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ABSTRACT 

Assembly Line Balancing (ALB) is an attempt to assign tasks to various workstations 

along a line so that the precedence relations are satisfied and some performance 

measures are optimised. In this research, a few tasks that use similar resources will be 

assigned in the same workstation by ensuring that it does not violate the precedence 

constraint and that the total processing time in each workstation is approximately the 

same and does not exceed the cycle time. Assumption by previous researches that any 

assembly task can be performed in any workstation encourages the author to focus on 

the resource usage in ALB. Limited number of resources in the industry also becomes a 

vital influencer to consider this constraint in ALB. Apart from that, Elitist Non-

Dominated Sorting Genetic Algorithm (NSGA-II) has not yet been implemented by 

previous researcher in the optimisation of Assembly Line Balancing Type-E (ALB-E) 

itself with resource constraints. The aim of this research is to establish a mathematical 

model for ALB-E with resource constraints (ALBE-RC). This research is proposed to 

be conducted in three main phases.  After conducting literature review, the modelling 

phase will be performed. In the second phase of this research, an algorithm will be 

developed to optimise the problem. Later, the optimisation algorithm will be tested and 

verified using test problems from literature. The third phase of this research is, an 

industrial case study will be conducted for the purpose to validate the mathematical 

model and the optimisation algorithm. This research gap was identified when none of 

the previous research considered machine, tool, and worker constraint in ALB-E. In this 

research, a Genetic-based Algorithm was used as an optimisation approach. The Elitist 

Non-Dominated Sorting Genetic Algorithm (NSGA-II) has been proposed to optimise 

ALBE-RC. The optimisation result indicated that the NSGA-II algorithm has better 

performance in finding non-dominated solution due to small error ratio and small 

generational distance as compared to other algorithms like Multi-Objective Genetic 

Algorithm (MOGA) and Hybrid Genetic Algorithm (HGA). The results indicate that 

NSGA-II has the ability to explore the search space and has better accuracy of solution 

towards Pareto-optimal front. The validation phase from the industrial case study 

concluded that the proposed methodology and algorithm can be implemented in 

industries. The cycle time of existing layout had been extensively decreased from 16.1 

seconds to 13.1 seconds after the optimisation. The number of workstations was 

decreased after the optimisation from 17 workstations to nine (9) workstations. 

Meanwhile, the number of resources used were reduced from 43 resources to 40 

resources. Apart from that, the percentage of line efficiency improved from 33.8% to 

78.4%. These results indicated that the developed methodology and the proposed 

algorithm can reduce the utilisation of resources, workstations and cycle time. In fact, 

the aforementioned approach also can increase the efficiency of assembly process as 

well as enhance the industrial productivity. 
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ABSTRAK 

Pengimbangan Rangkaian Pemasangan merupakan usaha untuk mengagihkan tugasan 

kepada pelbagai stesen kerja dalam rangkaian supaya tertib hubungan dipatuhi dan 

ukuran prestasi dapat dicapai pada tahap optimum. Dalam kajian ini, beberapa tugasan 

yang menggunakan sumber yang sama akan diagihkan dalam stesen kerja yang sama 

dengan mematuhi kekangan tertib hubungan serta memastikan jumlah masa 

pemprosesan di setiap stesen kerja adalah lebih kurang sama dan tidak melebihi masa 

kitaran. Penyelidik terdahulu yang mengandaikan bahawa mana-mana tugasan 

pemasangan boleh dilakukan di mana-mana stesen kerja telah mendorong penyelidik 

untuk mempertimbangkan penggunaan sumber dalam ALB. Jumlah sumber yang terhad 

dalam industri juga menjadi satu pengaruh yang penting untuk mengambil kira 

kekangan ini dalam ALB. Selain itu, Elitist Non-Dominated Sorting Genetic Algorithm 

(NSGA-II) masih belum digunapakai oleh penyelidik terdahulu dalam pengoptimuman 

Pengimbangan Rangkaian Pemasangan Jenis-E (ALB-E) dengan kekangan sumber. 

Kajian ini bertujuan untuk menghasilkan satu model matematik untuk ALB-E dengan 

kekangan sumber (ALBE-RC). Kajian ini dicadangkan untuk dijalankan dalam tiga 

fasa. Selepas menjalankan kajian literasi, fasa memodelkan masalah akan dilakukan. 

Dalam fasa kedua kajian ini, penghasilan algoritma dilakukan untuk mengoptimumkan 

masalah. Kemudian, ujian dan pengesahan algoritma akan dilakukan menggunakan 

permasalahan daripada sumber literasi. Fasa ketiga kajian ini adalah menjalankan kajian 

kes industri bagi tujuan pengesahan model matematik serta algoritma.  Masalah ini 

timbul apabila penyelidik terdahulu tidak mempertimbangkan kekangan mesin, sumber 

dan pekerja dalam ALB-E. Dalam kajian ini, pendekatan pengoptimuman berasaskan 

Algoritma Genetik telah digunakan. Elitist Non-Dominated Sorting Genetic Algorithm 

(NSGA-II) telah dicadangkan untuk mengoptimumkan ALBE-RC. Hasil 

pengoptimuman menunjukkan bahawa algoritma NSGA-II mempunyai prestasi yang 

lebih baik dalam mencari penyelesaian tidak dominan dan mempunyai ralat kecil serta 

jarak generasi yang kecil berbanding dengan algoritma lain iaitu Multi-Objective 

Genetic Algorithm (MOGA) dan Hybrid Genetic Algorithm (HGA). Ini menunjukkan 

bahawa NSGA-II mempunyai keupayaan untuk meneroka pencarian ruang serta 

mempunyai ketepatan penyelesaian yang lebih baik ke arah penyelesaian Pareto yang 

optimum. Fasa pengesahan daripada kajian kes industri menyimpulkan bahawa 

metodologi  dan algoritma yang dicadangkan dapat diguna pakai dalam industri. Masa 

kitaran bagi susun atur yang sedia ada telah menunjukkan penurunan mendadak 

daripada 16.1 saat kepada 13.1 saat selepas pengoptimuman. Bilangan stesen kerja juga 

telah berkurang selepas pengoptimuman daripada 17 stesen kerja kepada sembilan 

stesen kerja. Di samping itu, bilangan sumberjuga menunjukkan penurunan daripada 43 

sumberkepada 40 sumber. Selain itu, peratus kecekapan rangkaian juga meningkat 

daripada 33.8% kepada 78.4%. Keputusan ini menunjukkan bahawa metodologi dan 

algoritma yang dicadangkan dapat meningkatkan kecekapan proses pemasangan serta 

mempertingkatkan produktiviti industri. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

This chapter gives a short description of the research background including the 

problem statement, followed by research objectives, research scope and significant of 

research. In the next section, the structure of this thesis is briefly explained and in the 

last part, the chapter summary is presented. 

1.2 Research Background 

Assembly line is one of the industrial production systems used to produce 

finished goods in an industry. It has been widely employed in many production 

industries such as automotive, electronics and other consumer durable production to 

enhance the efficiency of production system (Mozdgir et al., 2013). The rapid 

development of manufacturing industry is caused by increasing customer demands. 

This scenario forced manufacturers to maximise the production output in order to meet 

customers’ demands. This can be achieved by eliminating process inefficiencies (i.e. 

minimise the number of workstations and cycle time) as well as by utilising resources at 

an optimum level. 

Assembly Line Balancing (ALB) problem is defined as assigning tasks to 

workstations to optimise some performance measures by reducing the percentage of 

idle time or balance delay of assembly line (Chen et al., 2006; Ranjan and Pawar, 

2014). This research aims to maximise the production rate and achieve the number of 

workstations, while satisfying some particular constraints, such as (i) precedence 
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constraints and (ii) the total processing time assigned to each workstation must not 

exceed the cycle time (Suwannarongsri and Puangdownreong, 2008). 

Due to limited number of resources in industry, it is necessary to consider the 

problem in assembly optimisation. This research intends to focus on multi-objective 

optimisation of Assembly Line Balancing Type-E (ALB-E) problem of a simple model. 

1.3 Problem Statement 

The main problem with the existing research in ALB-E is the assumption that 

any assembly task can be performed at any workstation (Scholl & Becker, 2006; Zhang 

et al., 2007; Zhang et al., 2008; Hamta et al., 2013). However, each workstation has its 

own capabilities and specialisation. This situation has been highlighted as one of the 

serious problems in the industry (Ağpak and Gökçen, 2005; Bautista and Pereira, 2007). 

This finding is consistent with the study by Sungur and Yavuz, (2015) that emphasizes 

workers’ assignment to be mandatorily based on their qualification. 

Rapid growth in manufacturing becomes a vital influencer to consider the usage 

of resources due to limited number of machines and tools.  Although a small number of 

researches considered resource constraint in their works, none of them focused on 

resource constraint in ALB-E especially in terms of machine, tool and worker 

constraints (Ağpak and Gökçen, 2005; Browning and Yassine, 2010; Corominas et al., 

2011 Battaïa and Dolgui, 2013). It is important to consider these constraints due to the 

limited number of resources where the utilisation of these resources can be minimised.  

 In the past years, the Genetic Algorithm (GA) approach has attracted the 

attention of researchers to solve issues related to ALB (Gurevsky at al., 2013; Zacharia 

and Nearchou, 2013; Al-Hawari et al., 2014). This finding is consistent with the finding 

of past studies that used similar approach (Scholl & Becker, 2006; Suwannarongsri & 

Puangdownreong, 2008; Wei & Chao, 2011). Till date, to the best knowledge of the 

researcher, none of the published work employed Elitist Non-Dominated Sorting 

Genetic Algorithm (NSGA-II) in the optimisation of ALB-E in terms of resource 

constraint. 
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For that reason, it is crucial to propose NSGA-II to address the research gap as it 

is capable to solve real-world optimisation problem for multi-objective functions (Chica 

et al., 2012; Guo et al., 2014; Zhao et al., 2015).  In comparison with the old version of 

Non-Dominated Sorting Genetic Algorithm (NSGA), the NSGA-II implements elitism-

preserving technique (Deb, 2001). The findings from past studies by Deb et al. (2002) 

and Zhao et al. (2015) concluded that NSGA-II has better convergence towards Pareto-

optimal front. The solutions generated by NSGA-II are geared towards Pareto-optimal 

front. However, the existing algorithms such as Multi-Objective Genetic Algorithm 

(MOGA) usually have slow convergence (Fonseca and Fleming, 1993). Based on 

literature review, there are no studies available on the implementation of NSGA-II to 

optimise the ALB-E with resource constraint and this has motivated the researchers to 

conduct the present study. 

1.4 Research Objective 

The objectives of this research are: 

i. To study the ALB-E problem and establish a mathematical model for ALB-E 

problem with resource constraints (ALBE-RC). 

ii. To optimise the ALBE-RC using Elitist Non-Dominated Sorting Genetic 

Algorithm (NSGA-II). 

iii. To validate the mathematical model and optimisation of algorithm through an 

industrial case study. 

1.5 Research Objective 

The scope of this research are stated as follow: 

i. This research studies on the optimisation of Assembly Line Balancing Type-E 

problem with resource constraint (ALBE-RC). This problem is limited to a 

simple model of assembly problem.  
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ii. In this research, only GA-based algorithm is considered. For the optimisation of 

problem, the Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) is 

proposed.  The algorithm will be compared within GA-based algorithm. 

 

iii. The validation method of the optimised algorithm is conducted using test 

problems from literature. In addition to that, the algorithm and mathematical 

model are validated through an industrial case study to ensure the applicability 

of the optimisation results. The industrial case study is only focused on and 

conducted in an electronic company. 

 

1.6 Significance of Research 

By achieving the aforementioned objectives, the research will increase the 

efficiency of assembly process. This research targets to reduce the number of 

workstation in an assembly as well as to minimise the cycle time by managing the 

number of resource used. Lower cycle time and number of workstation used will 

enhance the line efficiency. Apart from that, by considering the resource constraints,  

the resource usage will be significantly reduced in an assembly process.  

By proposing an efficient way using the proposed algorithm and mathematical 

model to assemble a product, the long term implication of this research will be reflected 

on the enhanced industrial productivity. The modelling phase involves the steps to 

transform a product into a precedence diagram and also the steps on how to transform 

the precedence diagram into a digital format language that can be understood by a 

computer. Then, the NSGA-II will find the optimal solutions according to the objective 

functions to assemble a product. 
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1.7 Structure of Thesis 

This thesis consists of six chapters. The summary of each chapter’s content is 

detailed out as follow: 

Chapter 1 introduces the research and clarifies the problem statement, research 

objectives and research scope. Lastly, the significance of research is discussed in this 

chapter. 

Chapter 2 reviews the previous work on Assembly Line Balancing (ALB), 

specifically on a single model for Type-E problem. In this chapter, the review 

emphasises problem modelling, objective function and also the optimisation algorithm 

used in ALB-E.  Apart from that, literature review is performed to identify research 

gaps.    

