema and query languages to search, In XML keyword search, the results of a
keyword query are no longer entire XML documents, but instead are XML elements

that contain all the keywords.

Keyword search in the Native XML database needs to consider two main things:

(i) How to define the index structure, index construction, and provide a
basis for a query based on keywords.

(ii) How to use the index to the query.

Consider the keyword query (XML, data) over the XML document of Figure 1.
Nodes 1.1.2.2.1 and 1.1.2.3.2 contain the two keywords, and node 1.1.2 is their lowest
common ancestor. So the sub-tree rooted at 1.1.2 contains all the keywords and is

expected to be the result.

42

{ 4;"1-;;;; f:ir:": Tt} 1 i
Pl 12 S
SR - ; L |
t 1]
ki e tior | et
2 v TR
o ek 1
) _‘] 3 S
.) 1 brat p b1
RES i REY I
; HIS i 3 i3 i
. L. j { e i 1 L.
5 T ;
i
2
|
Figure 2.15 Book.xmi (each node is associated with its Dewey number)

The proposed keyword search returns the set of the smallest trees containing all
keywords, where a tree is designated as “smallest” if it contains no tree that also
contains all keywords, For exalﬁpie: assume an XML document named “Book.xml”,
modelled using the conventional labeled tree model in Figure 2.15; thatl contains
information, including Chapter, Title, etc. A user interested in finding the relationships
between “XML” and “Data” issues a keyword search “XML, Data” and the search
system returns the most speciﬁc.relevant answers - the sub trees rooted at nodes 1.1.1,
1.1.2 and 0.2.0.0. The meaning of the answers is obvious to the user: “Ben” is a TA for
“John” for the CS2A class, “Ben” is a student in the CS3A class taught by “John”, both

“John’ and “Ben” are participants in a project.

43

2.8.2.2 Structural Search

Structural query processing refers to finding all occurrences of a given set of
structural relationships (such as parent—child (P-C) - denoted by *‘/” - and ancestor—
descendant (A-D) - denoted by ‘‘//* - relationships), by retrieving collections of
information from the Native XML database based on a specification of structures (Xian,
2010; Wang, 1996). The structural relationships are a core component for XPath,

XQuery and tree pattern queries. For example:

//Chapter//Section [figure AND table]

The query in the previous example retrieves all sections of chapters that contain
at least one figure and at least one table. XML documents consist of nested elements
enclosed by user defined tags, which indicate the meaning of the content contained.
There are two types of structural query (As XML a semi-structured data): (1) only one
node query that is namely path query, and (2) twig query that consist two or more nodes
(Figure 2.16). These queries could be either simple as search and retrieve by using only
a simple path, or complex as search and retrieve a small tree-like structure that involves

many branches and joins.

44

= I
t Book Boak
] y
|
[T]]
Chapter Title Chapter .
1 12 1 Title Chapler
i) : 1y / \\
Title Sectien Section Seetlon XML Title Section
L1l 112 134 13§ i - ‘
LR P A 33 ’
| e —— [Data Sabsection Subsection
bata Babsctian [St Bata Sdmdn L
tag || MR 112 L4g || MR8 | yasg }
L1t [HERE) Hith I 310 ain ,
T T Dan - XML
_Dn_a“ .IEL _ Taspah
10221 H Lk 13453
wizan || pazay B Path Query Twig Query
i3
L3451
sl
Figure 2.16 Example of an XA1L tree, a path query and a twig query

In an NXD, there are two main approaches to processing such queries, namely:
() Traversing the XML database sequentially to find the matching pattern.
(i) Query processing using the decomposition-matching—merging approach.
For example, consider the following sample complex query in XPath (W3C, 2004)

notation, where Query1:

/book[/title]/chapter/section/figure/caption.

2.8.3 Comparison between SQL vs. XQuery
XQuery is similar to SQL in many ways, but just as SQL is designed for

querying structured, relational data, XQuery is designed especially for querying semi-
structured, XML data from a variety of data sources. XQuery allows you to work in the

45

XML world no matter what type of data you're working with - relational, XML or
object data (Robie, 2003)

The way between SQL and XQuery to do the tasks is quite different. SQL
operates on the borderline between SQL and XML, while XQuery lives in a purely
XML world. XQuery has important advantages even with the queries that span

relational and XML sources.

XQuery expressions are similar to SQL as show in the following table:

Table 2.7 XQuery & SQL expressions
XQuery SQL

For/let select/set

Where where

order by : order by

Return return

The difference between SQL and XQuery shown in the next table:

SQL is the most mature query language for relational databases. Each database
vendor has a slightly or even thoroughly different implementation of SQL, SQL focuses
on sets of -flat- rows, and needs to specify a value for each field in a record-set (even
null in case of an empty field). SQL supported by Oracle and IBM, but not by

Microsoft.

XQuery is strictly a query language and can be seen as a much more generalized
language for handling data, and it makes the databases truly transparent and
independent from its vendor. Because of, XQuery focuses on sets of ‘nested’ nodes with

an irregular depth. It is supported by Most of the major database vendors.

46

Table 2.8 XQuery & SQL

XQuery SQL

XQuery is an expression oriented SQL is a statement oriented language.
language

Concept of nodes is used in XQuery Concept of rows is used in SQL

A user cannot create and update tables. A user can create and update tables.
It is a new language. It is an old language.

2.9 Path Evaluation

After reviewing how XML can be stored natively, the next question to answer is
how queries are evaluated. One important part in XML query evaluation is the
navigational approach. As suggested by Zhang, et al (Zhang, et al, 2009), there are two

basic types of navigational approaches: query-driven and data-driven.

In 2 query-dr'iven navigational approach, the navigational operator translates
each location step in the path expression into a transition from one set of XML trec
nodes to anther set (Zhang, et al, 2009). Think of an ordered tree structure; a path step
from a parent node fo its child actually indicates a transition from the parent sub-tree
nodes to the child sub-tree nodes. Native storage adopts this type of approach (Fiebig, et
al).

On the other hand, in data-driven navigational approaches like Yfilter (Diao, et
al, 2003) and XNav (Josifovski, et:al, 2005), the query is translated inté an automaton
and the data tree is traversed according to the current state of the automaton. While this
data-driven approach can be more complex to implement, it needs only one scan of the
input data (Zhang, et al, 2009). Both DB2 and Oracle use this type of aﬁproaéh.‘ DB2’s
navigational operator is similar to XNav *20+, whercas Oracle’s operatbr is similar th

YFilter *19+

Figure 2.16 give a basic idea about how Oracle evaluates a path expression. Path

queries are similar to regular expressions. Regular expressions allow a user to do pattern

47

matches. For example, if a string matches the pattern “a*bc”, the string must contain the
character “a” before character “b” and “c”, with any characters allowed in between the

“a” and “b”. A path expression is much like a string pattern.

Take for example a document that matches the path expression /a/b/c: first, it
must have an element “a” as the root node, and then “a” must have a child “b” and “b”

must have a child “¢”.

Figure 2.17 NFA Constructed from Paths //a and /a/b/c

Since regular expressions can be evaluated by a finite state machine, Oracle builds a
non-deterministic finite autormaton (NFA)-to process a given set of path expressions.
For example, Figure 2.17 shows an NFA constructed from the path expressions //a and
/afb/c. This is an example taken from Zhang et al (Zhang, et al, 2009). When processing
a path expression using an NFA, it is possible to combine two or more paths together in
a single NFA, as is shown in Figure 2.17. Therefore, it is possible to save some physical
disk /Os by evaluating multiple path expressions from a given XML query in a single

pass.

To apply a set of paths, the NFA reads in the XML document a node at a time.
After each node is read, the NFA either make a transition to another state or stays put.
This is done node by node until the NFA reaches the final state (state 4 or 6 in Figure
2.17), at which point a match was found. Figure 2.18 diagrams the overall query

48

evaluation methodology (Zhang, et al, 2009). There is a decoder module that decodes
the input XML stream and feeds tht;, NFA every event that it reads. Each event read is
similar to an XML SAX event, and indicates things like the beginning of the document,
the beginning of an element and so on, which decides the state of the NFA. (Many
optimizations were made for the input stream decoders in Zhang et al (Zhang, et al,
2009), '

XQuery Setof simple_
SQL/AML
return
next next
event
Read stream & decode
opcodes
s0 s1 el sz e2 3 e3 s4 ed €0
Binary XML Input Stream
Figure 2.18 Oracle Binary XML Streaming Evaluation Architecture

2.10 Conclusion

This chapter _presented two databases; Native XML Database (NXD) and
XML _Enabled Database (XED). And the methods for both databases of dealing with
XML data (Store, Extract and Search). This chapter also presented some of the previous
studies since 1999 to 2014 (Presented in 2.2 BACKGROUND) , and the studies show
that, relational database facing difficulties to dealing with the XML data, because of the
differences in the structures whic;h leads to shredding process (Presented in 2.6.1

XML _Enabled Databases).

In this chapter of the literature review, we conclude that, XML documents do
not require the existence of DTDs causes the DTD-dependent mapping methods to be
inapplicable, and the generic mapping often exhibits poor performance in query
processing, espec:aliy when “shredded” documents must be recomposed. in answer to a

query (Discussed in 22) Other mapping methods may have some advantagcs for

49

specific workloads, but performance suffers if they are applied to a wide, unknown
range of XML environments. Most unfortunately, in all of these approaches, once a
mapping is defined, it cannot be changed without a major data reorganization and

corresponding application reimplementation (Discussed in 2.6).

50

CHAPTER 3

METHODOLOGY

XML DATABASE SYSTEM BENCHMARK

3.1 Introduction

This chapter presented and analyzed the performance of both databases
(XML, Enabled databases and Native XML databases) by using the database benchmark.
A series of experiments have been conducted by using one of Native commercial XML
database system, and a leading commercial XML Enabled database system. The aim of
the experiment is to evaluate the efficiency of path expressions in the databases, to
compare the insert, update, delete and search performance of both databases. In addition,
this chapter provides the details on the concrete implementation of the storage and
indexing components by using XML database system benchmark. Finally, the benchmark
query engine that is used i the data scts collected is discussed.

The methodology of the study applied the method that has been developed by
Zhang and Tompa in 2004. This study is to evaluate: insert, update, delete and search
performance in both databases XMI. Enabled database and Native XML database. For
XML-Enabled database mapping, this chapter applicd the method that has been
developed by K. Williams with his rescarch teams his research teams in 2001 (Williams
et al. 2001) that converts a relational schema into a DTD (Figure 3.3). Then use this DTD
to generate a XML schema and store it in a database. A fixed number of records in text
format are assigned to be imported into a database. The data sets measurements are

repeats from 65.8, 101, 117, 127, 183 MB of books records.

51

3.2 Setting and Sefup
3.2.1 Experimental Setfing

All experiments were run on the following setting:

Table 3.1 Experimental setting

Item Describation

CPU Intel® Core™ 17-3770 CPU @ 3.40GHz 3.40 GHz
0OS - Windows 7 Prof_essional

RAM 4.00 GB

System Type 32-bit operating system

Hard Disk 931.51 GB

Java JDK 1.6.0

3.2.2 System Setup and Memory Setting

For both database systems, the default settings are used during the software
installation. Java -Xmx is an cffective way to determine the maxiroum size of the memory
as which is the configuration parameter to control the amount of memory. Thus, Native
XML database automatically will not use all of the memory available on the machine.
For XML Enabled database, after upload the documents, it needs to update all the

databases to provide the most current information for the database.

52

For Native XML database, if you launch the database via one of the shell or
batch scripts, you need to change -Xmx in there. If you launch database as a service, all
Java settings will be controlled by the service wrapper.

Maximum Java Heap Size (in MB)

wrapper.java.maxmemory=128

In Native XML database, the nodes buffer attribute has been used to set the
database's temporary internal buffer to a fixed size. The buffer is used during indexing
to cache nodes before they are flushed to disk. Because of each of the core database
files and indexes has a page cache. The main purpose of this cache is to make sure that
the inost frequently used pages of the DB files are kept in memory. If a file cache
becomes too small, the database may start to unload pages just to reload them a few
moments later. This "trashing éffect" results in an immediate performance drop, in

particular while indexing documents.
3.2.3 Data Sets and Characteristics

This section discuss of the characteristics of XML data sets. The structure of a
relevant data set must be complex enough to capture all characteristics of XML data
representation, whicﬁ can have a'signiﬁcant impact on the performance of query
operations. The scalability of a system can be measured by using data sets of different
gizes. Since XML data can be represented as a tree, the depth and width of the tree

should be adjustable. This can be achieved as follows:

Table 3.2 Characteristics of the data set
Factor Size (MB) | Nodes
0.01 65.8 117 132
0.1 101 ‘ 567 865
0.3 117 _ 801 498
0.5 179 1 539911
1 183 1995315

There are various ways of indexing XML data, and one of the most effective
approaches is to index the total number of root-to-leaf paths in the input file.

53

3.2.3.1 Data Depth and Fan-out

The depth and fan-out are important to tree-structured data. The depth of a node
is the length of the path of its root (i.e., its root path), and it can have a significant
performance impact, for example when evaluating indirect containment relationships
between ancestor and descendant nodes in the tree. Fan-out of the nodes refers to this
number of pointers per node, and it can impact the way in which the database system
stores the data and responding to queries that are based on selecting children in a

specific order (for example, selecting the last child of a node).