Chapter 3 details the research methodology. It explains the idea of how the 

research is conducted. The flow of the research methodology begins with problem 

modelling, followed by algorithm development, testing, industrial data collection, 

discrete event simulation and finally validation.  

Chapter 4 presents the development of optimisation algorithm, NSGA-II and 

also the finding of the research. This chapter validates the performance of the proposed 

algorithm. A computational experiment is done to test the performance of NSGA-II 

algorithm using generic problem from literature. Later, the performance of the proposed 

algorithm is compared with other comparison algorithms based on Genetic Algorithm. 

Chapter 5 validates the mathematical model and the optimisation through an 

industrial case study. The industrial case study is performed to verify the proposed 

model and NSGA-II algorithm from the industrial experts. The collected data is 

modelled based on the proposed model as outlined in Chapter 3, section 3.1. 
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Chapter 6 summarises and concludes the research work and outlines the 

contribution of study to the knowledge pool. Apart from that, this chapter also discusses 

the limitations of research and provides some recommendations for future research. 

1.8 Chapter Summary 

In summary, this chapter explains the research background on Assembly Line 

Balancing. The problem statement is also highlighted in this chapter which leads to the 

discussion on research objectives. In addition to that, the scope and the significance of 

this research are also explained in this research. Last but not least, this chapter attempts 

to simplify the structure of the thesis by presenting the summary of each chapter.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

This chapter serves as a platform to review literature on Assembly Line 

Balancing. Detailed descriptions of previous work on Assembly Line Balancing of 

Type-E problem (ALB-E) are also discussed. Literature review on Genetic Algorithm 

for ALB-E is also covered in this chapter followed by chapter summary. 

2.2 Assembly Line Balancing 

Assembly Line Balancing (ALB) is the decision problem of distributing 

assembly task among workstations with respect to some objectives to manufacture a 

finished product (Rashid et al., 2012; Grzechca and Foulds, 2015). It has been widely 

used in production system as it can increase the efficiency of the system 

(Nourmohammadi & Zandieh, 2011). The assembly task must be assigned to 

workstations without violating the precedence constraints (Sungur & Yavuz, 2015). The 

total assembly time taken at each workstation must also be approximately the same and 

should not exceed the cycle time (Mozdgir et al., 2013).  

On the other hand, the number of workstations should also be optimised. These 

conditions must be respected in order to achieve line balance. ALB is a type of NP-hard 

optimisation problem (Otto et al, 2011; Wei & Chao, 2011; Rashid et al., 2012). 

Generally, this type of problem has an extremely large number of feasible solutions 

(Roshani et al., 2012; Battaïa and Dolgui, 2013; Hamta et al., 2013; Morrison et al., 

2014) . However, it will be time consuming to find optimal solutions within the 
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extremely large search space (Ranjan & Pawar, 2014). Therefore, an advanced 

approach of algorithm is necessary to solve the large-scale of problems. 

ALB can be classified into two categories: Simple Assembly Line Balancing 

Problems (SALBP) and General Assembly Line Balancing Problems (GALBP) (Becker 

& Scholl, 2006; Boysen et al., 2007). The most notable assembly line is SALBP is 

employed when the same product is being manufactured from the line. This type of 

problem is classified into four groups with respect to the objective functions (Becker 

and Scholl, 2006).  

i. Simple Assembly Line Balancing Type-1 (SALB-1) aims to minimise the 

number of workstation on the line for a fixed cycle time.  

ii. Simple Assembly Line Balancing Type-2 (SALB-2) aims to minimise the 

cycle time for a fixed number of workstation on the line.  

iii. Simple Assembly Line Balancing Type-E (SALB-E) aims to maximise the 

efficiency of the line by simultaneously minimising the number of workstation 

and the cycle time.  

iv. Simple Assembly Line Balancing Type-F (SALB-F) aims to determine the 

feasible line with a combination of cycle time and number of workstation. 

 

 

Other problems which are not included in the simple assembly line category are 

considered as Generalised Assembly Line Balancing (GALB) problems. GALB is a 

very large and is an extended type of Assembly Line Balancing problem. Mixed-model 

Assembly Line Balancing (MALB) or Mixed-model Sequencing Problem (MSP) and 

also U-line Balancing Problem (UALBP) are categorised as GALB problem (Boysen et 

al., 2007). The classification of Assembly Line Balancing problems is illustrated as in 

Figure 2.1. 
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Figure 2.1  Classification of Assembly Line Balancing 

Previous studies had primarily concentrated on SALB-1 (Emeke & Offiong, 

2013; Armin Scholl & Becker, 2006). Research findings by Ponnambalam et al. (2000) 

and Chong et al. (2008) are also inclined towards the study on SALB-1. Meanwhile, the 

paper presented by Gu et al. (2007), Zhang et al. (2007) and Zhang et al. (2008) focused 

on SALB-2. Similarly, the work presented by Suwannarongsri et al. (2007) also 

discussed on SALB-2 problem.  

However, little attention had been paid on SALB-E as it is more complicated as 

compared to SALB-1 and SALB-2 (Scholl & Becker, 2006; Suwannarongsri & 

Puangdownreong, 2008;  Wei & Chao, 2011; Gurevsky et al, 2012). In fact, studying on 

SALB-E is more challenging (Su et al., 2014). Apart from that, the study on SALB-E 

also has been discovered in other research works (Zacharia & Nearchou, 2013; Al-

Hawari et al., 2014; Esmaeilbeigi et al., 2015). Research on SALB-E need to consider 

multi-objective functions instead of single objective in both SALB-1 and SALB-2 

(Esmaeilbeigi et al., 2015). Taking real manufacturing scenario into account, it is better 

to consider both parameters to minimise the number of workstation and the cycle time 

for the purpose of maximising assembly efficiency.  

Simple Assembly Line Balancing problem is used when a single product is 

manufactured on the line (Battaïa & Dolgui, 2013). This research studies the Assembly 

Line Balancing Type-E problem (ALB-E) focusing on a single model. ALB-E aims to 
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maximise the efficiency of line by simultaneously minimising the number of 

workstation and cycle time. In addition to that, ALB-E determines to identify the 

quality of line. The formulated solution for this problem can be expressed as described 

in Eq. (2.1). 

 

      E=
∑ Ti

m
i=1

mc
×100%                           (2.1)  

where E : Line efficiency 

           m: Number of workstations 

           c  : Cycle time 

           Ti: processing time of the ith workstation 

 

From Eq. (2.1), it is evident that the efficiency of the line, E increases 

independently with the number of workstations, m and cycle time, c. This relationship is 

proven true by Wang et al. (2012) who, in their research, pointed out that the 

productivity of the process is influenced by the effectiveness of the production line. The 

increasing market demand could only be achieved with a better line efficiency. In other 

words, the processing time in each workstation must be reduced so that the efficiency of 

the production line can be improved.  

 

2.3 ALB-E Problem Modelling and Objective Function 

A study on Assembly Line Balancing of Type-E problem (ALB-E) with 

different task processing times had been the focus of Gurevsky et al. (2012). The 

researchers attempted to study on the stability of feasible and optimal solutions for 

ALB-E. Two heuristic procedures were proposed and evaluated on certain targets in 

order to find a concession between the two goal functions. In order to compute the 

stability radius of feasible balances, the researchers had proposed polynomial time 

algorithm in the work. 
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A study by Scholl and Becker (2006) stated that there is no direct method to 

solve the ALB-E. Nevertheless, this type of model can be solved by a search method. 

The combination of the number of workstation, m and the cycle time, c feasible for the 

efficient line is chosen among the others or, the value of required line capacity as in Eq. 

(2.2) should be the least. 

      T= m.c                               (2.2)  

where 𝑇 is line capacity. 

An attempt to maximise the line efficiency and minimise the idle time had 

received great attention by Wei and Chao (2011) in ALB-E. These two objectives can 

be achieved by minimising the number of workstation and cycle time. Studies found 

that ALB-1 and ALB-2 models are combined by researchers in order to develop the 

ALB-E model. In ALB-1, the number of workstation is minimised with fixed cycle 

time. This model is re-defined as ALB-1-i with the intention of determining the 

minimum number of workstation. The goal of modified model ALB-2 is to achieve 

minimisation of cycle time, 𝑐𝑡 with a fixed number of workstations, m. The line 

efficiency, E is formulated as Eq. (2.3) which defines the efficiency of line and directly 

increases with total time of all tasks and inversely proportional to the number of 

workstation and cycle time. 

      E= 
tsum

m.ct
                                                   (2.3)  

where  tsum is the total time of all tasks       

 In order to maximise the line efficiency, the optimal number of workstation 

must be completed within a given maximum cycle time, ctmax. The value of ctmax   must 

be less than or equal to the total task time, ∑ ti and at the same time it also should be 

greater than or equivalent to the largest task time, max ti in data. Only one workstation 

will be required whenever the value of ctmax exceeds or remains the same as total task 

time. No solution will be obtained as the value for ctmax is less than or equivalent to the 

largest task time in data. The following conditions are used for ctmax.  
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max ti  ≤ ctmax ≤ ∑ ti 

If ctmax ≥ ∑ ti then 𝑚 = 1, E= 
Ttotal

1.Ttotal
= 1 thus, Balance loss = 0 

If ctmax ≥  max ti , no solution 

 After the value of ctmax has been set, the optimal number of workstation, m can 

be attained by using the spreadsheet. The value of m lies between the minimum number 

of workstation, mmin and the maximum number of workstation, mmax which are reflected 

in Eq. (2.4) and Eq. (2.5) respectively. 

      mmin= ⌈∑
ti

ctmax

n
i=1 ⌉                                (2.4) 

      mmax= ⌈
∑ ti

max ti
⌉                                (2.5)

                       

where 𝑚𝑚𝑖𝑛 ≤ 𝑚 ≤ 𝑚𝑚𝑎𝑥 

The study by Zacharia and Nearchou (2013) examined the minimisation of 

number of workstation, 𝑚 and cycle time, 𝑐 using fuzzy task processing time which is 

also known as f-SALBP-E. The objective functions of the problem are to maximise the 

line efficiency by simultaneously minimising the number of workstation, 𝑚 and cycle 

time, 𝑐. The fuzzy efficiency, ě of the line is linearly dependent on summation of fuzzy 

processing times of all the task, ṫsum. It can also be attained by minimising the number 

of workstation and fuzzy cycle time of the line. Eq. (2.6) represents the line efficiency 

function. According to the researchers, the maximisation of line efficiency is 

comparable to the maximisation of idle time, Ǐ which is described in Eq. (2.7). 

     ě= 
ṫsum

m.č
                                       (2.6) 

     Ǐ= m×č- ṫsum                                     (2.7) 

where  ṫsum: total sum of the fuzzy processing time of all tasks 

 č    : fuzzy cycle time of the line       
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 The uncertainty and variability of task processing time and cycle time are 

presented by triangular fuzzy numbers (TFNs). A heuristic method based on Genetic 

Algorithm (GA) had been developed to solve the f-SALBP-E as it is a type of NP-hard 

optimisation problem. A two-phase GA is used for the purpose of solving the problem. 

In this approach, the optimal solution found from the first run is used to generate the 

early population of the binary run. There is no resource constraint stated in the study. 

By considering the fuzzy processing time for single assembly line balancing problem, 

theformulated mathematical model is performed and thus minimised the number of 

workstation and the fuzzy cycle time on the line. 

Another research presented by Al-Hawari et al. (2014) gave emphasize on 

minimisation of number of workstation, minimisation of workload variation, and 

maximisation of line efficiency, E as the objective functions in the study. Eq. (2.9) was 

used by researchers to define the line efficiency. As a matter of fact, line efficiency can 

be maximised by minimising both variables; the actual number of workstation, m and 

the actual cycle time of the assembly line, Ca is illustrated as in Eq. (2.8). 

      Ca= max
1≤k≤m

{t(Sk)}              (2.8) 

Meanwhile, the sum of handling time of task, 𝑖 is fixed. The minimum number 

of actual workstation, m can be obtained using mathematical formulation as stated in 

Eq. (2.10). 

     max E=
∑ ti

n
i=1

m.Ca
                      (2.9) 

     min m= ∑ max
1≤i≤n

{xik}M
k=1                             (2.10) 

where ti : processing time of task i 

 n : number of tasks 

 k : workstation number; k = 1,…, m 

M : maximum number of workstation available (m ≤ M ≤ n) 
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xik = {
1  if task i is assigned to station k

0  otherwise                                      
 

t(Sk) = the total time assigned to workstation k 

Gurevsky et al., (2012) studied Assembly Line Balancing of Type-E problem 

under different task processing time. The researchers had carried out a study on stability 

of feasible and optimal solutions for ALB-E by proposing a polynomial time algorithm 

as an approach. Two heuristic procedures were recommended and evaluated on certain 

targets in order to find a concession between the two goal functions.  

Due to lack of  studies on ALB-E, Esmaeilbeigi et al. (2015) took an initiative to 

focus on ALB-E problem in their research. The researchers aimed to minimise the cycle 

time, number of workstation as well as the smoothness index in their study. In order to 

achieve this target, the researcher proposed a mixed integer linear programming 

formulation. A computational test over the benchmark data set verified the effectiveness 

of the formulation. 

2.4 ALB-E Optimisation Algorithm 

Genetic Algorithm (GA) was introduced by John Holland in the year of 1975 

and it is mainly used by researcher to optimise a large and complex problem 

specifically in ALB (Tasan & Tunali, 2008; Mohd Razali & Geraghty, 2011; Ranjan & 

Pawar, 2014). As mentioned previously, ALB falls in the classification of NP-hard 

optimisation problem. Therefore, the implementation of GA technique to solve problem 

in this classification is well-matched (Cheshmehgaz et al., 2012; Wei et al., 2015). This 

view is supported by Ranjan & Pawar (2014) who stated that GA uses a direct random 

search as the optimisation method for complex problems with the aim to find optimum 

solutions. GA execution usually needs longer time as it will globally search for optimal 

solutions (Ponnambalam et al., 2000).  
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GA also has the ability to find a set of optimum solutions in a single run (Triki 

et al., 2014). In addition to that, Gurevsky et al. (2012) proposed polynomial time 

algorithm in the study of ALB-E to compute the stability radius of feasible balances. 

Two heuristic procedures were proposed and evaluated on certain targets in order to 

find a concession between the two goal functions.  

 

A new Genetic Algorithm was presented by Al-Hawari et al. (2014) to solve 

multi-objective optimisation problem. Multi-Assignment Genetic Algorithm (MA-GA) 

had been proposed by the researchers with the combination of forward, backward, and 

bidirectional methods. However, this approach can only provide many feasible 

solutions of task assignments by combining the three methods simultaneously instead of 

combining the forward method only. 

 

Suwannarongsri et al. (2007) had proposed a combination of Tabu Search (TS) 

and Genetic Algorithm (GA) to identify the solution for simple assembly line balancing 

problem. The researchers used TSGA-based method which is the combination of TS 

and GA method to solve the problem. A test of all type of SALBP problems from 

literature against the proposed method was performed. The results showed that the 

proposed TSGA-based method is capable in producing better solutions as compared to 

conventional method.  

 

In another work, Zacharia and Nearchou (2013) developed a heuristic method 

based on GA to solve f-ALB-E. A two-phase approach was used starting off with 

generating initial population, followed by implementing best solutions until it reached 

termination conditions. The optimal solution achieved from the first attempt was used 

as the source for early population in the binary part for the purpose of finding a better 

performance. The algorithm reached a good feasible solution which is approximately 

close to the exact solution in an acceptable time period.  

 

Although most previous researchers used GA as an optimisation technique 

especially in ALB problem, only a small number of research focused on ALB-E (Gu et 

al., 2007; Zhang et al., 2007; Zhang et al., 2008). The studies by Sabuncuoglu et al. 

(2000) and also Gonçalves and Almeida (2002) focused on normal GA as an 
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optimisation method in ALB-E. In fact, to the best knowledge of the researcher, no 

prior published work proposed NSGA-II in ALB-E itself.  

2.5 Multi-Objective Optimisation 

 Deb (2001) defines optimisation as the finding of one or more feasible solutions 

with respect to one or more objectives. Multi-objective optimisation involves the task of 

finding single or more optimum solutions for an optimisation problem with more than 

one objective function. In other words, multi-objective optimisation problem deals with 

two or more objective functions that needed to be minimised or maximised (Gen & 

Cheng, 2000). 

Herein, there must be multiple conflicting objectives and trade-off between each 

objective function that resulted in a set of optimal solutions known as Pareto-optimal 

solution (Deb, Pratap, et al., 2002; Taylor, 2008; Triki, Mellouli, & Masmoudi, 2014). 

There will be no single solution satisfying all performance criteria that is better than the 

others (Deb et al., 2000; Nourmohammadi & Zandieh, 2011). In other words, there is 

no existence of a unique optimal solution in multi-objective optimisation problem. This 

problem aims to find the nearest set of solutions to the Pareto-optimal front and also to 

find the diversity in a set of solutions (Deb, 2001). 

To evaluate the performance of the proposed algorithms, five performance 

indicators were measured as proposed by (Deb, 2001).  

i. Number of  Non-Dominated Solution, NDS 

ii. Error Ratio, ER 

iii. Generational Distance, GD 

iv. Spacing 

v. Maximum Spread, Spreadmax 

The number of non-dominated solution was measured to identify the ability of the 

algorithm to explore the search space. Meanwhile, Error Ratio (ER) and Generational 

Distance (GD) metrics measure the accuracy of solution. ER measures the ratio of non-
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member of Pareto-optimal set to the number of non-dominated solution whereas GD 

measures the average distance of solution to the nearest Pareto set. Spacing metric 

measures the uniformity of solution. It measures the relative distance between each 

solution. Last but not least, the maximum spread is evaluated in order to determine the 

spread of solution. The distance between two extreme solutions in the corresponding 

objective space is calculated by the Spreadmax.  

2.5.1 GA-based Algorithm for Multi-Objective Optimisation 

Various algorithms have been developed to optimise multi-objective optimisation 

problem. GAs are mainly used by researchers for the optimisation of multi-objective 

problems (Tasan & Tunali, 2008; Razali & Geraghty, 2011; Ranjan & Pawar, 2014;). GA 

uses a direct random search as the optimisation method for complex problems with the 

aim of finding optimum solutions (Ranjan& Pawar, 2014). GA has the ability to find a 

set of optimum solutions in a single run (Triki et al., 2014b). Vector Evaluated Genetic 

Algorithm (VEGA), Multi-Objective Genetic Algorithm (MOGA), Hybrid Genetic 

Algorithm (HGA), Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II), and 

Non-Dominated Sorting Genetic Algorithm (NSGA) are examples of GA-based 

approaches for multi-objective optimisation. In this research, MOGA and HGA were 

selected as the comparison algorithms as these GA approaches were developed as an 

optimisation tool for NP-hard optimisation problem and usually used by researchers as 

multi-objective optimisation methods  (Al-Hawari et al., 2014; Triki et al., 2014). 

2.5.1.1 Vector Evaluated Genetic Algorithm (VEGA) 

The first multi-objective evolutionary algorithm was proposed by Schaffer 

(1985) to find Pareto-optimal solutions for multi-objective optimisation problem. A 

modification on simple GA was done by Schaffer by performing proportional selection 

cycle according to each objective function. However, no significant studies had been 

reported for nearly ten years after the establishment of the aforementioned method. 

VEGA was not able to obtain a good spread of solutions for some cases (Deb, 2001).  



18 

 

2.5.1.2 Multi-Objective Genetic Algorithm (MOGA) 

Multi-objective Genetic Algorithm (MOGA) was introduced by Fonseca and 

Fleming (1993a). Non-dominated classification based on GA population was applied in 

the algorithm. The application of GA has been widely used to solve various assembly 

line balancing problems due to its ability to find a set of non-dominated solutions in a 

single run (Deb et al., 2002; Yang et al., 2013). MOGA has the abilities to find a 

diverse set of non-dominated solutions and to explore close to optimal set of solutions 

(Deb, 2001; Zhang et al., 2008). It has also been widely used in the real-world 

optimisation problems to solve ALB problems. In the research conducted by 

Ponnambalam et al. (2000), the researchers concluded that GA takes more time in 

finding the global optimal solutions. 

2.5.1.3 Hybrid Genetic Algorithm (HGA) 

A Hybrid GA (HGA) was proposed by Chen et al. (2002) to solve the Assembly 

Line Planning problem. In this work, the GA is combined with heuristics solution. The 

optimum assembly sequences generated from heuristics approaches were included in 

the initial population of the GA. The proposed GA is able to search for many feasible 

solutions in a short time. GA is an approach used in finding an optimal solution for a 

complex optimisation problem (Razali and Geraghty, 2011). Valls et al. (2008) stated 

that HGA is high in quality and is a fast algorithm that is better than all other state-of-

the-art algorithms. 

2.5.1.4 Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) 

Deb et al. (2002) first introduced an Elitist Non-Dominated Sorting Genetic 

Algorithm (NSGA-II) as an improved version of NSGA. The proposed method was 

developed to accommodate a complex and real-world optimisation problem for multi-

objective functions (Chica et al., 2012; Bandyopadhyay & Bhattacharya, 2014). The 

capabilities of NSGA-II to find much better solutions and convergence of nearly true 
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optimal Pareto-optimal front had been proven by other researchers (Deb, Pratap, et al., 

2002; Zhao et al., 2015).  

Apart from incorporating elitism, NSGA-II also has a better sorting algorithm. 

NSGA-II used a crowding distance approach that requires the population to be sorted in 

decreasing rank of level according to each objective function. Barbosa et al. (2012) 

clarified that NSGA-II differs from other methods by which the individuals of a given 

population are sorted based on the level of non-domination.  

The aforementioned algorithm also implements an elitism-preserving technique 

as it will ensure the best solution found in each generation will never be lost until a 

better solution is discovered (Saravanan, 2006; Barbosa et al., 2012; Baykasoğlu & 

Özbakır, 2014). In other words, elitism will make sure the non-dominated solutions 

having the best dominance found during the search space will be retained in the current 

population (Zinflou et al., 2008). 

2.5.1.5 Non-Dominated Sorting Genetic Algorithm (NSGA) 

Non-Dominated Sorting Genetic Algorithm (NSGA) is the older version of 

NSGA-II pioneered by Goldberg in the year of 1989 (Deb, 2001). In multi-objective 

optimisation, no single solution is better than another one. Similarly, to NSGA-II, this 

older version of NSGA also employed the domination rank to determine the fitness of a 

solution. Rather than using elitist strategy, NSGA implements a sharing-preserving 

technique to preserve the diversity of the solutions. The sharing function method 

requires the distance of every single solution to be compared to one another from all the 

solutions available.  

2.6 Summary of Literature Review 

Table 2.1 summarised the literature review of ALB from recent years. There 

were different objectives and techniques used to optimise the ALB problem. The most 

important objective is to minimise the number of workstation as it had been the major 

concern in 16 cited papers followed by minimisation of workload variation highlighted 
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in 12 cited papers. Minimisation of cycle time and production cost were studied in 7 

and 6 cited research papers respectively. The aim to minimise workload variation will 

maximise the workload smoothness (Zacharia & Nearchou, 2012) whereas a shorter 

cycle time will increase the production rate.  

The rest of the data shows the objective to minimise the station area and idle 

time that had been considered in 4 and 2 cited paper respectively. Only a small number 

of cited published works (6) that considered the objective to maximise line efficiency. 

In order to maximise the assembly line efficiency, the researcher need to consider both 

objectives: (i) minimise the number of workstations and (ii) minimise the cycle time. 

Ten out of 34 cited research used GA-based approach instead of other techniques. This 

technique is mainly used among researchers to optimise a large and complex problem 

particularly in ALB problem (Yu & Yin, 2010). In fact, it has the capability to find a set 

of optimum solution in a single run. The findings also reveal that no previous research 

implemented NSGA-II to optimise ALB-E problem. 

In a nut shell, it can be concluded that only a few researchers focused on ALB-E 

in their research due to the complexity of the problem. Only one cited paper highlighted 

the resource constraint in Assembly Line Balancing Type-1 (Kao et al., 2010). 

However, none of the previous studies considered resource constraint on ALB-E itself. 

It is important to consider these constraints because of the limited number of resources 

in the industry. Through this, the resource utilisation and the production cost can be 

minimised. 
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Table 2.1 Summary of literature review for ALB 

Author and year 

Optimisation 

function 
Goals 

Method  
Constraints 

1  2 1 2 3 4  5 6 7 1 2 3 4 5 6 7 8 9 10 11 

(Zacharia and 

Nearchou, 2016) 
 X X X X X    MOEA X X  X        

(Esmaeilbeigi et al., 

2015) 
 X X X  X    Model X X  X        

(Sungur and Yavuz, 

2015) 
X       X  Model X X  X    X    

(Saif et al., 2014)  X  X  X    PBABC and Taguchi X X  X        

 (Triki et al., 2014) X   X       HGA X X X         

(Al-Hawari et al., 

2014)  X X  X X 
   

MA-GA 
X X          

(Triki et al., 2014b)  X  X    X  Hybrid MOGA X        X   

(Ranjan and Pawar, 

2014)  X   X  X 
  

GA 
X           
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Table 2.1 continued. 