It has been created a base benchmark data set of a depth of 6. Then, using a
“level” attributes. This can restrict the scope of the query to data sets of a certain depth,
tﬁereby, quantifying the impact of the depth of the data tree. Similarly, we specify high

(7) and low (2) fan-outs at different levels of the tree as shown in Table 3.3,

Table 3.3 The Nodes in the Base Data Set

Level - Fan-out Nodes % of Nodes
1 2 1 : 0.0

2 2 2 0.0

3 2 4 0.0

4 2 8 0.0

5 4 16 0.0

6 7 208 0.0

3.2.3.2 Data Set Granularity

It was chosen as a single document tree as the default data set to keep the
benchmark simple. If it is important to understand the effect of document granularity,
one can modify the benchmark data set to treat each node at a given level as the root of
a distinct document. One can compare the performance of queries on this modified data

set against those on the original data set.

54

3.3 Methods

The methodology of the study applied the method that has been developed by
Zhang and Tompa in 2004. For XML-Enabled database mapping, applied the method
that has been developed by K. Williams with his research teams his research teams in
2001 (Williams et al. 2001) that converts a relational schema into a DTD that shown in

(Figure 3.3} as follows:

Step 1 Database Design

The methodology of this study is based on XMark and XMach-1

(3.4; 1 and 3.4.2). In the methodology, a number of performaﬁces _

have been measured:

Step 2 (i) Document generation by queries

(ii) Measure the size of the databases (XED and NXD) to
" evaluate how efficient the database server st'ores'XML '

documents. -

Explore the functionality of the database (XED and NXD) in
handling XML documents. | .
(i) Store XML documents.

(ii) Extract XML documents.

Step 3

Evaluate the performance of the data processing operations to data
of different sizes, start from the smallest to the largest (65.8, 101,
117, 127, 183 MB). In comparison between Native XML database
and XMI., Enabled database.

(i). Insert single record of XML document.
Step 4 (ii) Insert mass }'ecords of XML document.
(iii) Delete single record of XML document.

(iv) Delete mass records of XML document.

(v) Update single record in the table of XML document. -

(vi) Update mass record of XML document.
(vii) | Search XML document.

55

The methodology for measuring the performance of both databases being tested
XML _Enabled database and Native XML database are similar, and the added data is the
same in both databases. For XML, Enabled database, has been used DTD in Figure 3.3

that converted from the relational schema Figure 3.1.

For inserting, deleting and updating single record of XML document, it has
identified by the position of elements in the document. The evaluation of each operation
was by using a number of reports (21 reports. Table 3.6) and queries (20 queries Table
3.4 and Table 3.5) for each operation.

The size of databases and the added data are measured in megabytes. A fixed
number of XMI documents are assigned to be imported into the both databases (XED
and NXD). The documents are repeated from the smallest to the largest (65.8, 101, 117,
127, 183 MB). Each measurement is repeated three times, and the average value is
taken. Examine the efficiency and the time for restore and rebuild the XML document

from both database (XED and NXD) in seconds.

Java DOM APIs were used to directly access the Native XML database server.
XQuery was used instead of SQL for reporting, because XQuery was required to access
the server using the HTTP protocol

To compare the different data sets size inside the databases needs to run a set of

tests that do the following:

(i) Store XML documents

(i) Extract complete XML documents

(iii) Delete complete XML documents

(iv) Extract parts of documents identified by the position of elements in the
document

| (v) Replace parts of documents

56

3.3.1 Database Design

Firstly, it has been designed a database that uses XML features as much as
possible (Complex XML data). This chapter implemented a system to model (Amazon
book sales and reports), Figure 3.1 contains the core relational schema and figure 3.2 is.

Entity Relationship (EER) diagram of the relational schema that used in this chapter.

Relation Client {Client-no, Client—-name, Sex, Email, Telephone
Postalcode)

Relaticon Client-add {Client-no, Address, City, State, Country,
Is_default) '
Relation Bill (Bill-no, Client-no, Quantity, Bill amount, Bill date,
Shipment-type, Shipment date)

Relation Bill-substance (Bill-no, Substance no, quantity, Price,
Bill-price, Discount} -

Relation Substance {Substance _no, Substance _nane, Catalgg;type,
Author, Publisher, Substance price) ' 7
Relation Category {(Catalog type, Catelog description)

Relation Shipment (Shipment-type, Shipment-descripticn)

Relation Monthly sales (Year, Month, Quantity, Total)

Relation Client sales (Year, Month, Client-no, Quantity, Tﬁtal{

Relation Substance _sales (Year, Month, Substance no, Quantity,

Total}

Figure 3.1 Relational Schema of Sale and Report

57

Clicnt-add

L]
QR7

Shiprest lookup [T3] Client

+ - QR2 s
QR3

ré:,

Catepory loakup licars Fridi Freen :
s . QRS . - = s QRS

GRS
i 1"1
Hem-sale Menthly-Sale Client-sale

Figure 3.2 Enhanced Entity Relationship (EER) diagram of the relational schema

The next step was to translate the relational schema into an XML schema. It is
adopted the methodology used by K. Williams (Williams et al. 2001). Figure 3.3

contains the final DTD produced from this process.

<!ELEMENT Sales (Bill¥*, Client*, Substance *,Monthly-sales*)>
<IATTLIST Sales

Status (New|Updated|History) #regquired>
<IELEMENT Bill (Bill-substance *}>

<IATTLIST Bill

Quantity CDATA #REQUIRED

Bill amount CDATA #REQUIRED

Bill date CDATA #REQUIRED

Shipment-type {Post|DHL|UPS|FedEx|Ship) #IMPLIED
Shipment date CDATA #IMPLIED

Client idref IDREF $REQUIRED>

<!ELEMENT Client (Client-add*)>

-<!ATTLIST Client

58

Client id ID #REQUIRED
Client-name CDATA #REQUIRED

Sex CDATA #IMPLIED -
Telephone CDATA #IMPLIED

Email CDATA #IMPLIED>

Postalcode CDATA #IMPLIED
<!ELEMENT Client-add EMPTY>
<IATTLIST Client-add

Address NMTOKENS #REQUIRED

City CDATA #IMPLIED

State CDATA ¥IMPLIED

Country CDATA #IMPLIED

Is default (Y[N} "¥Y">

<!{ELEMENT Bill-substance EMPTY>
<IATTLIST Bill—éubstance .
Quantity CDATA #REQUIRED

Price CDATA #REQUIRED

Bill-price CDATA #REQUIRED
Discount CDATA #REQUIRED
Substance _idref IDREF #REQUIRED>
<!{ELEMENT Substance EMPTY>
<!ATTLIST Substance

Substance id ID #REQUIRED
Substance name CDATA #REQUIRED
Category type (Art[Comp|Fict|¥Food|Sci|Sport|Trav) #REQUIRED
Author CDATA HIMPLIED
Publisher CDATA.#IMPLIED
Substance _price CDATA #REQUIRED>
<!ELEMENT Monthly sales (Sﬁbstance _sales*, Client sales*}>
<IATTLIST Monthly sales |

Year CDATA #REQUIRED

Month CDATA ¥REQUIRED

Quantity CDATA #REQUIRED

Total CDATA #REQUIRED>

<!ELEMENT Substance _sales EMPTY>
<!ATTLIST Substance _sales
Quantity CDATA #REQUIRED

59

Total CDATA #REQUIRED

Substance idref IDREF #REQUIRED>
<!ELEMENT Client sales EMPTY>
<IATTLIST Client sales

Quantity CDATA #REQUIRED

Total CDATA #REQUIRED

Client idref IDREF #REQUIRED>

Figure 3.3 DTD Corresponding 10 the Relational Schema
Source: Williams (2000). Professional XML Databases

3.4 XML Database System Benchmark

Benchmark is a popular tools which test Relational XML database and Native
database. In gauging performance of NXDs, like other technology systems there are
benchmarking utilities available to evaluate performance of typical processing scenarios.
The benchmarked data set must represent and incorporate data characteristics that are
likely to have an impact on the performance of query operations. Although, it also must
be easy to understand, and expose the component of the system that is a bottleneck. In
general, benchmark testing mechanism should be: relevant, portable, scalable, and
simple, Indeed the two mechanisms we considered for our evaluation and research
efforts detailed later in this document, XMark and XBench, certainly meet the criteria.
XMark and XMark-1 are two main tools of Benchmarks in the research field, XMark
and XMark-1 have been used for the data set,

There are a number of existing benchmarks available to measure XQuery
support and XML database processing performance, including XMach-1 (Bhme &
Rahm, 2001), XMark (Schmidt & Wass, 2010) and XBench (Schroeder & Hara, 2014).
These benchmarks are predominantly application-oriented. Usually the testing
performance is measured by using a serial of data factors, which has varying sizes.
multi-feature documents; the performance of a system can be measured by using data
sets of varying sizes, different documents with different features as shown in the Table
3.2. The size of XML documents and the number of elements have been determined by

the factor of the main driver of generation.

60

3.4.1 XMark

XMark is a reported tool in the benchmark for XM data management and it’s
designed to generate XML documents. The XMark framework and benchmark suite
allows users and developers to gain insights into the characteristics of their XML
repositories, It provides a mechanism that assesses the abilities of XML databases to
handle different query types typically encountered in real-world scenarios. The suite
provides for a set of queries where each query is intended to challenge a particular
aspect of the DBMS .query processor. The benchmark suite uses XMLgen, a document
generator that generates scalable XML documents for platform independent
implementations. The generation and engine and instructions are freely available for
researchers and evaluators. The framework offers observances of referential clonstraints
concerning ID/IDREF pairs and assures reproducibility across. We considered the
XMark benchmark not only for the-integrity of its framework, but for ifs simplicity of
use and acceptance within the XML industry. Although it comes with a rather complex
DTD, which defines a set of trees with varied structures, for the indexing and evaluating
which do not use the schema (Schmidt & Wass, 2010). The scalability ofa sszstem can
be measured by using data sets of varying sizes, different documents with differeht

features as shown in the Table 3.4.

Xmlgen is an. XML data generator for XMark, which produces xml documents.
Xmlgen is a part of the benchmark suite and provides a template to set the number and
type of elements, and makes probability distributions by setting the parameters; Xmigen
also provides DTD and schema. Xmlgen was developed in ANSIC and can be used on
windows and has been used on a number of platforms, including Windows, Solaris,

various Linux distributions, and IRIX.

Xmlgen was designed to produce large and very large XML documents in an
efficient manner with low constant main memory requirements. The current veysion of
Xmlgen require less that 2MB of main memory. The normal XML document size
100MB with a scaling factor 1.0, and users can create lager documents b changing the
scaling factor. .

Likewise, XMark provides 20 querics that cover most of XQuery’s

functionality. These queries mainly contain simple relational queries, order preserving,

61

navigational queries, aggregate, references and storing operations. All of the benchmark

queries are formulated in XQuery.

Table 3.4 Queries Specified in the XMark Benchmark

Gro | Quer Function Comment
up Y ,
Return the name of the client
Query |) Check the ability for handling
) with ID 'customer7'. The client
1) strings with a fully specified path.
1 registered in east Chine.
‘Query | Return how many substance s | Check the performs of DBMS when
5 that sold and cost more than 67. | XML model is a document oriented.
o Return all the substance s that | Text search but narrowed by
uery
¥ Contain the word 'book’. combining the query on content and
structure.
Evaluate cost of array lookups.
The authors cite that a relational
5 Query | Return to the initial increases of | backend may have problems
2 all open auctions. determining the first element.
Essentially query is about order of
data which relational systems lack.
Return IDs of all open auctions
Query : h More complex evaluation of array
whose current increase is at least
3) : e lockup.
twice as high as initially.
List reserves of those open)
Query)) "Querying tag values capturing
auctions where a certain person
4 document orientation of XML.
issued bid before another person
Check and list the number of
_ Value-based joins.
Query | substance is currently on sale
_ The authors feel this query is a
11 | whose price does not exceed :

0.07 % of each person's income.

candidate for optimizations.

62

Table 3.4 Continued

Gro | Query Function Comment
up
2 For each richer than-average
person list the number of | Value-based joins.
Queryl) . o
5 substance is currently on sale | The authors feel this query is a
whose price does not exceed | candidate for optimizations.
0.02% of the person's income.
Queryl | Which persons don't have a | Determine processing quality in
7 home page? presence of option AL parameters.
How many substance s are | Test efficiency in handling path
Query6 |
listed on all continents? expressions
3 ‘) The query is the answerable using
How many pieces of XML o i i
Query7) cardinality of relations. Testing
books are in the database?) _
implementation.
3.42 XMark-1

By compariso‘n, the Xmark-1 is another multi-user tool of benchmark that was

developed at the University of Leipzig in 2000 (Franceschet, 2005). The system

architecture includes the following components: an XML database, application server,

and the interfacing software which can process XML documents and communicéte with

the database. XMark-1 was developed in Java and the current version has been

implemented in some XML database systems.