(Gurevsky et al., 2013)   X X       Other soft computing  X  X X       

(Zacharia and 

Nearchou, 2013)  X X  X  
   GA X           

(Mozdgir et al., 2013) X     X    Taguchi  X X  X        

(Hamta et al., 2013)  X  X  X  X  PSO algorithm X X  X        

(Sivasankaran and 

Shahabudeen, 2013) X  X    
   

Model  
X X  X        

(Tuncel and Topaloglu, 

2013) X  X    
   

Other soft computing 
  X       X  

(Hazır and Dolgui, 

2013) X   X   
   

ACO 
X   X        

(Cheshmehgaz et al., 

2012) X  X    
   CGA X X  X        

(Wang et al., 2012)   X X X    X  HGA X           

(Zacharia and 

Nearchou, 2012)  X  X  X 
   Fuzzy- MOGA X X  X        

(Chica et al., 2012)  X X      X Memetic algorithm X X    X      

(Tapkan et al., 2012) X  X       Bee algorithm X  X X        

(Roshani et al., 2012)        X  SA X X        X  
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Table 2.1 Continued 
 

(Mutlu and Özgörmüş, 

2012)  X X   X    Other soft computing 
X X     X     

(Wei & Chao, 2011)   X   X  X   Model   X  X        

(Cakir et al., 2011)  X    X  X  Hybrid SA X X  X        

(Fattahi et al., 2011) X  X       ACO X X X X    X    

(Chica et al., 2011)  X X      X MOACO  X  X  X      

(Chica et al., 2011)  X X      X MOGA X X    X      

(Nearchou, 2011)  X  X X X    PSO X X          

(Corominas et al., 

2011)  X  X  X    Other soft computing 
   X   X     

(Kao et al., 2010) X  X       Shortest path algorithm X X  X       X 

(Yu and Yin, 2010) X  X       GA X   X        

(Kilincci, 2010) X     X    Petri net X           

(Chica et al., 2010)  X X      X ACORGS  X  X  X      

(Uğur Özcan, 2010) X  X       SA X   X        
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Indicators:  

 Optimisation function: 1- Single objective, 2- Multiple objectives 

 Goal: 1- Minimise number of workstation, 2- Minimise cycle time, 3- Maximise line efficiency, 4- Minimise workload variation, 5- 

Minimise idle time, 6- Minimise cost, 7- Minimise station area 

 Constraints: 1- Precedence, 2- Cycle time, 3- Zoning (position), 4- Workstations, 5- Capacity, 6- Space (area), 7- Workload, 8- 

Worker, 9- Compatibility (task and resource), 10- Task direction, 11- Resource 

 Method: MOEA- Multi-Objective Evolutionary Algorithm, HGA- Hybrid Genetic Algorithm, MA-GA- Multi-Assignment Genetic 

Algorithm, MOGA- Multi-Objective Genetic Algorithm, PSO- Particle Swarm Optimisation, SA- Simulated Annealing, ACO- Ant 

Colony Optimisation, CGA- Cellular Genetic Algorithm, PBABC- Pareto Based Artificial Bee Colony Algorithm, MOACO- 

Multi-Objective Ant Colony Optimisation, ACORGS- Combination of Ant Colony Optimisation (ACO) and Random Greedy 

Search (RGS) 
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2.7 Chapter Summary 

This chapter has reviewed the previous researches on Assembly Line Balancing 

(ALB). An overview of research in ALB-E as well as the optimisation algorithm used 

had been presented in this chapter.  From the review of literature, it appears that more 

attention had been paid to ALB. Most of the previous researchers tend to focus on the 

minimisation of number of workstation in their studies since it is the simplest problem 

to resolve in ALB.  

Meanwhile, studies relating to ALB-E have been relatively scanty due to the 

complexity of the problem. Researches on ALB-E need to consider multi-objective 

functions instead of single objective as in ALB-1 and ALB-2. It is better to consider 

multi-objective in order to achieve line balance. This study aims to minimise the cycle 

time and the number of workstation, and simultaneously maximise the line efficiency.  

A rigorous study on the usage of resources in ALB-E problem has not been 

given great attention by researchers in the past. Due to the limited number of resources 

in the industry, it is crucial to be concerned on the resource constraints in this study. 

Generally, most of the researchers used GA-based technique to optimise ALB problem. 

It may, however. be noted that none of the studies were aimed in implementing the 

Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) specifically in ALB-E as 

an optimisation approach. This study implements NSGA-II algorithm as an 

optimisation method as it accommodates the real-world multi-objective optimisation 

problem (Bandyopadhyay & Bhattacharya, 2014). Apart from that, NSGA-II also has 

the capabilities to find much better solutions and convergence of near-true optimal 

Pareto-optimal front which had been proven by other researchers (Deb et al., 2002; 

Chica et al., 2011; Zhao et al., 2015). 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

3.1 Introduction 

This chapter details the research methodology which is illustrated in Figure 3.1. 

The research methodology is proposed to be conducted in three main phases. The first 

phase; modelling stage including the objective functions are presented in this chapter. 

In the modelling stage, ALB-E problem with resource constraint (ALBE-RC) will be 

presented using a particular approach. In this research, three objective functions were 

considered in order to achieve line balance and maximum efficiency.  

The latter phase is the development of algorithm and testing. Last but not least, 

an industrial case study and validation phase are performed. Suitable company for case 

study will be identified, and followed by data collection where the method used to 

collect data is explained. Further discussion on case study will be explained thoroughly 

in Chapter 5.  
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Figure 3.1 Flowchart of research methodology 
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3.1.1 First Phase of Research Methodology 

The first phase of the research methodology started with conducting literature 

review. Later, the modelling phase of ALBE-RC problem was performed. The 

modelling of ALBE-RC problem was conducted using a particular approach. In this 

research, three objective functions were considered for the evaluation purpose. 

i. Minimise the cycle time 

ii. Minimise the number of workstation 

iii. Minimise the number of resources  

3.1.2 Second Phase of Research Methodology  

The second phase in this research is the development of algorithm to optimise 

the ALBE-RC problem. The Elitist Non-Dominated Sorting Genetic Algorithm 

(NSGA-II) was proposed as an optimisation approach to solve the problem. The 

activities in this phase started with establishing the solution procedure for ALBE-RC. 

Once the general solution procedure was established, the algorithm flow will be drafted 

by referring to the solution procedure. Next, the algorithm was coded into MATLAB 

software. The algorithm was modified to suit the problem studied. Then, the algorithm 

was tested and verified using generic problems from literature. In the meantime, 

suitable company to conduct the case study was identified.  

Five performance indicators i.e. Number of Non-Dominated Solution (NDS), 

Error Ratio (ER), Generational Distance (GD), Spacing, and Maximum Spread 

(Spreadmax) were used to evaluate the performance of the algorithm. According to Deb 

(2001), the algorithm can be classified as the best technique for multi-objective 

optimisation whenever it consistently produces better performance in at least two 

indicators. 
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3.1.3 Third Phase of Research Methodology 

In the third phase of this research, an industrial case study was conducted for the 

purpose of validating the ALBE-RC model and the proposed NSGA-II algorithm. 

Related assembly data such as assembly task, cycle time, precedence constraint and 

resources were collected and manually recorded. The selected problem was modelled 

using the approach developed earlier. Then, the problem was optimised using the 

proposed algorithm. A simulation using WITNESS software was performed to simulate 

the assembly line. The optimisation results were validated and compared with the 

results of current layout. This phase was conducted in order to validate the 

mathematical model and the optimisation algorithm. The simulation results of the 

existing layout were compared with the simulation results after the optimisation to 

validate the significance of the optimisation parameters. A statistical test was performed 

to compare the different between the existing output and after the optimisation. 

3.2 ALBE-RC Problem Modelling  

After conducting literature review, the modelling phase was performed. The 

main activities in this phase were to establish problem representation, followed by 

modelling and evaluation procedures. The ALBE-RC was represented using a particular 

approach. A simple ALB problem was used at this stage. Besides that, an evaluation 

procedure to measure how good a generated solution is was also identified.  

The modelling phase involved the steps to transform a product into a precedence 

diagram, steps on how to transform the precedence diagram into a digital format 

language that can be understood by a computer and also steps on how to evaluate the 

assembly sequence. This section demonstrates an approach for the optimisation of 

ALBE-RC problem through a simple diagram representation. Figure 3.2 shows the 

flowchart of the problem representation steps. Last but not least, an example of 

assembly problem was also presented in the last part of this section using the following 

approach.  
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Figure 3.2 Flowchart of problem representation steps 

3.2.1 Establishment of Liaison Matrix 

In 1984, Bourjault had presented a liaison matrix approach to generate feasible 

assembly sequences (Fazio and Whitney, 1987). Let’s say that the assembly product has 

r parts as a product of the relation between ith and jth parts presented in liaison matrix. If 

there is any relation between i and j, L(i, j)=ai where (i= 1, 2, 3,…, n), or else , L(i, j) is 

left blank whereby n signifies the assembly task (number of liaison). In other words, 

liaisons represent the lines between nodes which correspond to the relations between 

parts wherein nodes are denoted as the parts. The establishment of liaison matrix 

determines the assembly relation.  
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3.2.2 Apply De Fazio’s Question and Answer 

Once the liaison matrix was established, DeFazio’s question and answer 

procedure was applied for the purpose of identifying the existence of precedence 

relations in assembly tasks. There were two questions that must be considered and 

needed to be answered while evaluating each assembly task (Fazio and Whitney, 1987):  

i. What tasks must be done prior to doing task i?   

ii. What tasks must be left to be done after doing task i? 

3.2.3 Precedence Diagram Mapping 

The precedence diagram illustrates the relationship of predecessor-successor 

with assembly steps (Weigert et al., 2011). The aforementioned questions needed to be 

answered in order to determine the precedence constraint. The example of precedence 

diagram mapping is shown in Figure 3.3. The precedence constraint that can be 

identified from this figure is C[(1, 2), (1, 4), (2, 3), (4, 5)]. Referring to constraint (1, 2), 

task 1 needs to be done prior to doing task 2. Task 1 is known as predecessor while 

tasks 2 and 4 are the successors of task 1. In other words, an outgoing arc symbolises 

the predecessor task whereas an incoming arc represents the successor of the task. Each 

node with different numbers denotes the assembly tasks.  

 

1

2

4

3

5

Finish

Node

 

Figure 3.3 Precedence diagram mapping 
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3.2.4 Establishment of Data Matrix 

The assembly data for proposed representation can be tabulated in n×4 table as 

illustrated in Figure 3.4 where n is the number of assembly task. The first column t 

denotes task time whereas the other three columns RA, RB and RC represent resource A, 

resource B and resource C respectively. In this assembly process, numerical forms, e.g. 

1, 2, and 3, denote the type of resource that was being used. For example; RA=1, RB=2 

while RC=3. 

 

Figure 3.4 Data matrix representation 

In this proposed model, there were three objective functions required to be 

measured: (i) to minimise cycle time (ii) to minimise number of workstations and (iii) 

to minimise the number of resources. These objective functions should be optimised by 

considering the resource constraint. 

3.2.5 Evaluating Assembly Sequence 

A feasible assembly sequence was evaluated according to three objectives: (i) to 

minimise cycle time (ii) to minimise the number of workstations (iii) to minimise the 

number of resources. According to Grzechca (2011), an interval when a task(s) can be 

assigned to the workstation is called cycle time. While grouping the tasks to the 

workstation, the total time taken to complete all tasks, also known as processing time, 

must not be greater than the cycle time. The current task was assigned to the next 

workstation whenever the processing time exceeds the cycle time. The first and second 

objectives were evaluated by considering the third objective. In this case, the tasks that 

use the same resources were assigned to one workstation.  
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The exemplary assembly presented in Figure 3.5 is the assembly of wall rack 

which consists of 6 metals and thirteen components. Two assembly tools and a machine 

were used for the purpose of assembling this product.  

 

Figure 3.5 Assembly of wall rack 

The first tool used to assemble parts (p1 and p2), (p1 and p3), (p1 and p5), (p1 

and p6), (p1 and p8), (p2 and p3), (p2 and p4), (p2 and p6), (p2 and p7), (p2 and p10), 

(p3 and p9), (p3 and p10), (p6 and p9), (p6 and p10) and (p6 and p13) is a jig. The 

second tool is a blind rivet that is used to assemble parts (p1 and p5), (p1 and p8), (p2 

and p4), (p2 and p7), (p2 and p11), (p3 and p12) and (p6 and p13). Meanwhile, a 

welding machine was used to assemble parts (p1 and p2), (p3 and p9) and (p6 and p9). 

 

The establishment of liaison matrix in Table 3.1 was intended to record the 

assembly task for every part of the model. It is noted that the number in Table 3.1 now 

represent the assembly task. For instance, task 1 refers to the assembly relation between 

parts (p1 and p2). There is no assembly relation between parts (p1 and p4). Thus, the 

matrix is left empty.  
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Table 3.1 Liaison matrix for wall rack assembly            

 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 

p1 - 1 2  3 4  5       

p2  - 6 7  8 9   10 11    

p3   -      12 13  14   

p4    -           

p5     -          

p6      -   15 16   17  

p7       -        

p8        -       

p9         -      

p10          -     

p11           -    

p12            -   

p13             -  

p14              - 

 

Meanwhile, De Fazio’s question and answer (Q&A) procedure is applied for 

every task. For example, in order to perform task 2, task 1 must be done prior to 

performing task 2. Meanwhile, task 3 must be left undone until task 2 is completed. 

Table 3.2 records De Fazio’s Question and Answer. The precedence constraints can be 

identified in the corresponding table. The precedence constraints for this product are 

stated as C[(1, 2), (1, 4), (2, 3), (12, 4), (4, 5), (6, 7), (12, 8), (8, 9), (9, 10), (10, 11), (6, 

13), (13, 14), (12, 15), (8, 16), (16, 17)].   

 

 



35 

 

Table 3.2  De Fazio’s Question and Answer for wall rack assembly 

 

 

 

 

 

 

 

 

 

 

Question 1, Q1: What tasks must be done prior to doing task i? 

Question 2, Q2: What task must be left to be done after doing task i? 

Task 
Answer for question: 

Q1 Q2 

1 - 2, 4 

2 1 3 

3 2 - 

4 12 5 

5 4 - 

6 - 7 

7 6 - 

8 12 9 

9 8 - 

10 9 11 

11 10 - 

12 - - 

13 6 14 

14 13 - 

15 12 - 

16 8 17 

17 16 - 
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Figure 3.6 Precedence diagram for wall rack assembly 

 From the precedence constraints that were obtained from De Fazio’s Q&A 

procedure, the precedence diagram is mapped as demonstrated in Figure 3.6. Table 3.3 

shows the assembly data and information for the assembly problem. The resource, R 

represents the assembly tool and machine that are being used in the assembly process. 

For example, resource A (Jig) and C (Welding machine) are used to assemble task 1, 

whereas only resource B (Blind rivet) is required to assemble task 11. 
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Table 3.3 Data matrix for wall rack assembly      

Task Task time (minute) Resource (R) 

1 4 A, C 

2 1 A 

3 2 A, B 

4 1 A 

5 2 A, B 

6 1 A 

7 2 A, B 

8 1 A 

9 2 A, B 

10 1 A 

11 2 B 

12 3 A, C 

13 1 A 

14 2 B 

15 3 A, C 

16 1 A 

17 2 B 

 

3.3 Objective Functions  

While designing the line, the precedence constraints, number of workstation and 

required task time must be deliberated. The resource constraints should also be taken 

into consideration. These restrictions must be considered to achieve a balance line. The 

term ‘cycle time’ means maximum time allowed at each workstation. According to 

Grzechca (2011), cycle time is a period related to customer order and market demand. 

Cycle time can also be defined as the maximum time allowed at each workstation. 

In this mathematical model, the first objective function is to minimise the cycle 

time represented by Eq. 3.1 and subjected to constraint in Eq. 3.4 which guarantees that 
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the total task time in workstation j does not exceed the cycle time. The second objective 

for this problem is to minimise the number of workstations denoted by Eq. (3.2). 

Constraint (3.5) ensures that task i can only be assigned to workstation j. The last 

objective for this problem is to minimise the number of resources. The objective 

function is presented by Eq. (3.3), and subjected to constraint (3.6) to ensure that the 

number of resource units assigned to workstation does not exceed the available 

resource. Constraint (3.7) defines the precedence relationship between the tasks that 

should not be violated. 

                 min f
1
(x)= min ct                                   (3.1) 

     min f
2
(x)= min m= ∑ xij

mmax

j=1                                 (3.2) 

     min f
3
(x)= min ∑ Sjr

R
r=1                         (3.3) 

subjected to: 

     ∑ pt
i
.xij ≤ ct                  for i=1,…,mmax

n
i=1                 (3.4) 

     ∑ xij=1                        for i=1,…,n
mmax

j=1                       (3.5) 

     ∑ Sjr ≤ Nr                    for r=1,…,R
Rmax

r=1                       (3.6) 

     ∑ j.x
ij

 ≤ 
mmax

j=1
∑ j.xkj

mmax

j=1     for (i,k)∈P                        (3.7) 

variables: 

xij= {
1     if task i is assigned to workstation j     
0     else                                                              

 

 

y
j
= {

1      if there is task assigned to workstation j 
0      else                                                                  
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Sjr= {
1     if resource r exists in workstation j

0     else                                                        
 

ct cycle time,        (i=1,…, n) 

𝑛  number of task,  (j=1,…, m)  

m number of workstation 

pt
i
 processing time of task i 

R number of resources,   (r=1,…, R) 

P set of tasks (i,k) from a direct precedence relations 

Sjr number of resource units of type r that assigned to workstation j 

Nr number of available resource units of type r 

3.3.1 Numerical Example 

This section presents a numerical example of a feasible assembly sequence 

obtained from a precedence diagram for wall rack assembly (Figure 3.5). Some 

example of the sequences are: Fseq1 [6, 1, 2, 13, 14, 7, 3, 12, 15, 4, 5, 8, 9, 10, 11, 16, 

17] and Fseq1 [1, 2, 3, 12, 15, 4, 5, 8, 9, 10, 11, 16, 17, 6, 13, 7, 14]. The sequences were 

evaluated based on three objectives: (i) to minimise cycle time (ii) to minimise the 

number of workstations (iii) to minimise the number of resources.  

The assembly tasks were assigned to workstations by following the precedence 

and cycle time constraints. The total processing time (pt) in each workstation must not 

exceed the predetermined cycle time. In this example, the maximum allowable cycle 
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time at each workstation, ctmax is 7 minutes. Figure 3.7 shows the task assignment of 

wall rack assembly for Fseq1. 

Based on Figure 3.7, the first workstation (ST1) consists of 4 tasks with total 

processing time of 7 minutes. No other tasks can be assigned to ST1 as the total 

processing time in the workstation has achieved ctmax. Meanwhile, the total processing 

time for task 14, 7 and 3 in ST2 is 7 minutes. Whenever task 12 is included in ST2, the 

total processing time of current workstation will be 10 minutes, which exceeds the ctmax. 

Thus, task 12 must be assigned to a new workstation and similar approach is applied for 

the subsequent workstations.  

 

Figure 3.7 Task assignment for wall rack assembly (Fseq1) 

Table 3.4 and Table 3.5 present the task assignment for assembly of wall rack 

for Fseq1 and Fseq2 respectively.  With reference to Table 3.4, task 6 requires resource A, 

task 1 needs resource A and C, whereas task 2 and 13 both require resource A. 

Therefore, there are 5 number of resources (4 units of resource A and 1 unit of resource 

C) needed to perform all tasks in ST1. The aim of this study is to minimise the number 
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of resources used to assemble a product. Thus, the tasks that can be performed by the 

same resource will be assigned in the same workstation and will share the equipment. 

The number of resources used can be reduced to 2 (1 unit of resource A and 1 unit of 

resource C). This research objective will contribute to resource saving.  

The similar approach is also applied for Fseq1in Table 3.5. In ST1, there is a total 

of 7 resources (4 units of resource A, 1 unit of resource B and 2 units of resources C) 

required to perform the corresponding tasks. By considering the aim of this research, 

the number of resources used can be reduced to 3 (1 unit of resource A, 1 unit of 

resource B and 1 unit of resource C). 
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Table 3.4 Example of assembly sequence evaluation for Fseq1 

Name ST1 ST2 ST3 ST4 ST5 

Task 6 1 2 13 14 7 3 12 15 4 5 8 9 10 11 16 17 

ct 1 4 1 1 2 3 2 3 3 1 2 1 2 1 2 1 2 

pt 7 7 7 6 5 

Type of 

resource (R) A A, C A A B A, B A, B A, C A, C A A, B A A, B A B A B 

Total R 2 2 2 2 2 

 

Table 3.5 Example of assembly sequence evaluation for Fseq2 

Name ST1 ST2 ST3 ST4 

Task 1 2 3 12 15 4 5 8 9 10 11 16 17 6 13 7 14 

ct 4 1 2 3 3 1 2 1 2 1 2 1 2 1 1 2 2 

pt 10 9 10 2 

Type of 

resource (R) A, C A A, B A, C A, C A A, B A A, B A B A B A A A, B B 

Total R 3 3 2 1 
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3.4 Algorithm Development and Testing 

The latter phase in this research is the development of NSGA-II algorithm and 

testing. The representation style of the algorithm development should be compatible 

with the proposed model. In this method, permutation integer is applied to suit the ALB 

problem. NSGA-II has been chosen as an optimisation technique in this research since 

it accommodates to solve multi-objective optimisation problem (Deb et al., 2002; 

Bandyopadhyay and Bhattacharya, 2014; Zhao et al., 2015). 

The NSGA-II algorithm is coded into the computer program. In this activity, 

MATLAB is used for the coding purpose. Later, the algorithm will be verified to ensure 

that the program gives the required output. For the numerical experiment purpose, five 

runs with different pseudo-random numbers are conducted for each problems and 

algorithms. The output obtained from each problem is combined and filtered to get non-

dominated solutions. In addition to that, the following parameters have been used for 

algorithm testing.  

Population size  : 20 

Number of generations : 200 

Crossover probability, pc : 0.8 

Mutation probability, pm : 0.3 

The computational experiment was set up to test the proposed algorithm. In this 

work, six benchmark problems taken from open literature were used to test the 

performance of algorithm (Ponnambalam et al., 2000; Ağpak & Gökçen, 2005). Each 

problem consists of a number of task, cycle time and also task time.  Since most 

problems do not have resource data, the data are randomly generated to suit the studied 

problem. Next, the performance of NSGA-II is compared within GA-based algorithm 

such as Hybrid Genetic Algorithm (HGA) and Multi-Objective Genetic Algorithm 

(MOGA). A detailed explanation on algorithm development and testing is provided in 

Chapter 4 in section 4.2 and section 4.5 respectively. 
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3.5 Industrial Data Collection  

One of the stages involved in this research is industrial data collection. This 

section explaines the method used to collect data. In order to validate the ALBE-RC 

model and NSGA-II algorithm, data collection from practical application will be 

collected. The industrial data collection will be performed based on the following 

approach. 

3.5.1 Observation of Assembly Plant 

Firstly, an industrial visit that would enable data collection was organised. The 

visit was covered by a discussion with the Senior Manufacturing Engineer and co-

workers related to the selected product and model. The other approach is the ‘go-and-

see’ (Genchi Genbutsu) the actual situation in the production line (Genba). The motive 

behind these approaches is to have a better understanding of the real situation. In order 

to familiarize with the processes in each workstation, the assembly process is observed 

during this phase. Besides that, all components and tasks involved in each workstation 

are also identified.  

3.5.2 Identification of Data Collection  

Related assembly data such as assembly task, cycle time, precedence constraint 

and resources are collected. Apart from that, demand per day, working hour per day and 

number of employees are taken into account while collecting the data. The data 

collection was performed during the entire working hours. In average, six sets of cycle 

time data for each process were collected. 

3.6 Simulation Phase 

A simulation of existing layout was performed using WITNESS™ software to 

simulate the assembly line. The purpose of simulating existing layout is to validate the 

simulation model with actual layout. The simulation for each layout was carried out for 

11 hours per shift and two shifts per day. The time unit for the simulation was set in 

second. Thus, the total simulation time for each layout is 79200 seconds.  
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3.7 Validation 

This section presents the validation of the ALBE-RC model and the proposed 

NSGA-II algorithm. The validation of the proposed algorithm was divided into two 

stages. Firstly, a computational test was set up to test the performance of NSGA-II. The 

algorithm was tested using generic problems taken from open literature, which consist 

of different classes of problems. Later, the performance of the proposed algorithm was 

compared to the comparison algorithms. This approach is consistent with the approach 

used by Özcan and Toklu (2009), Ozbakir et al. (2011) and Wei and Chao (2011). Apart 

from that, Fettaka et al. (2012), Yang et al. (2013) and Triki et al. (2014) also used 

benchmark problems to test the algorithm. A detailed explanation on the NSGA-II test 

and results will be discussed in Chapter 4, section 4.5 and section 4.6 respectively. 

Apart from the NSGA-II algorithm, the ALBE-RC model was also validated 

through an industrial case study.  The validation stage was performed to get feedback 

from the industrial experts regarding the ALBE-RC model and the proposed algorithm, 

NSGA-II. Triki et al. (2014) used similar approach by performing a study in a 

manufacturing company to validate the proposed algorithm. Similarly, Chen et al. 

(2009) and Baykasoğlu and Akyol, (2012)  validated the performance of the proposed 

method by performing an industrial case study in their works. Further discussion on this 

topic will be clarified in Chapter 5, section 5.2  

 

3.8 Chapter Summary 

This chapter had explained the research methodology that was performed 

throughout this research. In summary, this chapter had described the following points: 

i. Problem modelling: This section presented an approach to establish ALBE-RC 

model. The modelling phase started with problem representation, followed by 

modelling procedure. Finally, steps on how to evaluate each assembly task was 

highlighted in this section. 