63

<{ELEMENT document (title, chapter+}>
<!ATTLIST document author CDATA #IMPLIED
doc_id ID #IMPLIED>
<! ELEMENT author (#PCDATA)>
<}ELEMENT title (#PCDATA}>
<!ELEMENT chapter {author?, head, section+)>
<IATTLIST chapter id ID #REQUIRED>
<!ELEMENT section {head, paragraph+, subsection¥*}>
<!ATTLIST section id IR #REQU]?RED)
<!ELEMENT subsection (head, paragrapht, éubsection*)>
<!ATTLIST subsection id ID #REQUIRED>
<!ELEMENT head (#PCDATA}>
<!ELEMENT paragrapnh (#PCDATA | link)*>
<{ELEMENT link EMPTY>
<!ATTLIST link xlink:type (simple) #FIXED "simple"
xlink:href CDATA #REQUIRED>
Figure 3.4 DTD of XMach-1 Database

- The XMark-1 has a document generator which can synthetically generate XML
documents. The system consists of two parts: XML files and data-centric directory. The
text contents are chosen from 10,000 of the most frequently used words in English.
Each of the XMI, files simulates as article, which includes title, chapter, section,
paragraph, and so on. The directory system is based on XML files, and mainly contains

metadata of the other documents.

The XMark-1 supports both schema-based and schema-less variants of the
benchmark. The file sizes vary from 2 XB to 100 MB, and the structures vary flat to
deep hierarchy. XMark-1 controls the size of the whole database by changing the
number of XML files. There are four database sizes in XMark-1, which are created by
varying the numbers in the files: 65.8, 101, 117, 127, and 183. XMark-1 utilizes an
algorithm to generate documents with different depth and size. The process of
génerating documents can be controlled through setting parameters. XMark-1 is also

developed with Queries, it is specified in the Table 3.5:

64

Table 3.5

Queries Specified in the XMark-1 Benchmark

Group

Query

Function

Comment

Queryl

Query2

Query5

Query3 .

Query4

Query6

Query7 '

Query8 '

Get document with the given

URL.

Get doc_id from documents

containing a given phrase.

Get doc_id and id of the
parent element of author

element with given content.

Return leaf in trec structure
of a document given by
doc_id following the first
child in each node starting
with document root.

Get the document name (last
path element in the directory
structure) from all documents
that are below a given URL
fragment.

Get doc_id and insert date
from documents having a
given. author (document
attribute).

Get doc_id from documents
that are referenced by at least
four other documents.

Get doc_id from the last 100

inserted documents having

an Author attribute

Return a complete document
(complex hierarchy with the
original ordering preserved).
Text retrieval query. The
phrase is chosen from the
phrase list.

Find chapters of a given
author. - _
Query across rali DTDs/text

documents.

Simulates is exploring a
document with unknown

structure (path traversal).

Browse direcfory structure.
Operate on structured

unordered data.

Join operation.

Get important documents.
Needs some kind of group by
and count operation.

Needs count, sort, and join
operations and accesses

metadata.

65

3.4.3 XBench Benchmark

XBench is a family of benchmarks that capture different XML application
characteristics (Yao et al., 2004). Like XMark, these applications are categorized as
data-centric or text-centric (document-centric) and the corresponding XML can consist
of single documents or multiple documents. Data-centric (DC) application examples
include ecommerce catalog data or transactional data. The text-centric (TC) applications
examples include book collections in a digital library, or news article archives. Support
for both is in the form of single document (SD) or multiple (MD) documents which can
be generated with the tool. As part of this benchmark suite, the database generator that
can build four cases: DC/SD, DC/MD, TC/SD, and TC/MD. The XBench database
generator can generate databases in any of these classes ranging from 10MB to 10GB in
size. A good source of reference regarding XBench testing is provided in (Yao et al.,
2004) XBench research paper, where they benchmarked DBMS systems that store,
retrieve, and update XML documents. For tackling the fragmentation problem for
transactional databases which are highly distributed, in (Schroeder & Hara, 2014), it
applied the fragmentation approaches on the XML schema and workload provided by
the XBench benchmark, From each approach, the XBench dataset was fragmented and
stored in a cloud data store. It executed XBench using six different cluster sizes of eight
Amazon EC2 nodes allocated in a single region. In (Thomas et al., 2014), it applied the
XBench benchmark which has been proposed for applications categorized as text-
centric and that involve multiple documents. The benchmark provides an XML Schema
that models part of the Springer digital library, a workload with 19 queries and a
database generator that can be configured to output datasets containing a user defined
number of articles. However, one of the main shortcomings of XBench is that the
System Under Test (SUT) Description works under single user mode. No concurrent
access to the system is supported. The multiple users work mode is supposed to be
implemented in the future. Another weakness of XBench is that only query workloads
are supported in the first version, but the designer plans to include the update and bulk-

loading workloads (Yao et al., 2004).

66

3.4.4 Performance Consideration

When we consider native XML databases as a means of storing XML data, one
of the major considerations must be the speed of retrieval and manipulation of store
data. Depending on the stored document structure (well type data-centric vs. document-
centric), how the native XML database physically stores data (file system or other DOM
like method), and the application of indexing schemes as identified in Chapter 3, it is
possible under many application that one can retrieve data faster than other storage
alternatives like XML-enabled alternatives. For example, if retrieving lots of data ina
singular XML document stored in an NXD (perhaps in a single physical file),versus
retrieving equivalent data from a highly normalized relational database (shredding)
requiring traversing relational physiéai joins, and amassing other overhead, we may see
faster response times from NXDs. In this case, the database can perform a single index
lookup, and assuming that the necessary fragment is stored in contiguous bytes on the
disk, it can retrieve fhe entire document or fragment in a single read. As we ha§e seen
above, with relational databases this may require multiple index lookups and multiple
disk reads. However, RDBMS are much evolved, and offer such incredible performance

that this overhead is sometimes obscured by these efficient processing engines,

From a performance standpoint, model-based native XML databases that use a
proprietary storage formats are likely to have performance similar to text-based native
XML databases when retrieving.data in the order in which it is stored. This is because
databases use physical pointers between nodes, which should‘providAe pez;fdrmanqc
similar to retrieving text. Which is faster also depends on the output format. Text-based
systems are obviously faster at returning documents as text, while model-based systems
like DOMSs are obviously faster at returning documents as DOM trees, assuming their

" model maps easily to the DOM model.

Because these physical links are faster to navigate than logical links, native
XML databases, like hierarchical databases, can retrieve data more quickly than
relational databases. Because of this, they should scale well with respect to retrieving
data. In fact, they should scale even better than relational databases in this respect, since
scalability is related to a single, in{tial index lookup rather than the multiple lookups

required by a relational database. Like hierarchical databases, the physical wiring in

67

native XML databases applies only to a particular hierarchy. That is, retrieving data in
the hierarchy in which it is stored is very quick, but retrieving the same data in a
different hierarchy is not. Because native XML databases make heavy use of indexes,
often indexing all elements and attributes, it helps with performance traversing this tree-
based hierarchy. Unfortunately, while it may help with query performance, it does

increase update time, since mentioning such indexes can be expensive.

3.5 Benchmark Querises

The expressive strength of XML effects greatly on the perfonnaﬁce of the
implementations of query languages for XML. A list of "Must have" requirements for
XML query languages have been published by W3C XML Query Language Working
Group and have been shown in Table 3.6 and analyze the impact of these various

requirements on the performance.

XML can represent structured and unordered data, and an XML query language
must be as expressive as a structured query language such as SQL is for relational
databases. Have noticed that benchmark query cannot evaluate the database systems
that implement XPath, because XPath can only count the function not the average, and
benchmark queries cannot impractical on such systems. This problem can solve easily
by using benchmark queries, for each test a different kind of aggregation. In addition, in
case of test only a subset of the functionalities covered by some queries. For example:
sometimes there is no need {o restructure the retrieved results while others never need to
update the database. Thus, it is important to distribute the various functionalities into
different queries so that users can always choose the queries according to the

functionalities they need.

Separating the functionalities also facilitates the analysis of the experiment
results since it will be very clear which feature is being tested. Finally, the benchmark
queries should allow the range of values of selected attributes to be varied in order to

control the percentage of data retrieved by queries—that is, the selectivity of queries.

68

Table 3.6 Desired Functionalities of XML Query Languages

ID Description
QR1 To query all data types-and collections of possibly multiple XML documents.
QR2 Allow data-oriented, document-oriented, and mixed queries.
QR3 Accept streaming data.
QR4 Support operations on various data models.
QRS Allow conditions/constraints on text elements.
QR6 Support hierarchical and sequence queries.
QR7 Manipulate NULL values.
QR38 Support quantifiers (4, and ~) in queries.
QRY Allow queries that combine different parts of document(s).
QR10 Support for aggregatiofx.
QRI11 Able to generate sorted results.
QRi2 Support composition of operations,
QRI13 Aiiow‘navigation (reference traversals).
QRi4 Able to use environmental information as part of queries (current date, time etc.)
QRI15 Able to support XML updates if data model allows.
QRI16 Support type coercion. |
QR17 Preserve the structure of the documents.
QRI3 Transform and create XML structures.
QR19 Support ID creation.
QR20 Structural recursion.
QR21 Element ordering.

For example: QR9, QR10, QR11, which represents join operations, aggregation
and sorting, use data-centric capabilities or relational queries. QR17 uses document-
centric capabilities to keep the documents structure in some form. QR13 and QR20 are
requirements that need to traversal of XML document structure using reférences or links
as supported by XLink/XPointer specification. While QR21 uses open element ordering
the functionality, which is an important feature of XML representation that have a

significant impact on the of query languages to represent.

69

Used XQuery by pre-indexing the structure of the data in the Native XML
database. The Problem of the performance has been solved by use structural indexing to

allow queries to implementation of optimal performance. For example:
//Book[ISBN = "1558746218"]

The database will retreat and search over all <ISBN> elements in the database.
This will lead to a decline in performance because of slow implementation and limits
conBOOK. To query more efficiently and to improve the performance, we define an
index (in /db/system/config/db/collection.xconf) and add range indexes for the most

frequently used comparisons.
3.6 Algorithm

The algorithm for this study enhanced the method that has been developed by
Zhang and Tompa in 2004. The researcher’s method used object-relational DBMS
schema used to hold the XML document schemas and data, the user-defined types
needed to make hierarchical operations efficient, and the algorithm used to map XPath

expressions to-their corresponding SQL-3 queries.

The figure shows Data Definition language that has been required. Each
different sub-set of XML data will store in separate pairs of tables. Each of these tables
is implemented to mode! aspect of the XML schema and data model specification. The
Specification included the following types of XML document nodes:

(i) Document

(ii) Element

(iii) Attribute

(iv) Namespace

(v) Processing Instruction
(vi) Comment

(vii) Text

70

of these atomic type value in the document must be one of these types (Figure 2:12,

In addition, XML Data Model includes a set of 19 primitive atomic types. Each

mentioned in chapter 2).

Table: SPEC Table: DATA
Column Name Column Type Column Name Column Type
@___ﬂ Schema Node Node A SchemaNode |Node
Local_Name String 5;;? Pocument Node| Node
XML Node Type [XML_Node Type Value XSDString
Data Type A XML _Data_Type '
Arity XML _Node_Type
Figure 2:12 Data Definition language

The researcher's algorithm used only a single pair of tables, In practice, an XML
repository would need considerai)ly more. XML's use of namespaces to assign semantic
intent to tag names, for example, suggests that some additional columns‘ are ﬁec‘:essary.
And although XML's "wire" format consists of ASCII strings, care must be taken to
ensure that XPath expressions with range predicates (>, <, etc.) and the more complex
set-membership operations evaluate correctly.

While the algorithm in this study used indexing to all the clement text, and
attribute nodes, to fast XPath queries. All indexes are managed by the database enginé.
However, it is possible to restrict the automatic full-text indexing to defined parts of a
document (shown in 2.8.2). Evaluating structured queries against possibly collections of
unconstrained documents poses a major challenge to storage organization and query
processing. To speed up query processing, some kind of index structure is needed. Thus,
the algorithm used a numerical indéxing scheme to identify XML nodes in the index.
The indexing scheme not only links index entries to the actual DOM nodes in the XML
store, but also provides quick identification of possible relationships between nodes in

the document node tree, such as parent-child or ancestor-descendant relationships, while

71

conventional approaches are typically based on top-down or bottom-up traversals of the

document tree.

The method in this study can store the whole document in a column of fype text
and don't require the documents to be chopped into small pieces to be squeezed into

relational tables.

The method define an extraction operator, yP1, P2 (T). This operator takes a
table T as input and two parameters, P1 and P2, where P1 is a column of table T of type
text and P2 is a tree pattern to match against each text entry in the given column P1. The
pattern matching language is a variant of XQuery that describes tree patterns instead of
path patterns. Therefore, it differs from an XQuery expression by identifying several
nodes in a tree that correspond to a single match rather than extracting only the last

node in some path.

As a result, ¥P1, P2 (T) is computed by considering each row of T in turn, as
shown in Figure 3.5 for the pattern corresponding to //book#/author# to extract book-

author pairs simultaneously.

The tables are then “attached” to T as if by a join that correlates each row in T
with all rows produced from the P1-value in that row. Hence the resuit of applying this
operator is an expanded and untested table. The new column names by default are the

same as the root names of the extracted texts, with suitable renaming as necessary.

72

“pesuite

<hlh>
<hook year="1994"=
*itzt}e”'TCP.lTP THustrated=tile=

let $a=$blanthor
where courd {$a) = 1
retwm <enty> §b <entryes

for & in doourent { b sand 7 ook

<guthor=]. Knrcee=fauthor *book year="2001">

guthor=K Rose<iautbors .
sgnthor=], Kucees lanthor=

I o _
<guthor=W. Stevens<Jauthor= <hpenlts)
<hooks

. <book year="2001""> <tgslt=
=title=Corpter Netwionking=/hitle= “entrys

=title=Computer Hetworkings

<jhook ; _
<jbily= (1) <guthor=K Rosse</suthor=
: <thooks o
Zerdry
< fasult (

Hitled

Figure 3.5 (a) AN XML bib text (b} an XQuery query posted on bib text and (c) the

generated XML result.
b ok boak auther wuthor
<k | <k <book vew= 19647 <hbe | <authiers
<book year="1904% | <hgons | <hoch year="1604. W Steveny
H
<jolve | <booke. b= 2authors W Stevens<fauthicors | <autho>
<packs . <hie
b | <. <ok ver="20(1". . | <biw=. <quthor=
<hook vear= 201", “heaks <hock yea="T00", 1 Errose
<jnin= | <hooks 2l <gquthor=] {uwose a!auﬂ ars ¢ <authms
<haoks <l
bz | bl “<hack wae="201", | <bi <anthors
<hook yew="2001"% | <hooks <book year=“2001"> ., K. Roses
<hbe | <hookeaye <authors K. Reess<iauthon <lathms
' afooks |, <k
Figure 3.6 Results of extraction with a tree pattern that flags book and author
nodes. -

73

3.7 Processing Operations

Evaluation is necessary for all databases with different tools at benchmark
environment. Namely a serial of determination step will carried out on the two

databases; the details is as follows:

In XML _Enabled database needs mapping (SQL to XML and XML to SQL).
The mapping between the database columns and XML documents (elements or
attributes) is defined by means of AS aliases in a SELECT:
<Database column> AS [Element Name! Nesting Level! Attribute Name! Directive]

3.7.1 Storing XML Documents

The process is done by use OPENXML function. OPENXML is suited to load
XML data into the database, because it will load the whole XML document into the

memory before perform the insertion of the data. The process has three steps:

(i) Obtain an XML document handler by compiling XML document into
internal DOM representation, using the stored procedure
sp_xml_preparedocument.

(i) Construct a schema by associating schema fields with XML elements.
Where XML elements are defined by a path pattern in addition to a relative
element path.

(iii) Remove the compiled XML document from memory by using the stored

procedure sp_xml_removedocument.
3.7.2 Extracting XML Documents
(i) XML Enabled Database
"It is necessary to generate Xml documents again for the databases, it has two

steps:

74

(a) Create aliases to the elements in the desired output XML. The alias define the

parent/child relationships between elements.

FXTRADE /* LEVEL=1 */

AUTHORL [FXTRADE!1!AUTHOR1]

AUTHOR2 [FXTRADE!1!AUTHOR?]

TILTE [FXTRADE ! 1!TILTE]

ISBN [FXTRADE!1!TSBN]

QUANTITY /* LEVEL=2 */
NUMBER [QUANTITY !2!NUMBER]
PRICE [QUANTITY !2!PRICE]

(b) Define the ou{put tree structure in SQL. Each level of the tree is defined fhrough
a SELECT statement, thereafter the levels are combined together into the tree by
means of a UNION ALL statement. The level-1 SELECT statement introduces
the names of atomic elements on all levels. Each SELECT statement i.ntroduces
a tree level tag and its parent tag. There is a single record in the result set

corresponding to the tree root.

SELECT
1 AS Tag,
NULL A_S Parent,
NULL AS [FXTRADE!1!AUTHOR1],
NULL AS [FXTRADE! 1 ! AUTHOR2},
NULL AS [FXTRADEflETITLE],
NULL AS [FXTRADE!1!ISBN],
NULL AS [QUANTITY !2!NUMBER},
NULL AS [QUANTITY !21PRICE]
FROM
FXTRADE
UNION ALL
SELECT
2,
1,

FXTRADE . AUTHOR1,

75

FXTRADE.AUTHORZ,
FXTRADE.TITLE,
FXTRADE. ISBN,
QUANTITY . NUMBER,
QUANTITY .PRICE

FROM

FXTRADE, QUANTITY
WHERE

FXTRADE ., QUANTITY = QUANTITY .Ib
ORDER BY [QUANTITY 121I8BN},

[QUANTITY 12 PRICE]
FCOR XML EXPLICIT, ELEMENTS

(ii} Native XML Database
For extract document (A SELECT-FROM-WHERE) has been used. For

example, the query computes a list of the books for the customer 12.

SELECT x.txt.extract('Customer//Book)

FROM XMLTypeTab x

WHERE x.txt.existsNode('Customer//Order') = 1

AND x.txt.extract('/Customer/CNo/text()').getNumbervVal{) = 12

Extract-condition is used also in UPDATE and DELETE documents.

3.7.3 Inserting XML Documents
(i) XML _Enabled Database

For single record, insert XML data into a XED done by using an INSERT
statement and the OPENXML function.

For Mass record, the method for inserting as following:

(i) Load the XML documents as a stream and reads it.

76

(i) Identifies the database table and generates the appropriate records from the
XML.

(if) Send the records to the database for insertion.
3.7.4 Deleting and Updating XML Documents
(i) XML _Enabled Database

For UPDATE and DELETE XML documents, the given document is taken as a
pattern for qualifying documents, then the he document determines the query values of
the resulting WHERE condition. Where use <xsql:update-request>, and <xsql:delete-

request> to update and delete documents.
(iii) Native XML Database

The delete process has been done by using delete XML DML statements as

following:

(a) An XML is assigned to variable of xml type.

(b) Delete various nodes from the document.
3.7.5 Searching XML Documents
(i) XML Enabled Database

This study has been used an approach to search XML documents in the

relational database as follows:

(a) Process the DTD file (figure 3.4) to generate a relational schema
(b) Load XML documents into relational tables in the XML _Enabled database

after Parse and conforming to DTDs.

(¢) Translate semi-structured queries over XML documents into SQL queries

over the corresponding relational data.

(d} Convert the results back to XML

77

(iv) Native XML Database

This study has been used several techniques for the searching process in Native

XML database for better performance:

(a) Shortest Paths

In Native XML database there's no need to pass the entire document tree
because of the database directly determines an element and attribute by its name by
using the indexing. This means, to search about the title for a book in the cookbook

catalog (single record), the direct selection of a node through a single descending step:

doc{'cookbook.xml'} /cookbook/recipe/title
(a) Process the most selective filter/expression first

For multiple steps to select certain nodes from a larger node set (mass record),
will process the most selective steps, by reducing the node set to be processed, thus will

increase the speed of queries:

/dblip/*fyear > 2003] [author = 'Kanda Runapongsa’}
The database has 568824 records matching year > 2003, but only 53 of them
were written by Stroustrup. For better performance, need to move the author name to

the front of the expression;
/dblp/*[author = 'Kanda Runapongsa'] [year > 2003]
Native XML database a kind of optimization automatically, and it is recognized
more cases for intelligent searching rewritings than XML Enabled database. For

example, has already transformed the Boolean expression

/dblp/* [author = 'Kanda Runapongsa"and year > 2003]

(a) Avoid unnecessary nested filters

78

Unnecessary nesting should be avoided because of its negative impact on the
searching. The variant with only one filter is easier to optimize for the database,
whereas the nested filter implies a performance penalty. Likewise, if you are calling one
of the optimized functions (contains, matches, ft:query ...), need to make sure not nest

them unless really required:

//Books [book/Title[contains{., "“ISBN")]]
//Books [contains (book/Title, "ISBN"}]

(a) General comparison to compare an substance to a list of alter natives

General comparisons are used to compare a given substance to several
alternative values. For example, you could use an "or" to find all <book> children
whose string value is either "Title" or "ISBN".

//Books [book eq "Title' oxr bookeg 'ISBN']

A shorter way to express this is:

//Books [book = ('Title', 'ISBN')]

The comparison will be true if b's string value matches one of the strings in the
right hand sequence. If an index is defined on <book>, the database will need only one
index lookup to find all book's matching the comparison. The equivalent “or"

expression needs 2 separate index lookups.

3.8 Conclusion

This chapter presented -a series of experiments that has been applied in
XML _Enabled database and Native XML database. The experiments ha;ve béeﬁ tested
using database benchmark (XMark -and XMark-). The performance is ﬁ}easured using
different sizes of data sets (65.8, 101, 117, 127, 183 MB) as shown in the Table 3.2. The
size of XML documents and the number of elements have been determined by the factor
of the main driver of generation. This chapter also presented the methddology' of this
study to evaluating: insert, update, delete and search performance in both databases

XML _Enabled database and Native XML database) which applied the method that has

79

been developed by K. Williams with his research teams his research teams in 2001

(Williams et al. 2001) (Figure 3.4).

80

CHAPTER 4

EXPERIMENTATION AND DISCUSSION

4.1 Intreduction

The study implemented the data sets in both databases, Native XML database and
XML_Enabled database, and used the PC machine with Intel Core i7-3770 processor
(3.40 GHz), 4GB main memory, and Windows 7 Professional. The data sets are used
from smallest 65.8 MB to largest 183 MB. Compare both databases in terms of time

complexity when evaluating the performance.

4.2 Discussions

For modeling the columns in XML_Enabled databases as XML DTD structure,

there are two approaches:

1) Element approach: Define the table name as the root element. It is nested by its
columns, which are also defined as elements. An example is:
(i) <! ELEMENT Person (Name, Sex, Age)>
(i) <! ELEMENT Name (#PCDATA)>
(iii) <! ELEMENT Sex (#PCDATA)>
(iv) <! ELEMENT Age (#PCDATA)

81

2) Attribute approach: The columns are defined as attributes of the root element. The
previous example, becomes
(i) <! ELEMENT Person>
(iiy <! ATTLIST Person
(iii) Name CDATA #REQUIRED
(iv) Sex CDATA #REQUIRED
(v) Age CDATA #REQUIRED>

In XML _Enabled database, data and structures are defined. Columns represent
data, Tables and relationships form structure. This can be managed well in searching for
data and for database navigation. XML attributes refer to the data, XML elements and
sub-elements build the structure. In addition, attributes do not have the concept of
ordering. This is similar to columns in a table. No matter how one changes the position of
a column in a table, the data content inside a table does not change. For the first approach,
tables and columns are both defined as clement types. It may be ambiguous to a parser to
decide the role of an element. The flexibility of searching for child elements is less than
the attribute approach. This is because an element does have ordering meaning. Hence, it

cannot fully represent the location-independence of data from an XED concept.

The performance is an important issue. There are two technologies in parsing
XML documents: DOM and SAX. The thesis's methodology used only Native XML
database Java DOM API.

Firstly, DOM technology pulls XML documents into the memory and presents it
as the tree later. The process of converting the document to a tree structure involves
traversing through the document. For example, the steps for retrieving the title of the 5th

substance from books are:

1) - Go to parent element Book
2} Go to 5th book ISBN child of Books
3) Get the title name from this book ISBN.

if the element approach is used in the sample database, more steps are involved:

1)} Go to parent element Books.

82

2) Go to second book_ISBN child.
3) Go to title name child of the second book _ISBN.
4) Get the name portion of book title.

Coding may be simpler if the attribute approach is used. Also, when using
attributes, there is the option of using enumerated types such that the value of a column

can be constrained by a defined value.

The size of the documents: For element approach, it is necessary to be (Starting
tag+Content+ Ending tag). But this is not necessary to attribute approach
(attribﬁte_name = attribute_value). When increasing of the database, the difference
could be significant. For Parsing documents, the element approach cost more time. So,
need more disk space to store the tags, especially in when storing a group of data (mass

record). Thus, the performance will be affected.

In defining the relationships between clements, containment is used for one-to-
one and one-to-many cases. The ID/IDREF pointer approach is not recommended
because XML is designed with the concept of containment, Using pointers costs more
processing time, because DOM and SAX do not provide efficient methods-to handle
ID/IDREF relationships. Furthermore, navigating from an ID field to an IDREF field
may not be easy. Thi§ becomes more difficult for IDREFS, since all IDREFS fields need
to be tokenized. Each token is examined for all possible ID fields. Hence, containment is
introduced to build relationships at the start. The pointer approach is.used for those

relationships that can go either way.

4.3 Experimental Results

4,3.1 Storing and Extracting Complete XML Documents

Native XML database prc;vides efficient methods for inserting an XML
document into the database and extracting the complete document from the database, the
following table shows the result. The results for table 4.1 indicate that, Native XML
database has better performance than XML_Enabled database to - storing XML

documents (Because of indexing in Native XML database allows to perform operations

83

in memory (which is fast), rather than reading from disk (which is slow) (eXist-db,
2013; Oracle group, 2011)). While the result in table 4.2 shown that XML _Enabled

database has better performance to extracting XML documents, because in
XML_Enabled database, each level of the tree is defined through a SELECT statement,
thereafter the levels are combined together into the tree by means of a UNION ALL

statement (see 3.9.2)

Table 4.1 Storing Complete XML Documents
Size/MB Time/Second
XML Documents XML _Enabled Database Native XML Database
65.8 32.0 8.6
101 69.9 9.4
117 280 12.7
127 1732 31.5
183 2057 38.2
Table 4.2 Extracting Complete XML Documents
Size/MB Time/Second
XML Documents XML Enabled Database Native XVIL Database
65.8 3.45 9
101 4.1 10.2
117 4 12
127 4.1 17.9
183 42 32

84

Table 4.3 Provides a summary of the tests that have been used performance

evaluation.