46 

 

 

ii. Objective functions: This part justified the objective function that were 

considered in this research to achieve a balanced line i.e. (i) to minimise the 

cycle time (ii) to minimise the number of workstations (iii) to minimise the 

number of resources. In fact, some restrictions such as precedence constraint, 

cycle time constraint and resource constraint also were put into consideration in 

order to achieve all objective functions. 

 

iii. Algorithm development and testing: The development of the proposed 

algorithm, NSGA-II was briefly explained in this section. This part covered the 

representation style of the algorithm and coding phase. Last but not least, a 

validation phase was performed through a computational test to verify the 

performance of algorithm. 

 

iv. Industrial data collection: This section discussed the method used to collect 

data. Two approaches were applied for this purpose i.e. (i) observation of 

assembly plant (ii) identification of data collection. Data from practical 

application were collected to validate the ALBE-RC model and NSGA-II 

algorithm. 

 

v. Simulation phase: This part explained the simulation phase that was operated to 

get the overview on the assembly process. Besides that, the duration of 

simulation and also a few assumptions that were considered during the 

simulation were detailed out in this part. 

 

vi. Validation: The validation methods for the proposed NSGA-II algorithm and the 

ALBE-RC model were clarified in this section. The proposed algorithm was 

justified by performing a computational experiment. Last but not least, the 

ALBE-RC model and NSGA-II algorithm were verified through an industrial 

case study.  
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CHAPTER 4 

DEVELOPMENT OF OPTIMISATION ALGORITHM 

 

`4.1 Introduction 

This chapter proposes an algorithm to optimise the ALB-E problem with resource 

constraint (ALBE-RC). The activities in this phase are started off by establishing the 

solution procedure for ALBE-RC. Once the general solution procedure is established, the 

algorithm flow will be drafted by referring to the solution procedure. Next, the algorithm 

will be coded into computer program. In this stage, MATLAB software will be used for 

coding purpose. The algorithm will be modified to suit the optimisation problem. It is 

important to note that the algorithm will later be tested using generic problems from 

literature and then compared to the results from comparison algorithms. The algorithm in 

MATLAB code will later be tested and verified using test problems from literature. 

4.2 NSGA-II Development 

The second phase in this research is development of algorithm to optimise the 

ALBE-RC problem. The Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) 

was proposed as an approach to optimise the problem. NSGA-II procedure starts with 

initializing a random population Pi of size Npop. The algorithm is then decoded into 

feasible sequences using topological sort. The fitness of feasible chromosomes is 

calculated by evaluating the objective functions.  

Later, a non-dominated sorting approach is applied to generate Pareto-optimal set. 

The entire population is sorted using non-dominated sorting approach to identify the non-

dominated set F = (F1, F2,… Fi). The parent population is filled by set F according to the 
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non-domination rank. If F > Npop, the last front will be selected based on higher crowding 

distance (CD). Since NSGA-II uses the selection strategy based on crowding distance, it 

will give an estimation of the density of selected solutions.  

The tournament competition between two random-pair of solutions from parent 

population is performed to determine the domination rank. The population will be sorted 

in decreasing rank according to each objective function. The solution with better rank is 

filled in parent pool. Meanwhile, the solution with same rank but remains in a less 

crowded area will be selected to be filled in parent pool. The tournament selection is 

repeated until the parent pool is fully occupied to generate children. New offspring 

population Qi of size Npop is generated from Pi by crossover and mutation operators. 

Later, Pi and Qi are combined to form new population Ri of size 2Npop. The NSGA-II 

procedure is repeated until the termination criteria is met. The flowchart of NSGA-II is 

shown in Figure 4.1. 
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START

Initialised random population Pi of size Npop

Calculate fitness value

Sorting Pi using non-dominated sort

F > Npop

Sort the last front based on higher CD Select other front based on CD
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crossover and mutation
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END

Yes No

Yes

No

 

Figure 4.1 Flowchart of NSGA-II 
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4.3 Constraint Handling 

This section explains a repairing strategy using topological sort to generate a 

feasible assembly sequence. Moreover, this approach had been adopted as a part of 

NSGA-II procedure to handle the precedence constraint. Topological sort is an ordering 

connection in a directed graph (Moon et al., 2002). This is also supported by Mohd 

Razali and Geraghty (2011) who used the repairing technique in GA. 

1

2

3

4

5

6

7

 

Figure 4.2 Example of precedence diagram for simple assembly line 

Table 4.1 Details of assembly task  

Task Task time Resource 

1 4 1 3 

2 14 0 0 

3 16 3 0 

4 6 2 3 

5 7 0 0 

6 11 1 4 

7 5 2 0 

 

Figure 4.2 exhibits the example of precedence diagram for simple assembly line. 

The details of each task is tabulated in Table 4.1. Two infeasible populations obtained 

from the precedence diagram are considered: C1[1, 4, 3, 7, 6, 2, 5] and C2[7, 2, 5, 6, 4, 
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3, 1]. Table 4.2 shows a procedure to generate a feasible sequence from the precedence 

diagram. The repair mechanism of the infeasible populations using topological sort is 

clarified as following: 

i. Identify available task from precedence diagram. 

ii. Select an available task based on the first task that appears in chromosome. 

iii. Remove the selected task from the precedence diagram. 

iv. Repeat step (i) to step (iii) until all tasks are selected 

Table 4.2 Procedure to generate a feasible sequence 

C1[1, 4, 3, 7, 6, 2, 5] C2[7, 2, 5, 6, 4, 3, 1] 

Available 

task(s) 
Selected task Available task(s) Selected task 

1 1 1 1 

2, 3 3 2, 3 2 

2, 5, 6 6 3, 4 4 

2, 5 2 3 3 

4, 5 4 5, 6 5 

5 5 6 6 

7 7 7 7 

Feasible sequence,  

fseq1: [1, 3, 6, 2, 4, 5, 7] 

Feasible sequence,  

fseq2: [1, 2, 4, 3, 5, 6, 7] 

 

4.4 Numerical Example of NSGA-II 

This section presents a numerical example to explain how the NSGA-II works 

for ALBE-RC problem. NSGA-II procedure begins with the initialisation phase. It is 

followed by evaluation procedure, selection and finally reproduction phase. 
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4.4.1 Initialisation 

In this step, the number of population (Npop) is predetermined. The initial 

population with a random permutation from 1 to n (number of task) is produced. 

Originally, the NSGA-II is encoded by using either binary or real number (Deb et al., 

2002; Fettaka et al., 2012). In this example, the Npop= 4 whilst the initial population 

generated from the precedence diagram in Figure 4.2 are as follow: 

pop = [

1, 4, 3, 7, 6, 2, 5

7, 2, 5, 6, 4, 3, 1

1, 5, 7, 2, 6, 3, 4

1, 3, 7, 5, 2, 6, 4

] 

Then, the algorithm is decoded to generate feasible sequences using topological 

sort as explained in section 4.3. The first available task found in the population will be 

selected. The following sequences represent the feasible sequences generated from the 

population after undergoing the repair mechanism. 

feasible sequence=Pi= [

1, 3, 6, 2, 4, 5, 7

1, 2, 4, 3, 5, 6, 7

1, 2, 3, 5, 6, 4, 7

1, 3, 5, 2, 6, 4, 7

] 

 

4.4.2 Evaluation 

In this step, the feasible sequence is evaluated according to objective functions 

in order to calculate the fitness of solution. The fitness will measure how good the 

solution is as well as the closeness of the chromosome to the optimal one. In this 

example, the predetermined maximum cycle time, ctmax is equivalent to 22 time unit. By 

using the evaluation approach as proposed in section 3.3.1, the fitness values for all 

feasible sequences obtained from the corresponding examples are shown in Table 4.3. 
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Table 4.3 Fitness values for feasible sequences 

Feasible sequences Cycle time, ct 
Number of 

workstations, nws 
Resources, r 

1 3 6 2 4 5 7 20 4 7 

1 2 4 3 5 6 7 22 4 7 

1 2 3 5 6 4 7 18 4 6 

1 3 5 2 6 4 7 22 3 6 

 

4.4.3 Selection 

Later, the non-dominated sorting approach is applied to generate Pareto-optimal 

set. The entire population is sorted using non-dominated sorting approach to identify 

the non-dominated set and solution front, F = (F1, F2,…, Fi). The best non-dominated 

solutions found from the population will belong to front 1, F1. If the size of F1 is 

smaller than Npop, all solutions of F1 will be chosen to be filled in selection pool. The 

remaining member of population will be chosen from F2 and subsequent solution fronts 

based on non-domination level and CD until the parent population is filled. If Fi > Npop, 

the solution from ith front, Fi, will be selected based on higher CD value. Crowding 

distance gives an estimation of the density of particular solution. The following 

algorithm are used to calculate the CD as proposed by Deb (2001). 

Step 1 Call the number of solution in F as Q = |𝐹|. For each I in the set, first 

assign di = 0. 

Step 2 For each objective function m = 1, 2,…, M, sort the set in descending 

order of fm. 

Step 3 For m = 1,2,…, M, assign maximum (mmax) and minimum (mmin) value of 

each objective. 
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Step 4          Calculate di
m

=
Qiupper

m -Qilower
m

mmax-mmin
              (4. 1) 

where, 𝑄𝑖𝑢𝑝𝑝𝑒𝑟
𝑚  is the upper value of the nearest mth objective for solution i. 𝑄𝑖𝑙𝑜𝑤𝑒𝑟

𝑚  

represents the lower value of the nearest mth objective for solution i. 

Step 5  Calculate the total of di
m

 

    CDi= ∑ di
mM

m=1                    (4. 2) 

The following information were used for this example: 

max ct=22 time unit 

min ct= max task time in data=16 time unit 

max nws= sum of task time min ct ⁄ = 63 16=4⁄  

min nws= sum of task time max ct= 63 22=3⁄⁄  

max r= max nws×total r type=4×4=16 

min r=number of r type=4 

 

The following calculation measures the CD of solution 1: 

d1
1
=

ctupper-ctlower

ctmax-ctmin

=
22-18

22-16
=0.667 

d1
2
=

nwsupper-nwslower

nwsmax-nwsmin

=
4-3

4-3
=1 

d1
3
=

rupper-rlower

rmax-rmin

=
7-6

16-4
=0.083 

CD1= ∑ di
m

=d1
1
+d1

2
+d1

3
=0.063+1+0.083=1.750

M

m=1
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Table 4.4 presents the value of CD for each solution. The value of crowding 

distance obtained for solution 1 is 1.750, similar to solution 4. Solutions 2 and 3  

recorded 1.416 and 0.416 of distance values respectively.  

Table 4.4 Crowding distance for each solution 

Solution CD 

1 1.750 

2 1.416 

3 0.416 

4 1.750 

 

Selection process is conducted using tournament selection approach. The 

purpose of this step is to select chromosomes from the selection pool to be the parent 

solutions. A random-pair of solution is generated from the selection pool. The 

tournament selection between a random-pair of solution is performed to determine the 

domination rank. Solution with a better rank (front) is chosen to be filled in parent pool. 

Meanwhile, solutions that have the same rank are compared to identify the ones with 

larger CD. The tournament competition is repeated until the parent pool is fully 

occupied (equivalent to Npop) to generate new offspring. 

The selection method for all solutions is tabulated in Table 4.5. From the table, 

it is obvious that solutions 3 and 4 are both selected from non-dominated set. 

Meanwhile, solutions 1 and 2 are selected based on their crowding distance. Based on 

the value of CD in Table 4.4, solution 1 has higher CD (1.750) as compared to solution 

2 (1.416). Hence, solution 1 must be emphasized more than solution 2.  
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Table 4.5 Selection method 

Selection method Solution Sequence 

Non-dominated sorting 
3 

4 

1, 2, 3, 5, 6, 4, 7 

1, 3, 5, 2, 6, 4, 7 

Crowding distance 
1 

2 

1, 3, 6, 2, 4, 5, 7 

1, 2, 4, 3, 5, 6, 7 

 

4.4.4 Reproduction 

New offspring population Qi of size Npop is generated from Pi by crossover and 

mutation operators. A process in which a new offspring or child is produced by taking 

two parent solutions is known as crossover (Sivanandam and Deepa, 2007). In this 

algorithm, Partially Matched Crossover (PMX) is applied. The following procedures 

illustrate how PMX works: 

i. Consider the two parents, P1 and P2 as shown in Figure 4.3. 

ii. The lines mark the selected cross-points. 

iii. The middle sections are remained to produce offspring, C1 and C2. 

iv. The blank positions of children 1, C1 inherits P2 from its left. 

v. Only remaining numbers in P2 will be filled in C1. 

vi. Inversely, the blank position of C2 inherits P1 from its left. 

vii. The remaining numbers in P1 is filled in C2. 

viii. The resulting children C1 and C2 are shown in Figure 4.3. 

ix. Similar steps are applied for the subsequent parents P3 and P4 to produce 

children C3 and C4 as shown in Figure 4.4. 
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P1 1 5 7 2 6 3 4 

P2 1 3 7 5 2 6 4 

C1 1 3 7 2 6 5 4 

C2 1 7 6 5 2 3 4 

Figure 4.3 Partially matched crossover for P1 and P2 

P3 1 4 3 7 6 2 5 

P4 7 2 5 6 4 3 1 

C3 2 5 4 7 6 3 1 

C4 1 3 7 6 4 2 5 

Figure 4.4 Partially matched crossover for P3 and P4 

Mutation operation helps to maintain the diversity of the population by prevent 

the algorithm from getting trapped in a local minimum. In this study, swapping 

mutation is applied to the chromosome after crossover operation. A random position in 

the chromosome is chosen and the position of the chromosomes are swapped. For 

example, consider the children 1, C1 as Figure 4.5. 