Test

.Test Description

Queryl, Query2
Query3, Quer4
Query5, Querb
Query7, Query8
Query9, Queryl0
Queryll, Queryl2

Query13, Queryl4,

Queryl5

Evaluate the time for Insert single record performance
Evaluate the time for Insert mass records performance

Evaluate the time for Update single record performance

"Evaluate the time for Update mass records performance

‘Evaluate the time for Delete single record performance

Evaluate the time for Delete mass records performance

‘Evaluate the time for searching for record by using index key

4.3.2 Inserting Process

(i) Single Records

The objective of Query -and Query2 are to measure insert performance Queryl
is a single insert statement with only one substance (item) involved.- As the results
indicate, when data size increases, XMIL._Enabled database’s performance always seems
efficient, whereas it consume about‘ 75% time that the Native XML database consume,
due to the technique of storing and organizing the huge data inside Native XML
database. The XML-enabled database has better performance than the natlve XML

database in all cases. However, both products have steady figures no matter how large

the database is. See Figure 4.1.

85

Time

M XMi-Enabled database
& Native XML database

Figure 4.1 Queryl. Insert one substance record into the table

Query2 consists of a master-details relationship (Client and Client-add). In
Query2, concluded that insert operation performance in not effected by the database
size. Furthermore, Query2 costs more time than Queryl as Query2 needs to handle more
than one substance (Item). All in all, the same result that the XML_Enabled database has
better performance than the Native XML database. The XML-enabled database has
better performance than the native XML database in all cases. However, both products

have steady figures no matter how large the database is. See Figure 4.2.

o
E
= B XML-Enabled database
& Native XML database
65.8 101 117 127 183
Size MB
Figure 4.2 Query2. Insert complete customer record into the tables

36

(iiy Mass Records (group of Data)

Query3 and Query4 are to evaluate the inserting process for group of data.
XML _Enabled database, has better performance than Native XML database for data size
(<= 101 MB). See Figure 4.3.

As data size increases more than 101 MB, Native XML database’s performance
will be better choice, whereas it consume about half the time that the XML _Enabled
database consume, due to the technique of storing and organizing the huge data inside
Native XML database. Moreover, the API in XML_Enabled database, cause the problem

of congestion and accumulation for huge size data. See figure 4.4

600
450
@
E 300 S
[# XML-Enabled database
150 & Native XML database
0 T "R e .
65.8 101 117 127 183
Size MB
Figure 4.3 Query3. Insert Group of data
600
450
E 300
B XML-Enabled database
150 1 Native XML database
() e _ 7
658 101 117 127 183
Size MB
Figure 4.4 Query4. Insert complete customer record

87

4.3.3 Updating Process

(i) Single Records

The objective of QueryS and Query6 are to measure update performance QueryS
is a single update statement. As the results indicate, when data size increases,
XML _Enabled database’s performance always seems efficient, whereas it consume
about 50% time that the Native XML database consume, due to the technique of storing
and organizing the huge data inside Native XML database. The XML-enabled database
has better performance than the native XML database in all cases. However, both
products have steady figures no matter how large the database in Figure 4.5.Query5 and
Query6 to evaluate update performance. The consumed time in the Update process is
less the consumed time in insert process. The reason behind this is that, insert examines
and check carefully data validity and unique indexing process, while in Update and

delete process, the data have been taken from the database, and so the time is saved.

Same results have been obtained (acquired) for the process insert single record in
Figure 4.6, since XML _Enabled database has better and faster performance than a
Native XML database. Update process has the same time for execution regardiess the

size of the database.

2
i5
at
E 1
= B XML-Enabled database
0.5 - & Native XML database
o 1 Ne : e :
65.8 101 117 127 183
Size MB

Figure 4.5 Query5. Update one record in the table

88

Time

65.8 101 117
Size MB

& XML-Enabled database
& Native XML database

127 183

Figure 4.6

(i) Mass Records (Group of Data) '

Query7 and Query8 are to evaluate the time for Update‘ mass records
performance. In Update Mass record process, the performance of XML _Enabled
database still better than Native XMI, database for the data (<=127 MB). Native XML
database’s performance is better for huge data (>=183 MB). This is because
XML Enabled database has simple query and effective structure to perfofm
Updata/Mass record, while Native XML database need to execute additional query

process before retrieval the data whereof cause consumption of more time with data

(<=127 MB)

Query6. Update complete client record in the tables

65.8 101 117
Size MB

H XMi-Enabled database
& Native XML database

127 183

Figure 4.7

Mass Update Substance

89

Time

% XML-Enabled database
& Native XMt database

Figure 4.8 Mass Update complete client record

4.3.4 Deleting Process

(i) Single Records

Query9 and Query10 are to evaluate Deleting single record performance. Results
have been obtained similar to the results obtained by query Insert (Queryl, Query2), and
Update (Qery5, Quer6). XML_Enabled database has better performance than Native
XML, database.

Delete process has similar functions to Update process, where there is no big

difference in the performance between the two processes (Delete process and Update

Process, and both processes to be effected with database’s size.

90

Time

E XML-Enabled database-

&= Native XML database
65.8 101 . 117 127 183
Size MB
Figure 4.9 Query?9. Delete one Substance record from the table
2
B B
QO
E 1 »
= W XML-Enabled database
05 . & Native XML database
0 -
65.8 101 117 127 183
Size MB
Figure 4.10 Queryl0. Delete complete client record from the tables

(i) Mass Records (Group of Data)

Queryll and Queryl2 are to evaluate the performance of Delete group of data.
Delete operations for Substance and Client records (see Figure 11). In Delete-process
(Mass record), as shown in figurell and figurel2, the XML _Enabled database has
much better performance than Native XML database with all data size which have been
tested in this research except data size (<183), and the reason behind this has already

explain earlier in (Update Mass record).

For the XML_Enabled database, a simple structural and powerful SQL query can

perform a mass delete. In contrast, the servlet program for the Native XML database

91

needs to execute an additional query prior to retrieving all possible Clients/Substance s.

Then the program uses the temporary list to remove records.

60
45
a
E
- = # XML-Enabled database
g-_ & Native XML database
Size MB
Figure 4,11 Queryl 1, Mass delete Substance
600
450
@
E 300
= B XML-Enabled database
150 & Native XML database
0 _— ——oae = 1
658 101 117 127 183
Size MB
Figure 4.12 Query 12, Mass delete complete client record

4.3.5 Searching Process

Query13, Queryl4, and Queryl5 evaluate the time to search for a record using
an index key (Figure 4.14). For 65.8 or 101MB, the results for both products are very
similar. From 183 MB, the Native XML database outperforms the XML Enabled
database. The Native XML.database provides steady performance in all cases. We
conclude that the Native storage strategy and indexing approach are efficient enough for

searching in a database.

92

4]
E
[= & XMl-Enabled database
& Native XML database
65.8 101 117 127 183
Size MB
Figure 4.13 Queryl3. Searching an Substance in the table

e

3 XML-Enabled database

& Native XML database

Size MB

Figure 4.14 Queryl4. Searching complete client record in the tables

Time

@ XML-Enabled database

& Native XML database

65.8 101 117 127 183
Size MB -

Figure 4.15 Queryl5. Searching complete bill record in the tables

93

The above result because in a relational database, data and structures are defined.
Columns represent data. Tables and relationships form structure. This can be managed
well in searching for data and for database navigation. XML attributes refer to the data.
XML elements and sub elements build the structure. In addition, attributes do not have
the concept of ordering. This is similar to columns in a table. No matter how one
changes the position of a column in a table, the data content inside a table does not
change. For the first approach, tables and columns are both defined as element types. It
may be ambiguous to a parser to decide the role of an element. The flexibility of
searching for child elements is less than the attribute approach. This is because an
element does have ordering meaning. Hence, it cannot fully represent the location-

independence of data from an RDBMS concept.

4.3.6 Results Discussions

In conclusion, the results implemented the data sets in both databases, Native
XML database and XML Enabled database. Native XML database has better
performance than XML Enabled database to storing XML documents (Because of
indexing in Native XML database allows to perform operations in memory (which is

fast), rather than reading from disk which is slow.

In Single Records of Inserting Process, as the results indicate, when data size
increases, XML Enabled database’s performance always seems efficient, due to the
technique of storing and organizing the huge data inside Native XML database. The
XML-enabled database has better performance than the native XML database in all
cases. However, both products have steady figures no matter how large the database is.
In Mass Records of Inserting Process, Native XML database’s performance will be
better choice, whereas it consume about half the time that the XML _Enabled database
consume, due to the technique of storing and organizing the huge data inside Native
XML database. Moreover, the API in XML__Enabled database, cause the problem of
congestion and accumulation for huge size data. The consumed time in the Update
process is less the consumed time in insert process. The reason behind this is that, insert

examines and check carefully data validity and unique indexing process, while in

94

Update and delete process, the data have been taken from the database, and so the time

is saved.

In Update Mass record process, the performance of XML_Enabled database still
better than Native XML database for the data (<=127 MB). Native XML database’s
performance is better for huge data (>=183 MB). This is because XML_Enabled
database has simple query and effective structure to perform Updata/Mass record, while
Native XML database need to execute additional query process before retrieval the data 7

whereof cause consumption of more time with data (<=127 MB)

Delete process has similar functions to Update process, where there is no big
difference in the performance between the two processes (Delete procéss and Update
Process, and both processes to be effected with database’s size. In Delete process (Mass
record), the XML _Enabled date;base has much better performance than Native XML
database with all data size which have been tested in this research eﬁceptl data size
(<183), and the reason behind this has already explain earlier in (Updaté Mass record).
For the XML Enabled database, a simple structural and powerful SQL query can
perform a mass delete. In contrast, the servlet program for the Native XML database
needs to execute an additional query prior to retrieving all possible Clients/Substance s.

Then the program uses the temporary list to remove records.

In Searching Process, the Native XML database outperforms the XML_Enabled
database. The Native XML database provides steady performance in all cases. We
conclude that the Native storage strategy and indexing approach are efficient enough for .

searching in a database.

4.4 Native XML Databases Validation

DTDs and XML schemas, to date, have not been critical or necessary
components of most available NXD or XML-enabled database solutions. While
validation may be useful in initial loading of XML collections, subsequent processing
behaviors once loaded into DBMS system do not require a DTD to be in place. NXDs
assume XML well-formedness (Schmidt et al., 2002). For example, on updates that

95

might validate the referential integrity of between elements or attributes, that pre-update
or pre-insert transactional processing is supported. The alternative brute force approach
would be to update the XML document and then check for constraint violations. If a
constréint is violated, a transactional rollback is initiated. This approach requires a great
deal of DBMS overhead and available resources required to support the rollback (Arenas
et al,, 2002).

Using our proposed method of using Native XML databases to enforce key
constraints, both unique key constraints and foreign key constraints, this section starts
with the personal-address.xml document. For example, given that address name is a
unique key with our data model, it would implement the following statement on the

supported nextgen NXD to enforce uniqueness:

CREATE _

BEFORE INSERT OF document {"'personai-address.xml")//address
FOR EACH NODE

DO

{
for $p in doc("pa.xmry/address/@name

where $p = $NEW

return

if(count($p)>0)then

$p

else <error>Unique Key Constraint Violation</error>

}

Next, it assumes a DTD segment for personal-address having the specified

attribute constraint, where only those specified zip codes are allowed.

<IATTLISTecity
zip (94783 194303 | 90472 | 90092) #REQUIRED

96

Those NXDs that do not support DTD validation would have the following
statement for check constraint validation, validating reference data, similar to a foreign

key:

CREATE TRIGGER TRGI»AI)2

BEFORE UPDATE, INSERT ON document ("personal-address.xm]")//address
FOR EACH NODE '
DO

I

for $p in doc("'pa.xml")//address/city/@zip

where (SNEW/@zip - 94783) or (SNEW/@zip = 94303) or

(SNEW@2ip = 90473) or (SNEW/@zip = 90092

Return

if (fn:empty($p)) then

<error>Check Constraint Violation</error>

else $p
}

In the above example, if the city zip code in not in the list of valid values, the
XML document would fail the DTD validation because it does not match type defined in -
the enumeration list. We added’ a check constraint to validate reference data.
Alternatively, by modifying our original DTD to the following, we can implement

foreign key constraint checking

<?xml version-"].0" encoding="UTF-8"7>

<1--DTD generated by XMLSpy v2009 spl (http://www.altova.com)->
<{ELEMENT street (#PCDATA)>

<IELEMENT state (#PCDATA)>

<!ELEMENT personal-address ((address+,validzip))>

<IELEMENT count}' ({PCDATA)>

<!ELEMENT country (#{PCDATA)>

<IELEMENT city (#PCDATA)>

97

<IATTLTST city

zip (94783 194303 190472 | 90092) #REQL'TRED

>

<IELEMENT address {(street, state, city, county, country))>
<IELEMENT address ((street, state, city, county, country))>
<!A I LIST address

name CDATA #REQUIRED

>

<IELEMENT zipcode (#PCDATA)>

<IELEMENT validzip {(zipcode))>

The augmented DTD of personal-address might require the following in an NXD
database to validate valid zip codes similar to relational foreign key validation. Note the

use of XQuery to achieve this in the code below.

CREATE A 03

BEFORE UPDATE. INSERT ON document ("personal-address.xmi")//address
FOR EACH NODE

DO

{.

for $p in doc("pa.xmi")/faddress/eity/@zp
for $x in doc("pa.xm|")//validzip/zipcode
where SNEW - p$ and $p = $x

return

if (fnzempty($p)) then

<error>Constraint Violation</error>

else $p
} .

While it is clear through varied research in the field of apply key constraints to
XML documents (Arenas et al., 2002; Schmidt et al,, 2002), it is also still true that
implementation of unique key and foreign key constraints is a valuable mechanism to

enforcing data integrity. With the use of triggering mechanisms added to a native XML

98

DBMS, providers can offer developers with a useful tool in enforcing data integrity using

a standard query language (XQuery), when manipulating XML data.

The validation results can be summarized as follows. Firstly, this section starts
with the personal-address.xmi document. Next, it assumes a DTD segment for pérsonal-
address having the specified attribute constraint, where only those specified zip codes are
allowed. Those NXDs that do not support DTD validation would have the statements for
checking constraint validation and validating reference data. Finally, the augmented DTD
of personal-address niight require the following in an NXD database to validate valid zip
codes similar to relational foreign key validation. Note the use of XQuery to achieve the

validation. The result summarized as shown in the table 4.4.

Table 4.4 Summarized result

Indicadition Native XML database XML_EnaBIed
database

Commands DTD XDR
Performance (single record) XQL XPath
Performance (mass records) Low High
User Interface: High Low
User Friendliness "~ Good Good
Implementation - Good Fair
Maintenance Fair Good

4.5 Conclusion

This chapter implemented the data sets in both databases. The dafa sets are used
from smallest 65.8 MB to largest 183 MB. Each measurement is repeated three times, and
the average value is taken. Examine the efficiency and the time for restore and rebuild the
XML document from both database (XED and NXD) in seconds. Comparé both databases

in terms of time complexity when evaluating the performance.

99

CHAPTER 5

EXTENSIVE DISCUSSION

5.1 Introduction

With the popularity of XMI, and increasing amount of information stored and
exchanged using XML, efficient hosting of XML stores and efficient processing of XML.
queries becomes important in the database community. Conventional database vendors provide
relational support for XML data, e.g., DB2 (IBM), Microsoft SQLXML (Microsoft) and Oracle
9i (Oracle). However, there is inherent impedance mismatch between the relational (sets of
tuples) and ‘XML (unranked trees) data models. An alternative approach to using relational
databases for XML data is to build a specialized XML data manager, i.e., one which can reflect
the hierarchical structure of the XML data. This is referred to as a native XML database. In
native XML databases, XML data is generally modelted as trees, where tree nodes represent
XML elements, attributes and text data, and edges for element/sub-element relationship. In this
chapter, the extensive discussion is presented for storing and extracting complete xmi
documents, inserting process, updating process, deleting process and searching process. Also,
validation results is further analyzed. The three objectives has been achieved by the proposed

algorithms.

100

5.2 Analysis and Discussion for Evaluating the Native XML Database Performance

There are several desirable features for the XML database storage systems. First, the
difficulty of converting the shredding of XML data into relational tables increased with
increasing the data size (Zhang and Tompa, 2004). Secondly, the storage system should be
robust enough to store any XML documents with arbitrary tree depth or width, with any
element-name alphabet, and with or without associated schemata. Moreover, local update to
the document should not cause drastic changes to the whole storage system. Therefore, the
design of the storage system should tragie-off between the query performance and update

costs.

In the first research question, it is difficult to find the storage system for XML
documents to support efficient evaluation as well as storing and updating XML documents.
Therefore, to evaluate thé Native XML database performance in a comparison with
XML _Enabled database, the proposed algorithm determines the points of difference between
the structure of XML documents and the structure of the database that contain, understand
negative effects of increasing the number of these data within databases. These pomts were
determined by added a fixed number of XML documents are assigned to be imported into the
databases. The documents are repeated from the smallest to the largest for three times, and the

average value is taken. The first objective is achieved.

5.3 Analysis and Discussion for Enhancing Entity Relationship Algorithm of the
Relational Schema

In the second research question, how to evaluate path expressionsreﬁiciehtly for
different types of queries? Therefore, to enhance entity relationship (EER) algorithm of the
relational schema to improve Insert, Delete, Update and Search XML document and compare
the performance of XML _Enalbled daﬁbase and Native XML database, by implementing the
same command and control data model. The experimental results show thét Naiiv’e XML
database has better performance than M_Engbied database to storing XML documents
(Because of indexing in Native XML database allows to perform operations in memory
(which is fast), rather than reading from disk which is slow. In Single Records of Inserting

Process, as the results indicate, when data size increases, XML _Enabled database’s

101

performance always seems efficient, due to the technique of storing and organizing the huge
data inside Native XML database. The XMl.-enabled database has better performance than
the native XML database in all cases. However, both products have steady figures no matter
how large the database is. In Mass Records of Inserting Process, Native XML database’s
performance will be better choice, whereas it consume about half the time that the
XML _Enabled database consume, due to the technique of storing and organizing the huge
data inside Native XML database. Moreover, the API in XMIL,_Enabled database, cause the
problem of congestion and accumulation for huge size data. The consumed time in the Update
process is less the consumed time in insert process. The reason behind this is that, insert
examines and check carefully data validity and unique indexing process, while in Update and
delete process, the data have been taken from the database, and so the time is saved. In
Update Mass record process, the performance of XML_Enabled database still better than
Native XML database for the data (<=127 MB). Native XML database’s performance is better
for huge data (>=183 MB). This is because XML _Enabled database has simple query and
effective structure to perform Updata/Mass record, while Native XML database need to
execute additional query process before retrieval the data whereof cause consumption of
more time with data (<=127 MB). Delete process has similar functions to Update process,
where there is no big difference in the performance between the two processes (Delete
process and Update Process, and both processes to be effected with database’s size. In Delete
process (Mass record), the XML _Enabled database has much better performance than Native
XML database with all data size which have been tested in this research except data size
(<183), and the reason behind this has already explain earlier in (Update Mass record). For
the XML_Enabled database, a simple structural and powerful SQL query can perform a mass
delete. In contrast, the servlet program for the Native XML database needs to execute an
additional query prior to retrieving all possible Clients/Substance s. Then the program uses
the temporary list to remove records. In Searching Process, the Native XML database
outperforms the XML Enabled database. The Native XML database provides steady
performance in all cases. We conclude that the Native storage strategy and indexing approach
are efficient enough for searching in a database. In all, it explores the functionality of the
databases {(Native XMI. Databases & XMI._Enabled Databases) in handling big sizes of
XML documents. By evaluate and compare the performance of the data queries in both
databaées. Then create a Native XML method that Insert, Delete, Update and Search Big sizes

of XML document. The second objective is achieved.

102

5.4 Analysis and Discussion for Validating the Algorithm in Native XML Databases

In the third research question, the thesis solved how to validate the algorithm in Native
XML databases by an example. It is clear through varied research in the field of apply key
constraints to XML documents, it is also still true that implementation of uniqué key and
foreign key constraints is a valuable mechanism to enforcing data integrity. The validation
results can be summarized as follows. Firstly, this section starts with the personal-address.xm]
document. Next, it assumes a DTD segment for personal-address having the specified
attribute constraint, where only those specified zip codes are allowed. Those NXDs.that do
not support DTD _vaiidatién would have the statements for checking constraint validation and
validating reference data. Finally, the augmented DTD of personal-address might require the
following in an NXD database to validate valid zip codes similar to relational foreign key

validation. Note the use of XQuery to achieve the validation. The third objective is achieved.

103

Table 5.1

The summary on the objectives and the outcomes

Objective

QOutcome

The evaluation the
Native XML database
performance in a
comparison with
XML _Enabled
database
The
entity
(EER) algorithm of

the relational schema

enhancement

relationship

to improve Insert,
Delete, Update and
Search XML
document

The validation the
algorithm in Native

XML databases

Determining the points of difference between the structure of XML
documents and the structure of the database that contain,
understanding negative effects of increasing the number of these

data within databases

Insert, Delete, Update and Search XML document and compare the
performance of XML _Enaibled database and Native XML database,
by implementing the same command and control data model. The
experimental results show that Native XML database has better
performance than XML _Enabled database fo storing XML
documents rather than reading from disk which is slow. It' can be
concluded that the Native storage strategy and indexing approach are
efficient enough for inserting, deleting, updating and searching in a
database. '

It is clear through varied research in the field of apply key
constraints to XML documents, it is also still true that
implementation of unique key and foreign key constraints is a

valuable mechanism fo enforcing data integrity.

5.5 Conclusion

In this chapter, the extensive discussion have been presented for achievements of the

three objectives. In section 5.2, the objective of the evaluation the Native XML database

performance in a comparison with XMIL_Enabled database was achieved. In section 5.3, the

objective of the enhancement entity relationship (EER} algorithm of the relational schema to

improve Insert, Delete, Update and Search XML document. In section 5.4, the objective of the

validation the algorithm in Native XML databases was achieved. In all, the proposed method

has better performance compared with the existing schema. The summary oh the objectives

and the outcomes in Table 5.1.

104

CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

Both the XML, Enabled database and the Native XML database provide good graphical
user interfaces. The Native XML database uses a Web-based application, which acts as the
centralized database administration software, while the XML_Enabled database is a Windows-

based application.

The main aim of this thesis was to evaluate the path expressions in Native XML
databases, and then enhance entity relationship (EER) algorithm of the relational schema to
improve Insert, Delete, Update and Search XM document (XML files with a large number of
elements) in Native XML databases. Firétly, start by measure the size of both databases (XED
and NXD). Second, insert XML document one by one. Then, start the functions for Update,
Delete and Search for parts of XML document and whole XML document.

In a relational database, data and structures are defined. Columns represent data. Tables
and relationships form structure. This can be managed well in searching for data and for

database navigation.

XML attributes refer to the data. XML elements and sub elements build the structure.

In addition, attributes do not have the concept of ordering.

105

This is similar to columns in a table. No matter how one changes the position of

a column in a table, the data content inside a table does not change. For the first approach,
tables and columns are both defined as element types. It may be ambiguous to a parser to
“decide the role of an element. The flexibility of searching for child elements is less than
the attribute approach. This is because an element does have ordering meaning. Hence, it

cannot fully represent the location-independence of data from an RDBMS concept.

After analyzing the above results, conclude that XML,_Enables database has better
performance than Native XML database for small data size of XML documents (<=117
MB). XML _Enabled database performance starts to deteriorate with the large data size
(>127 MB), because XMIL,_Enabled database cannot handle the large data size of XML

- documents as efficiently due to conversion overhead. Whereas, Native XML database has
better performance than the XMI,_Enabled database for handling XML documents with
larger data sizes, because Native XML database engine directly accesses XML data

without conversion.

XML _Enabled database and Native XML database have steady and almost same
performance single record: insert, delete, and update. From 65.8 to 183 MB, though the
XML _Enabled database record slightly better performance

The Native XMI, database shows advantages in handling XML documents for
mass record. Whereas it provides better scalability as the database grows. Both inserting
and deleting are almost similar results. For mass updates, the Native XML database stifl
has advantages, but the difference is not as obvious as in the previous case. As the
XML _Enabled database needs one SQL statement to perform mass updates, the Native
XML database achieves this indirectly. We have tried to discover any API of the Native
XML database that provides mass update functionality but without success. It seems that
update functionality is a weakness for this Native XML database. Instead, we have to

“retrieve a single document, change it by another API, and then return the results to the

database or display them through XSL. This consumes quite a lot of running time.

The Native XML database produced better results in the reporting section, which
implies that the Native XML database X-Query has performance gains from query
optimization. Most of the figures show that the XML_Enabled database starts better, but

106

becomes worse as data size grows. The difference becomes obvious as the query becomes

more complicated. Query 14 and Query 15 in figure 4.15 and 4.16 show this.

6.2 Research Contributions

The main objective of this research work was to evaluate and optimization of path
expressions in Native XML databases, by create a Native XML method that Insert,
Delete, Update and Search XML document. The objective has been realized through the

following contributions:

(i) Determine the points of difference between the structure of XML documents and
the structure of the database that contain, to understand negative effects of
increasing the number of these data within databases. These pdints were
determined by added a fixed number of XML documents are assigned to be
imported into the databases. The documents are repeated from the smallest to the
largest for three times, and the average value is taken.