C1 = 1 3 7 | 2 6 5 4

C1 = 2 6 5 4 1 3 7

 

Figure 4.5 Mutation of C1 

Later, parent and offspring populations are combined to form population Ri = Pi 

∪ Qi od size 2Npop. The NSGA-II procedure is repeated until the termination criteria is 

met.  
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4.5 Computational Test 

A computational test is set up to test and validate the proposed algorithm. The 

aim of the experiment is to test the performance of the proposed optimisation algorithm, 

NSGA-II as compared to Multi-Objective Genetic Algorithm (MOGA) and Hybrid 

Genetic Algorithm (HGA). The MOGA and HGA were selected because these GA 

approaches are developed as an optimisation tool for NP-hard optimisation problem as 

explained in Chapter 2, section 2.5.1. In this work, six benchmark problems are used to 

test the optimisation algorithm. Each problem consists of a number of tasks, cycle time 

and also task time except Problem 1 that has an extra information on the resource usage. 

All test problems excluding the problem by Ağpak and Gökçen (2005) have been 

modified by including resources but the original information are preserved. Table 4.6 

shows the classification of problem size as proposed by Otto et al. (2011). 

Table 4.6 Classification of problem size 

Element Small Medium Large 

Number of tasks, n  n ≤ 20 20 ≤ n ≤ 70 n ≥ 70 

 

Small size problems were taken from Ağpak and Gökçen (2005) and 

Ponnambalam et al., (2000) whereas medium and large problems are available on an 

online database for assembly line balancing research: www.assembly-line-balancing.de 

(Scholl, 1993). A comparable data sets were exploited by Gonçalves and Almeida (2002) 

and Özcan & Toklu (2009) in order to test the proposed algorithms. Wei and Chao 

(2011) and Tuncel and Topaloglu (2013) also used the same data sets in their research. 

The benchmark problems are summarised in Table 4.7. 
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Table 4.7 Summary of benchmark problems 

Size of 

problem 
Problem 

Number of tasks, 

n 

Cycle time, ct 

(s) 

Small 

Problem 1 (Ağpak & Gökçen, 

2005) 
11 7 

Problem 2 (Ponnambalam et al., 

2000) 
12 10 

Medium 
Buxey (Scholl, 1993) 29 37 

Kilbridge (Scholl, 1993) 45 69 

Large 
Wee-Mag (Scholl, 1993) 75 69 

Lutz (Scholl, 1993) 89 35 

The proposed algorithm were coded in MATLAB and the experiments were 

executed on a Windows 8, Intel® Core™ i5-4210U CPU 1.70 GHz with 4 GB of RAM. 

The following parameters had been used to run the experiments: 

Population size  : 20 

Number of generations : 200 

Crossover probability, pc : 0.8 

Mutation probability, pm : 0.3 

To evaluate the performance of the proposed algorithms, five performance 

indicators were measured as proposed by Deb (2001). Furthermore, most of the 

indicators were used by Fettaka et al. (2012) and Yoosefelahi et al, (2012) to validate the 

performance of the algorithm. Further explanation on the following indicators was 

discussed in Chapter 2, section 2.6. 

vi. Number of  Non-Dominated Solution, NDS 

vii. Error Ratio, ER 

viii. Generational Distance, GD 

ix. Spacing 

x. Maximum Spread, Spreadmax 
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4.6 Optimisation Results 

The results of algorithm performances for MOGA, HGA and NSGA-II are 

presented in Table 4.8 and discussed in the following sections. The summary of each 

algorithm performance is as illustrated in the following graphical.  

Table 4.8 Algorithms performance of MOGA, HGA and NSGA-II 

Problem Algorithm NDS ER GD  Spacing Spreadmax 

Problem 1 

MOGA 1 0.5 0.5 0 1.7321 

HGA 1 0.5 0.5 0 1.7321 

NSGA-II 3 0 0 0 2.8284 

Problem 2 

MOGA 3 0 0 0.4714 4.1231 

HGA 3 0 0 0.4714 4.1231 

NSGA-II 3 0 0 0.4714 4.1231 

Buxey 

MOGA 5 0.1667 0.1667 1.2134 10.247 

HGA 5 0.5 0.6243 0.5 13.9642 

NSGA-II 7 0 0 0.4949 10.247 

Kilbridge 

MOGA 0 1 1.9255 0.3499 15.3623 

HGA 1 0.8333 0.9714 1.2134 14.0712 

NSGA-II 6 0 0 0.7454 11.5758 

Wee-Mag 

MOGA 1 0.875 2.903 1.9365 20.3224 

HGA 7 0.5882 1.1236 2.5219 31.7805 

NSGA-II 10 0 0 7.8358 29.0172 

Lutz2 

MOGA 5 0.6154 0.855 1.8138 33.8526 

HGA 6 0.5714 0.8257 1.2778 34.7131 

NSGA-II 8 0.2 0.2 1.005 27.2029 

*The values in bold show the best results  

The optimisation results in Table 4.8 revealed that NSGA-II demonstrated 

consistent performances in three indicators i.e. (i) Number of Non-Dominated Solutions, 

NDS (ii) Error Ratio, ER (iii) Generational Distance, GD for all test problems. It is 
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apparent from this table that NSGA-II showed inconsistent performance to obtain better 

Spacing as compared to MOGA and HGA. In contrast to that, the optimisation results 

indicate that NSGA-II has poor performance in finding better spread function as 

compared to the other comparison algorithms. 

 

Figure 4.6 Number of Non-Dominated Solution for benchmark problems 

Figure 4.6 exhibits the number of non-dominated solution for benchmark problem 

that were obtained by three comparison algorithms. The results from the computational 

test show that NSGA-II performed best in finding the non-dominated solutions for all six 

problems since NSGA-II used a crowding distance approach as the selection strategy. 

Hence, it can be concluded that NSGA-II has the ability to explore the search space as 

compared to other algorithms.  

Graph of Error Ratio for six benchmark problems is illustrated in Figure 4.7. 

Small ER will increase the accuracy of the solution. The ER metric will take any number 

between 0 and 1. This implies that when the value of ER is zero, all solutions are member 

of Pareto-optimal set. However, none of the solution is a member of Pareto-optimal set as 

the value of ER equals to one. The results for all tested problems show that NSGA-II has 

the smallest ER among the other two comparison algorithms. Therefore, it can be 

concluded that NSGA-II has better accuracy of solution.  
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Figure 4.7 Graph of Error Ratio for benchmark problems 

Figure 4.8 Graph of Generational Distance for benchmark problems 

The graph plotted in Figure 4.8 shows the Generational Distance for six 

benchmark problems. Small GD leads to high accuracy of solution.  In addition to the 

result of Error Ratio, the result of GD also showed that the performance of NSGA-II 

dominates the performance of MOGA and HGA in having high accuracy of solution.  As 
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expected, NSGA-II has the smallest value of GD for all size of problems as compared to 

MOGA and HGA.  

 

Figure 4.9 Graph of Spacing for benchmark problems 

An algorithm that has a smaller Spacing is better instead of having larger Spacing 

as it can lead to a uniformed distribution of solution. Usually, algorithm that has higher 

number of solutions will produce better spacing. From Figure 4.9, it is apparent that 

NSGA-II only shows better Spacing in Buxey and Lutz2 problems.  This is because, the 

number of solutions generated by NSGA-II is less than the number of solutions generated 

by MOGA and HGA. However, most of the solutions generated by NSGA-II lie on 

Pareto-optimal front. Since spacing metric will measure the distance of all solutions 

generated by the algorithm, when the number of solutions generated is small, the 

distribution of the solution would be worse. 
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Figure 4.10 Graph of Maximum Spread for benchmark problems 

Figure 4.10 presents the graph of Maximum Spread (Spreadmax) of benchmark 

problems found by three algorithms. The spread of solution is determined by the 

maximum spread. The distance of two extreme solutions correspond from 1st objective 

function  to mth objective function will measure the performance of the algorithm. Large 

Spreadmax shows that the algorithm has better spread of solution. As a consequence of the 

computational experiment, NSGA-II only found better spread function in Problem 1. 

Other problems did not show any performance in this aspect. The reason behind this is 

that the solutions generated by the algorithm has the capability to move towards the 

Pareto-optimal front instead of lying on the extreme solution.  

The results of the computational test revealed that NSGA-II has better 

performance as compared to MOGA and HGA since it has higher number of non-

dominated solution (NDS), has smaller Error Ratio (ER) as well as smaller Generational 

Distance (GD). NSGA-II uses the selection strategy based on crowding distance. Thus, it 

gives an estimation of the density of selected solutions. In spite of that, the population 

will be sorted in decreasing rank of level according to each objective function. The 

individuals of a given population are sorted based on the level of non-domination and 

crowding distance.  
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In comparison with MOGA and HGA, NSGA-II has the smallest Error Ratio. ER 

metric is defined as the ratio of non-member of Pareto-optimal front to the number of 

non-dominated solutions. The results of the performance measure of the algorithms 

clearly show that all solutions generated by NSGA-II are members of the Pareto-optimal 

front. Thus, it can be concluded that NSGA-II has better convergence and the ability to 

come nearer to the Pareto-optimal front as compared to MOGA and HGA. 

Since all solutions generated by NSGA-II lie on Pareto-optimal front, all test 

problems record the lowest value of Generational Distance than MOGA and HGA. The 

average distance of non-dominated solutions from Pareto-optimal front is equals to zero. 

NSGA-II produced better Spacing only in certain problem i.e. Buxey and Lutz2. Instead 

of having higher NDS, the distribution of solution will also influence the algorithm in 

achieving a better Spacing. The results of the performance measure of the algorithm 

indicate that NSGA-II shows an inconsistent performance in Spacing indicator. Similar 

trend of performance can be seen on MOGA.  

On the other hand, for Spreadmax, NSGA-II only show good performance in 

Problem 1. It is impossible to measure the distance between two extreme solutions in the 

objective space since the solutions generated by NSGA-II algorithm move towards the 

Pareto-optimal front. Nevertheless, both MOGA and HGA algorithms are inconsistently 

performed in Spreadmax indicator. From the computational test, it can be concluded that 

HGA is the worst algorithm to use to solve multi-objective optimisation problem. The 

results of the algorithm performance show that HGA is only good in a single 

performance (Spreadmax) for Buxey and Wee-Mag problem. Meanwhile, MOGA 

algorithm shows an average performance in most indicators.  

The results indicate that NSGA-II consistently performed in all test problems in 

three performance indicators i.e. (i) Number of Non-Dominated Solution, NDS (ii) Error 

Ratio, ER (iii) Generational Distance, GD. As a result, it is adequate to prove that the 

proposed NSGA-II outperform the other two comparison algorithms, MOGA and HGA 

for multi-objective optimisation problem.  
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4.7 Chapter Summary 

The objective of this chapter is to explain the development of optimisation 

algorithm, NSGA-II. The development of NSGA-II begins with establishing the 

solution procedure for ALBE-RC. In this phase, MATLAB software has been used for 

the coding purpose. Following that, a computational test is conducted to investigate the 

performance of the proposed algorithm. The results tabulated in Table 4.4 show that 

NSGA-II performed better in finding the number of non-dominated solution (NDS), 

have smaller Error Ratio (ER) and Generational Distance (GD) in all test problems with 

different size. Out of the five performance measures that were used to compare the 

algorithms, NSGA-II performed better in three indicators. This indicates that NSGA-II 

has the ability to explore the entire search space and has better accuracy of solution 

towards the Pareto-optimal front. 
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CHAPTER 5 

CASE STUDY AND VALIDATION 

 

5.1 Introduction  

This chapter presents an industrial case study that was conducted to validate the 

ALBE-RC model and NSGA-II algorithm. In the previous chapter, the NSGA-II was 

tested with generic problems from literature. The results from the computational test 

revealed that the proposed algorithm, NSGA-II performed in finding the non-dominated 

solution and have solution accuracy towards Pareto-optimal front.  