(i) Explore the . functionality of the databases (Native XML ~Databases &
XML _Enabled Databases) in handling big sizes of XML documents. By evaluate
and compare the performance of the data queries in both databases. Then create a
Native XML method that Insert, Delete, Update and Search Big sizes of XML

document,

6.3 Recommendation of Future Work

Traditional relational databases (XML _Enabled databases) suffer of rigidity, in
the sense that suffers in dealing with semi-structured data (XML data). In spite of
expressive power XML querying laﬁguages, they also present this problem. This study
gives a future idea to deal with the problem of giving more flexibility to Native XML
database:

(i) They are much simpler to use and integrate into applications who deal
predominantly with XML data sources. Even though the scalability, feature

sets, and database infrastructure support will need to evolve, they are still

107

(i)

(i)

(iv)

competitive alternatives to RDBMS based solutions and without a doubt,
useful solutions for storing XML data. In regard to database support, we
found that all major XML-enabled databases supported the DOM, Oracle 10G,
IBM DB2 UDB, and MS SQL Server 2005. Each of the navigation and
traversal techniques described above are generally supported using separate
XML indexes that describe the node stored in the CLOB or LOB. Many
NXDs also support the DOM, some of these include eXist, DOMSafeXML,
Infonyte, and Ozone .However, with increasing data size, how to offer more

scalable, faster implementations. It is also the further research work.

Improvement of the effectiveness of hybrid and Native XML retrieval system
by allows efficiently finding the position of a node given its unique id value

in these systems.

Use an algorithm that optimizes the binary search in the function to {raverse
a smaller range of tuples each time by investigating the optimal combination

of Coherent Retrieval and matching elements in the final answer list.

ML has a reputation for being big and unwieldy, but the reputation isn't
entirely deserved. Many of the size and processing requirements for XML
files are the result of inef‘ﬁcieﬁt developmenf tools. Since VID-XML 2.4,
XimpleWare introduces an extended version of VTD-XML capable of
processing XML documents up to-256 GB in size. In the future work, the
research will focus on the large size of dataset in GB/large amount of data,
and provide an explanation of the issues involved in file size and execution
requirements, and how to streamline those to bring XML in line with other

file formats.

108 .

REFERENCES

Abiteboul, S. (1996) . Querying Semi-Structured Data. ICDT. Vol (2). 1-18.

Abiteboul, 8., Buneman, P. and Suciu, D. (1999). Data on the Web: From Relations
to Semlstructured Data and XML (The Morgan Kaufinann Series in Data
Management Systems, Burlington: Morgan Kaufinann.

Akmal B.C., Awais R, and Roberto, Z. (2003). XML Data Management: Native XML
and XMI. Enabled Database Systems. USA: Addison Wesley.

Algerawy, A., Mesiti, M., Nayak, R. and Saake, G. (2011). XML Data Clustermg An
0verv1ew ACM Computing Surveys, Vol. 43, No. 4.

Alpuente, M., Ballis, D., Falaschi, F. and Romero, D. (2013). Rewriting-based repairing
strategies for XML repositories. The Journal of Logic and Algebraic
Programming, 82; 326-352.

Amjad Q. and Kamsuriah, A, (2014). Mcdel-Mapping Approaches for Storing and
Querying XML Documents in Relational Database: A Survey. Journai of
Convergence Information Te_chnology(ICIT). 9(2). 148-155. ‘

Arenas, M., Fan, W., and Libkin, L. (2002, September). What's hard about xml schema
constraints?. In International Conference on Database and Expert Systems
Applications (pp 269-278). Springer Berlin Heidelberg.

Berglund, A., Fernandez, M., Malhotra, A., Marsh, J., Nagy, M. and Walsh, N. (2010)
XQuery 1.0 and XPath 2.0 Data ModeI (XDM) (Second Edition). USA: W3C
MIT, ERCIM, Keio.

Bishop, A.P., Van House, N. and Buttenfield, B.P. (2003). Digital Library Use: Social
Practice in Design and Evaluation. USA: Cambridge, MA: The MIT Press.

Bourret, R. (November 2009) . XML database products.
www.rpbourret.com/xml/’XMLAndDatabases.htm.

Bourret, R. (March 2005). Going Native: Making the Case for XML Databases.
http://www . xml.com/pub/a/2005/03/30/Native.html. I

Bourret, R. (September 2005) . XML and Databases.
http://www.rpbourret.com/xml/XMLAndDatabases.him.

Bourret, R. (March 2007). Going Native: Use cases for Native XML databases.
http://www.rpbourret.com/xml/UseCases.htm. o

Bourret, R, (November 2009). XML and databases (general).
hitp:/fwww.rpbourret.com/xml/index.htm.

109

Bourret, R. (June 2010}, XML Database Products.
http://www.rpbourret.com/sml/ XML DatabaseProds.htm.

Bray, T., Paoli, J., Sperberg, C. M., Maler, E. and Yereau, F. (September 2006) .
Extensible Markup Language (XML) 1.1. http://www.w3.org/TR/xml11/.

Bohme, T., & Rahm, E. (2001). XMach-1: 4 benchmark for XML data management.
In Datenbanksysteme in Biiro, Technik und Wissenschaft (pp. 264-273). Springer
Berlin Heidelberg.

Cahlander, L., Cross, P., Geldiyev, Z., Stallman, A. and Turpin, M. (2010). EXIST-DB
OPEN SOURCE XML DATABASE SOFTWARE ARCHITECTURE
DESCRIPTION. Introduction to Software Architecture.

Chaudhri, A., Rashid, A. and Zicari, R. (March 2003). XML Data Management: Native
XML and XML, Enabled Database Systems. Addison-Wesley Professional; 1
edition.

Chienping, C., Kuenfang, J. and Henghsun, L. (2011). A syntactic approach to twig-
query matching on XML streams. The Journal of Systems and Software.
84:993-1007.

Christophides, V., Cluet, S. and Simeon, 1. (2002). On wrapping query languages and
efficient XML integration. The ACM SIGMOD. pp. 141-152.

Clark, J. {1997). Comparison of SGML and XML World Wide Web Consortium Note.
hitp:/fwww.w3.org/TRANOTE-sgml-xm]-971215. (15 December 1997).

Cugnasco, C., Hernandez, R., Becerra, Y., Torres, J. and Ayguad, E. (2013). Aeneas: a
tool to enable applications to effectively use non-relational databases. J.
Procedia Computer Science. 18: 2561 — 2564,

Damiani, E. and Tanca, L.(2000). Flexible Query Techniques for Well-formed XML
Documents. Fourth International Conference on knowledge Based
Intelligent Enginem’ng Systems &Allied Technologies, Vol (2), 708 - 711.

DeveloperWorks, Processing WSDL in Python.
http://eduunix.ccut.edu.cn/index2/pdf/python_wdsl.pdf.

Deutsch, A., Fernandez, M. F., and D. Suciu. (1999). Storing semistructured data with
STORED. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data,
pages 431442, Philadelphia, June.

Duka, A.V. (2010). Modeiling of an Electromagnetic Levitation System
using a Neural Network . Automation Quality and Testing Robotics (AQTR),
IEEE International Conference, Volume: 3 ,pp.1 —6.

110

Dweib, A, Awadi, S. E. F. Alrahman, and J. Lu. (2008) “Schemaless approach of
mapping XML document into Relational Database,” in Proc. of the 8th IEEE
International Conference on Computer and Information Technology, CIT 2008,
Sydney, Australia, pp. 167-172.

Egbert, M. (2007). Introduction to XML Database Technologies. EPCC. 1-34.

El-Sayed, M., Dimitrova, K. and Rundensteiner, E. (2005). Efficiently supporting order
in XML query processing. Data & Knowledge Engineering, 54: 355-390.

Erwig, M. (2003). Xing: avisual XML query language. Journal of Visual Languages and
Computing. 14: 5-45.

Fayolle, A. (2002). XML and Python Tutorial. euro python conference.
http://download.logilab.org/pub/talks/XMI Tutorial.pdf,

Fernando, C. M. (2012). HandSpy: managing experiments on writing studies. Master
Thesis. Portugal Umvemdade of Porto.

Franceschet, M. (2005, August). XPathMark: an XPath benchmark for the XMark
generated data. In International XML Database Symposium (pp. 129-143).
Springer Berlin Heidelberg.

Frasincar, F., Houben, G. and Pau, C. (2002). XAL: an algebra for XML query
optimization. The 13th Australasian Database Conference. pp. 49-56.

G. Xing, Z. Xia, and D. Ayers (2007). “X2R: a system for managing XML documents
and key constraints using RDBMS,” in Proc. of the 45th annual southeast
regional conference, Winston-Salem, ACM: Notth Carolina.

Gabriel, R.U. and Myecroft, A. (2013). Source-Code Queries with Graph Databases—
with Application to Programming Language Usage and Evolution. Science of
Computer Programming. 1-9.

Gerrit, H. (2001).Solving reusability problems of online learning materials. Journal of
Campus-Wide Information Systems:18(4):146-152.

Glas, W. (2002). Xm! And Databases. Master. Thesis. University of Liverpool, UK.

Google Developers Group. (October 20 13). Query Language Reference (Version 0.7).
https://developers.google.com/chart/interactive/docs/querylanguage .

Zhang, H. and Tompa, F. W. (2004) “Querying XML Documents by Dynamic
Shredding,” in DocEng’04, Milwaukee: Wisconsin: USA.

Haiwei, Z. and Xiaojie, Y. (2009). Schemas Extraction for XML Documents by XML

Element Sequence Patterns. The Lst International Conference on Information
Science and Engineering (ICISE). 5096- 5099. '

111

Harold, E. R. (2003). Effective XML: 50 Specific Ways to Improve Your XML. USA:
Addison- Wesley.

Harrusi, S., Averbuch, A. and Yehudai, A. (2006).
XML Syntax Conscious Compression. Data Compression Conference, pp. 10.

Haw, S. and Lee, C. (2011). Data Storage Practices and Query Processing in XML,
Databases: A Survey. J. Knowledge-Based Systems. 24: 1317-1340.

Henk, 1. G. (2006). Native XML databases. 5th Twente Student Conference on IT, Pp.
765-771.

Hiddink,G. (2001). ADILE: Architecture of a Database-Supported Learning
Environment. University of Twente, Netherlands JILR Volume 12, Number 2;

ISSN 1093-023X. '

Houman, M. K. (2004). Performance Analysis of Xquery vs. SQL. Master. Thesis.
University of Wisconsin Platteville, USA.
https://pypi.python.org/pypi/4Suite/1.0b1.

Hunter, D., Cagle, K., Chris, D., Kovack, R., Pinnock, J. and Rafter. (2001).
Beginning XML, 2nd Edition. UK: Wrox.

Ishikawa, H., Kubota, K., Kanemasa, Y. and Noguchi, Y. (2007). The Design of a
Query Language for XML Data.
hitp:/fieeexplore.ieee.org.ezproxy. ump.edu.my/stamp/stamp.isp?tp=&arnumber=

795304.

Jagadish, H., Al-Khalifa, S., Chapman, A., Lakshmanan, L., Nierman, A., Paparizos, S.,
"M.Patel, J., Srivastava, D., Wiwatwatiana, N., Wu, Y, and Yu, C.
http://www.eecs.umich.edu/db/timber/files/timber.pdf.

Jeffrey, D. U. and Jennifer, W. (1997). First Course in Database Systems. USA:
Prentice Hall Science and Math.

Jelena Mamdcenko. (2004). INFORMATION RESOURCES, Introduction to Data
Modeling and MSAccess Code. Lecture Notes, Vilnius Gediminas Technical
University: FMITBO.

Jiang, H. and Yang, Q. (2011). A Keyword-based Query Solution for Native XML
Database. IEEE.

Ji:iun, W. and Shan, W. (2005). SEEKER: Relational database information retrieval
based on keyword. J. Software. vol. 16, No. 7.

Jing Z., Bo, L. and Yawet, D. (2011). An XML Data Placement Strategy for Distributed

XML Storage and Parallel Query. 12th International Conference on Parallel and
Distributed Computing, Applications and Technologies, pp 433-439.

112

Jinggiang,H., Donggqing, Y., Tengjiao, W. and Shengyue, J. (2004). XML fuli-text
search design and implementation in relational database CoDB. J. Computer
Research and Development. vol. 41 Supplement.

Jinsha, Y., Xinye, L. and Lina, M. (2008).
An Improved XML Document Clustering Using Path Feature.Fifth International
Conference on Fuzzy Systems and Knowledge Discovery, Vol (2), pp.400-404.

Jonathan, Robie. (2003). SQL/XML, XQuery, and Native XML Programming
Languages.

Kalinin, A. (2009). Data Guide-based Distribution for XML Documents. Colloquium on
Database and Information Systems, Saint-Petersburg, Russia.

http://cs.brown.edu/~akalinin/papers/dataguide-xml.pdf.

Ki Min, J., Hee Lee, C. and Wan Chung, C. (2008). XTRON: An XML data
management system using relational databases. J. Information and Software
Technology. 50: 462-479. :

Kolar, P. and Loupal, P. (2006). Comparison of Native XML Databases and
Experimenting with INEX. V. Sn’a"scl, K. Richta, J, Pokomn"y (Eds.). pp. 116—
119.

Leigh, D. (October 2001). XML and Databases? Follow Your Nose. I. XML- Deviant.
http://www.xml.com/pub/a/2001/10/24/follow-yr-nose.htm|?page=1. '

- Leonardi, E., Hoai, T., Bhowmick, S. and Madria, 8. {2007). DTD-DIFF: A change
detection algorithm for DTDs. J Data & Knowledge Engineering 61: 384-402.

Lin, X., Wang, N,, De Xu, And Zeng, X. (2010). A novel XML keyword query
approach using entity subtree. The Journal of Systems and Software. 83: 990~
1003. :

Lin, X., Wang, N., Zeng, X. and Sun, Y. (2013). XML normalization based on entity
segments. J. Information Sciences. 239: 85-95.

Liu, R. (2004). Xindice: XML Database. Independent Research: UW Messenger.
http://depts.washington.cdu/dslab/reports/ryan_wi04.pdf.

Lohrey, M., Maneth, S. and Mennicke, R. (2013). XML tree structure compression
using RePair. J. Information Systems. 38: 1150-1 167.

Mabanza, N. (2010). Analyzing the Impact of XML Storage Mode is on the
Performance of Native XML Database Systems — A Case Study. Seventh
International Conference on Information Technology. '

McHugh, J., Abiteboul, $., Goldman, R., Quass, D., Widom, I. and Lore. (1997). A
database management system for semistructured data, ACM Sigmod Record. 26:
"54-66.

113

Melton, J. and Buxton, S. (2006). Querying XML XQuery, XPath, and SQL/XML in
context. USA: Morgan Kaufmann Publisher.

Nicola, M. and Kumar, P.C. (2010). DB2 pure XML cookbook: Master the power of
the IBM Hybrid Data Server. USA: IBM Press.

Papamarkos, G., Zamboulis, L. and Pouiovassifis, A. (2011). XML Databases. Report.
UK: University of London.

Pardede, E., Rahayu, J.W. and Tania, D. (2008). XML data update management in
XM]._Enabled database, Journal of Computer and System Sciences 74:170—195.

Pavlovie, G. L. (2007). Native Xml Databases vs. Relational Databases in Dealing with
XML Documents. Kragujevac J. Math.181-199.

Pokomy. J. (2008); XML Databases: Principles and Usage. Information systems
development series. Pp. 37 -38 Proceedings by deepX Ltd., pp. 1-18.

Schmidt, A., Waas, F., Kersten, M., Carey, M. J., Manolescu, I., & Busse, R. (2002,
August). XMark: A benchmark for XML data management. In Proceedings of
the 28th international conference on Very Large Data Bases (pp. 974-985).
VLDB Endowment.

Schmidt, A,, & Wass, F. (2010, April). Kersten," XMark: a benchmark for xm/] data
management. In Proceedings of IEEE international conference on Advanced
Information Networking and Applications (pp. 1012-1019).

Schroeder, R., & Hara, C. 8. (2014). Towards Full-fledged XML Fragmentation for
Transactional Distributed Databases,

Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F. Naughton,
{(1999). “Relational Databases for Querying XML Documents: Limitations and
Opportunities,” in VLDB, pp. 302-314.

Shanmugasundaram, J., Shekita, E., Kiernan, J., Krishnamurthy, R., Viglas, E.,
Naughton, J. and Tatarinov, I. (2011). A General Technique for Querying XML
Documents using a Relational Database System. SIGMOD Record, Vol.30,
No.3.

Shipman, J. (2007). Python and the XML document Object Oriented Model (DOM)
with 4Suite. New Mexico Tech.

Sipani, S., Verma, K., John A. M. and Aleman, M. B. (2004). Designing a high-
performance database engine for the Db4XML Native XML database system.
The Journal of Systems and Software. 69: 87—104.

Stayton, B. (2007). DocBook XSL: The Complete Guide Fourth Edition. USA:
Sagehill Enterprises.

114

The Apache XML Project Group. (August 2011). Apache Xindice.
http://xml.apache.org/xindice/.

Thomas, S. W., Snodgrass, R. T., & Zhang, R. (2014). Benchmark frameworks and
tBench. Software: Practice and Experience, 44(9), 1047-1075.

Tzvetkov, V. and Xiong, W. (2005). DBXML - Connecting XML with Relational
Databases.Proceedings of the 2005: The Fifth International Conference on Comp
uter and Information Technology (CIT’05).

Vaidya, P. and Plale, B. Benchmark Evaluation of Xindice as a Grid Information
Server. hitp://www.cs.indiana.edu/pub/techreports/TR585.pdf.

Vavliakis, K., Grollios, T. and Mitkas, P. (2013). RDOTE- Publishing Relational
Databases into the Semantic Web. The Journal of Systems and Sofiware. 86: 89—
99.

Wang, J., Horng, I, Liu, B. and Fan, K. (1996). A Genetic Algorithm for Structural
Query Processing in Hypertext Systems. IEEE. 506-511. - c

Williams, K, Brundage, M., Dengler, P., Gabriel, J., Hoskinson, A., Kay, M., Maxwell,
T., Ochoa, M., Papa, and J., Vanmane, M., (2000).Professional XML Databases, Wprox
Press Limited, Page(s) 47-64

W3C. 2011Timeline of the W3C technologies related to the XML. News Archive.

Xiaomei, Y. and Heng, D. (2010). Native XML Database Design and Realization based
on MDA. IEEE, pp. 1-4.

Xiaomin, W., Yanlin, S. (2005). XQuery full-text search. Computer Engineering and
Applications.- B

Xin, Y., He, Z. and Cao, J. (2010). Effective pruning for XML structural match queries.
J. Data & Knowledge Engineering. 69: 640-659.

Xinping, G., Cordy, J.R. and Deén, T.R. (2003). Unique Renaming of Java
Using Source Transformation. The Third IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM’03). 151 - 160.

XML News. (October 1999). XML basics. http:/www.xmInews.org/docs/xml-
basics.html..

Xu, Y., Guan, J., Li, F. and Zhou, S. 2013. Scalable continual top-k keyword search in
relational databases. J. Data & Knowledge Engineering. 86:206-223. '

Yan, L. and Ma, ZM. (2013). Formal Translation from Fuzzy EER Model to Fuzzy
XML Mode!. J. Expert Systems with Applications.

115

Yang, Y., Hai-ge, L. and Xin, H. (2010). Querying XML Data Based on Improved
Prefix
Encoding. International Conference on Computer Application and System Mode
ling, vol 10. Pp. 521-525.

Yao, B. B, Ozsu, M. T., & Khandelwal, N. (2004, March). XBench benchmark and
performance testing of XMI. DBMSs. In Data Engineering, 2004, Proceedings.
20th International Conference on (pp. 621-632). IEEE.

Yipeng, J., Yan, C. and Yan, C. (2009). Study on XML Traffic Information Basic Data
Effectiveness Validation. The 1st International Conference on Information
Science and Engineering (ICISE). 5166-5168.

Ykhlef, M. and Algahtani, S. (2007). A survey of graphical query languages for XML
data. Journal of King Saud University — Computer and Information Sciences. 23:
59-70.

Yu, Y. (2005). Benchmarking of Native XML Database Systems. Master. Thesis.
University of Wollongong, Australia.

Zhongyi, W. (2009). Full-text search method and prototype implementation based on
XML. Huazhong Normal University.

Zhou, C., Liu, Z. and Gao, L.(2009). Declaration of RoHS Compliance based on Smart

Document and XML Database. The Ninth International Conference on
Electronic Measurement & Instruments (ICEMI). 4-1063.

116

APPENDIX A

LIST OF PUBLICATIONS

H.1: HOW DOSE XML LANGUAGE HELP THE DIGITIL LIBRARIES- The
National Conference on Postgraduate Research 2012 (NCON-PGR), 8th-9th September
2012, Universiti Maldysia Pahang, organized by UMP Post Graduate Office and Jabatan
Hal Ehwal Akademik dan Antarabangsa (JHEAA)

H.2: GOING NATIVE: Native XML Database vs. Relational Database - International
Conference on Computational Science and Information Management ({CoCSIM), 3rd-
5th December 2012, Toba Lake, Indonesia. '

H.3: Going Native: Native XML database vs. XML_Enabled database - International
Conference on Software Engineering & Computer Systems (ICSECS - 2013), 20-22
August 2013, Organized by Faculty of Computer Systems and Software Engineering,
Universiti Malaysia Pahang, Gambang, Pahang, Malaysia. :

H.4: Going Native: Indexing architecture of eXist-db_ An Open Source Native XML
database system - IEEE TENCON 2013, 22nd - 25th October, 2013, The IEEE Region
10 Conference, Xi’an, China. ‘

H.5: PERFORMANCE ANALYSIS OF XML Enabled database VS, Native XML
database - The CREATION, INNOVATION TECHNOLOGY & RESEARCH
EXPOSITION (CITREx 2014), Sth-6th March 2014, University Malaysia Pahang,
Malaysia.

117

APPENDIX B

Native XML Database (eXist db)

SR - - 8303 Adaun Clang

ﬁ'e Took Conpection Options Help

e
tEm

am Persmppnd
t-nwn

PR -
rtem

2lp o4 7 Ler help.
wnlaviignr §
" t comands wee
il 4t roliectien exwesnrs
frd (eOHection” ..] E3det detieer collectica

balp oz ©fer balp,
dt1fdns T
rat comrasds

Skat coll

(B4 L3118 $avLerad vplord t1le o di1ectory ia the celsbaie Rty I e s i
[iy |:ru.n-r} Cpea LAC ERFOSrCE IoE £41Ling SEiE Tetsouce] oges the keped ¢
r_fﬁl <ol lectdea CEMATe BOW dLT-COliechiizh {8 fmivwes Atoes calleetion Evkale bf |
| Ea celieptios k '
| TR Becumeay frave domEens feow current collectice Th dovummar e
Theel e Eecie celletisn Bl g CAED

t fhep vl | 3e4 groparcy. calling bt withost o5 {kiyreiine et propt ‘

Argenl #nanI Sabfedt Ackbirgr, . £ 3
nlu{me JEaCuseat | welidale wx) dargmest wlth epates xed valldine Jdocammny} nimu Rl documest Y1 bR Ayrten
Tewagey £atal L
[aliGale [dorumect) fEaTAT) VRIIMAC ML Jorsnesl Witk 5 validie {docament] tgimmarf vilidsie xal docmest wits A
peciiisd qramar document.

FECLELEA JTaTTal A3Caedl.

| nlmﬂlsﬁa}él e

Clrowp

AX58 A Clrtnt CORnTlEd -« adoma aridb #5131 £feniedded - 2Xi51- s pirs st Adrein Chiars ©8

fHe TYoaols Connection QOptions Help

Al Rin] e &ﬁ& %ﬂaol

Resource Date Opmer 1 Groyug
b

] {admtn
di

oCemmit SwiMessage
Inbox rowur-Lir-u
CAAdapters - rwir-ur-
MDMDomain0kiacis . [oveur-ur-y
MDMRemimagas TWAIT-LIr-L1
Mbhstgration PWLTUr 4
PROVISIONING PWUr-LIr-Ld
Reperting WL U
UpdateReport NWUr-Lir-
amalto OBECTSActveRoutingOrdervz [rwdr-Lie =
amaltoDBECTSBackgroundjoh rer-2iray
ameitoDHIECTECompletedRoutingCrdervz rear=ar-u
emaitoOBIECTSConfigurationinfo Wl -LF-
zmaltoOAlECTSDatalluster IrwLIr-ur-u
{amakoCAECTEDataMare! DWLIr-UP-tf

type help ar ¥ for help.
eﬁﬂ:fﬂg: P

aXist Admin Client connected - admin@xmidb:exist:flocalhost: Bogd/existixmirpc

et
o ey e -
Fap LE1 NedAr Adbocenes g Lore
R T P R - reee - mar - Ereor Ticm: eary
L T

"1 seery vorsiom Y4
2

3 raoord medule ramesp

Tequeat- WLIE Frenlat—dh, acp/nirkey taabst ")

4 drmort Foclle nomadiost sessioeThilpislexist. db segfagmry/Eerion’]

S iemort PeR.1R FEOATSI0 WTLLy RLLAZAEYTSR Oh. Grgagutry /il

& Gexlens dotiom exestracriakize Cethodexhtol modio-nre-testeoeml o)

b4

[

% coclera Aumsiied iecoiigrifackeC)} as ka:sleingd

1e Tew 5l 3- radfibiget-paroete=C 3dT, T3

ETY 15k fremEontfakn reascrtiect Comtest pathl)

12 tet Socthfredruce Rnietl (loeordeatPath} Srent /o foct tar Farooos £ F it rad e A P data
Tt rmy=s 2 u e ancade—Far—ue i ' D, Wlae T L SiE, T macede - for-ur i {1300

EE] reluen SpatkReraagses

a3

18

1k gxtlwre fumgrisn teen! cemdel) By xstatriegl

17 Irt SmEe Lo e tibogtbepomnegtes —aiaT, ")

an rabira fecds

EL I)

E

21

T3 e BenrrdabBein 1o cemueFtigat-contasdpathCY

23 rrewen
4Rl T s A 0398R a1 -

28 LAz iar-Th i w302 TORE forms
26 enree N T Afean . ana-cefang Pt AT s
z7 O I Y PN SRS S TP e G

118