Apart from that, this chapter also provides a brief background of company and 

product, current production layout, data collection, simulation of current layout, 

optimised layout and validated layout. Last but not least, a validation of the research is 

also presented in this chapter. The validation was performed to get feedback from the 

industrial expert on the ALBE-RC model and on the proposed algorithm, NSGA-II. The 

final section will summarise the objective of this chapter as well as the outcome of the 

validation phase. 

5.2 Case Study 

This section exhibits an industrial case study that had been conducted 

throughout this research. The industrial case study was performed in BI Technologies 

Sdn. Bhd, a company located in Kuantan, Malaysia. HM72A-10 series model, which is 

a type of moulded inductor was chosen for the case study. HM72A-10 was selected as 

the product running on line is a type of single model. Related assembly data such as 

assembly task, cycle time, precedence constraint and resources had been collected and 
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manually recorded. The other essential data such as demand per day, output per day, 

working hour per day and number of employees were taken into account during data 

collection.  

5.2.1 Product and Company Background 

TT Electronics is a United Kingdom based manufacturer that produces sensing 

and control for industrial and car makers, advanced components and integrated 

manufacturing services (IMS). The advanced components provide engineered 

components solutions such as resistors, power and hybrid devices, magnetics and 

connectors. The magnetics components are handled by BI Technologies Corporation 

Sdn. Bhd. that is located in Kuantan, Malaysia. BI Technologies Corporation is a 

wholly owned subsidiary by TT Electronics.  

Their product design team are focused on custom and semi-custom product 

based on customers’ needs. The company’s vision is to become one of the world’s 

largest manufacturers of passive electronic components. The products produced by the 

company include magnetic components, power and signal, inductors SMD (Surface 

Mount Device) and through hole, moulded inductor, and lamination transformer. 

The company is divided into several production section such as magnetic line, 

moulded inductor, and Agilent. For this case study, the moulded inductor production 

section is selected as the product running on the line is a type of single model. Only 

HM72A-10 series model was running on the line during the data collection. HM72A-10 

series is a type of moulded inductor. This class of product is a high power low cost 

moulded SMD inductor which is typically used in electronic device such as computer. 
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5.2.2 Production Layout 
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Figure 5.1 Current production layout 

Figure 5.1 exhibits the current production layout. The production line is 

occupied with 18 workstations, consisting of 13 workers. There were 19 tasks that need 

to be performed to produce a single finished product (HM72A-10). Specifically, the 

assembly process starts with aircoil winding (a1) performed in workstation 1 (ST1), by 

worker 1 (W1) with the average of cycle time being 5.1 seconds. Then, the process is 

continued with aircoil lead out flattening (a2) by worker 2 (W2) in workstation 2 (ST2). 

The average cycle time that was recorded for a2 is 7.8 seconds. Later, worker 3 (W3) 

run aircoil lead out trimming (a3) with the average of cycle time recorded is 6.1 seconds 

was carried out in workstation 3 (ST3).  
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Aircoil leadout stripping (a4) was performed by worker 4 (W4) meanwhile task 

a5 which is aircoil leadout side stripping is run by worker 5 (W5). Both tasks were 

performed in workstation 4 (ST4) right after completing task a3. An average of 8.3 

seconds of cycle time was required to execute task a4 whereas an average of 7.8 seconds 

of cycle time was needed to complete task a5. Leads dip soldering (a6), flux cleaning 

(a7), aircoil lead out forming (a8) are individually executed in workstation 5 (ST5), 

workstation 6 (ST6) and workstation 7 (ST7) with the average of cycle time being 4.5 

seconds, 0.8 seconds and 4.4 seconds respectively. Worker 6 (W6) was assigned in ST6 

and ST7 to perform both tasks. Task a8 was performed by worker 7 (W7). 

The next process continues in workstation 8 (ST8) by which task a9 (rod core 

assembly to aircoil) was performed. The average cycle time required by the process was 

4.6 seconds. After the rod core was assembled to aircoil, task a10 (rod curing) was 

operated in workstation 9 (ST9). The process took exactly 4.0 seconds of the average of 

cycle time. Similar worker; that is worker 8 (W8) was assigned to two workstations to 

conducted task a9 and a10. Worker 9 (W9) was assigned to workstation 10 (ST10) to 

perform task a11 (moulding press) with the average of cycle time equals to 8.1 seconds. 

The process was continued with inductor clamping (a12), running in workstation 

11 (ST11) with average of cycle time being 3.2 seconds. After the inductor clamping 

was completed, the unit was then put into oven for curing process for exactly 9.0 

seconds of cycle time. The task is labelled as a13 (unit curing) and it was conducted in 

workstation 12 (ST12). Workstation 13 (ST13) performed unit unclamping from tongs 

(a14) with the average cycle time recorded being 1.6 seconds. These three tasks; a12, a13 

and a14 were operated by a single worker; worker 10 (W10). 

The production of the aforementioned product was then continued with lead 

cropping and forming (a15), part number marking (a16) and IR-reflow (a17) that was 

individually performed in workstation 14 (ST14), workstation 15 (ST15) and 

workstation 16 (ST16). The average cycle time of task a15, a16 as well as a17 were 4.7 

seconds, 2.2 seconds and 2.3 seconds respectively. Worker 11 (W11) had been assigned 

to ST14 to run the corresponding task. Meanwhile, task a16 and a17 were done by 

worker 12 (W12). In the last workstation, ST17, two tasks were needed to be performed 
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by worker 13 (W13) in order to finish the product; (i) VMI and Q-factor test (a18) (ii) 

Packaging (a19). Their respective average cycle time were 6.4 seconds and 1.5 seconds. 

5.2.3 Data Collection 

The data collection phase begun with an industrial visit to the company. During 

the visit, an interview and discussion session regarding the production of HM72A-10 

series model were conducted with the company expert. It is crucial to go and see the 

real situation in the production line to have a better understanding on the related 

product. For that purpose, two approaches had been applied to collect the data i.e. (i) 

Genchi Genbutsu (go and see) (ii) Genba (real place). Later, the data that were collected 

will be modelled according to the proposed model as explained in Chapter 3, section 

3.1. 

a7a1 a2 a3 a4 a5 a6

a9a10a11a12a13a14 a8

a15 a16 a17 a18 a19

START FINISH

 

Figure 5.2 Precedence diagram for HM72A-10 

Figure 5.2 shows the precedence diagram for HM72A-10. Meanwhile, Table 5.1 

exhibits HM72A-10 data collection. The data in the table clearly presents what type of 

resources were used while performing each task including the worker assignment. 

Besides that, the distribution of cycle time for each task is also tabulated in the Table 

5.1. From the data that was collected, it shows that flux cleaning is the fastest process 

among other tasks with the average cycle time being 0.8 seconds. The longest 

processing time was recorded by task a13 (unit curing) with the average cycle time being 

9.0 seconds.  This task becomes the bottleneck of the line and thus, it will cause high 

idle time in other workstations.   
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Table 5.1 HM72A-10 assembly data  

Work element 
Resources Cycle time (s) 

Distribution 
Machine, tool Worker 1 2 3 4 5 6 

a1 Aircoil winding 
- Auto CNC Aircoil 

Machine 
W1 5.0 5.4 4.9 5.1 5.2 5.2 Log Normal (5.1,0.17) 

a2 
Aircoil leadout 

flattening 
- Pneumatic press 1 W2 8.2 7.3 6.8 8.5 8.2 7.8 Normal (7.8,0.64) 

a3 
Aircoil leadout 

trimming 
- Pneumatic press 2 W3 5.7 6.5 6.7 5.6 6.2 5.9 Log Normal (6.1,0.44) 

a4 
Aircoil leadout 

stripping 

- Stripping machine 

1 
W4 7.8 8.3 8.1 8.4 8.5 8.7 Normal (8.3,0.32) 

a5 
Aircoil leadout side 

stripping 

- Stripping machine 

2 
W5 7.7 7.6 7.5 8.3 7.3 8.4 Normal (7.8,0.45) 

a6 Leads dip soldering 

Solder pot 

Tweezer 

- Flux 

W6 4.2 4.5 4.8 4.5 4.6 4.4 Normal (4.5,0.14) 
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Table 5.1 Continued 

a7 
Flux cleaning 

- Dish washer W6 0.8 0.8 0.8 0.8 0.8 0.8 Uniform (0.8,0) 

a8 
Aircoil leadout 

forming 

- Pneumatic Forming 

Machine 
W7 4.2 4.6 4.4 4.6 4.1 4.5 Normal (4.4,0.21) 

a9 
Rod core assembly 

to aircoil 

- Bent tip tweezer 

- Varnish container 
W8 4.4 4.5 4.9 4.8 4.1 4.9 Normal (4.6,0.32) 

a10 Rod curing  
- Oven 

- Baking tray 
W8 4.0 4.0 4.0 4.0 4.0 4.0 Uniform (4.0,0) 

a11 Moulding press 

- Double acting 

compression 

moulding 

W9 8.2 8.0 8.0 8.1 8.0 8.3 Log Normal (8.1,0.13) 

a12 Inductor clamping 
- Tongs 

- Clamping machine 
W10 3.0 3.2 2.9 3.1 3.4 3.6 Log Normal (3.2,0.26) 

a13 Unit curing  

- Oven 

- Baking trolley 

- PC profiler 

W10 9.0 9.0 9.0 9.0 9.0 9.0 Uniform (9.0,0) 
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Table 5.1 Continued 

a14 

Unit unclamping 

from tongs 

- Tongs 

- Clamping machine 

W10 1.6 1.8 1.4 1.6 1.5 1.7 Normal (1.6,0.14) 

a15 

Lead cropping and 

forming 

- Semi-auto cropping 

and forming 

machine 

W11 4.5 4.8 5.1 4.3 5.1 4.4 Log Normal (4.7,0.35) 

a16 Part number marking - Video jet printer W12 2.1 2.3 2.2 2.2 2.4 2.0 Normal (2.2,0.14) 

a17 IR-reflow 

- IR-Reflow machine 

- Baking tray 

W12 2.3 2.3 2.3 2.3 2.3 2.3 Uniform (2.3,0) 

a18 VMI + Q-factor test 

- Mantis scope 

- Height gauge 

- LCR meter 

W13 6.5 6.5 6.8 5.4 6.2 7.0 Normal (6.4,0.56) 

a19 Packaging 

- Tape & reel 

machine 

W13 1.5 1.4 1.5 1.6 1.6 1.5 Normal (1.5,0.08) 
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 Data distribution test was performed using Minitab software to identify the 

distribution of each of assembly task. Figure 5.3 and Figure 5.4 present the example of 

data distribution test for task a1 and task a2 respectively. The highest P-Value indicates 

the distribution of data. The distribution of task a1 was classified as Log Normal 

distribution since the P-Value is 0.829. Meanwhile, task a2 is normally distributed. 

 

Figure 5.3 Example of data distribution test for a1 task 
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Figure 5.4 Example of data distribution test for a2 task 

5.2.4 Simulation of Current Layout 

A simulation of existing layout was conducted using WITNESS™ software to 

simulate the assembly line. WITNESS™ is a simulation software that is commercially 

used to provide overall view on all the process in terms of busy, idle, blocked and 

output. The purpose of conducting existing layout simulation is to validate the 

simulation model with actual layout. The view of WITNESS™ software can be referred 

to Appendix A2. Meanwhile, Appendix A3 presents the simulation results of optimised 

layout from 1st run to 10th run. 

Figure 5.5 exhibits the simulation model of current layout for the production of 

HM72A-10 series. A total of 19 tasks need to be carried out to produce a final product 

using 17 workstations to perform all 19 tasks. Each task was operated in each 

workstation except for task a4 (aircoil leadout stripping) and task a5 (aircoil leadout side 

stripping) which were performed in workstation 4 (ST4). Besides that, task a18 (VMI) 

and task a19 (Inductor, DCR, Q-factor tests, and packaging) were performed in the same 

workstation: workstation ST17.  
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ST1

Aircoil winding

ST2

Aircoil leadout 

flattening

ST3

Aircoil leadout 

trimming

ST4

Aircoil leadout stripping and aircoil 

leadout side stripping

ST5

Leads dip 

soldering

ST6

Flux cleaning

ST7

Aircoil leadout 

forming

ST8

Rod core assembly 

to aircoil

ST9

Rod curing

ST10

Moulding press
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ST12

Unit curing

ST13
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and forming
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Figure 5.5 Current layout 

The summary of the production line of HM72A-10 series model is presented in 

Table 5.2. A total of 13 workers were assigned to particular workstations to perform the 

related tasks with a total of 30 machines and tools that had been used throughout the 

process. The data in Table 5.2 indicated that workstation 4 (ST4) has the longest 

processing time; which is 16.1 seconds. Meanwhile, the shortest processing time (0.8 

seconds) was recorded in workstation 6 (ST6). 

Table 5.2 Summary of HM72A-10 production 

Work element ST 
Resources Processing 

time (s) 
Machine, Tools Worker  

a1 

 

Aircoil winding ST1 
- Auto CNC 

Aircoil 

Machine 

W1 5.1 

a2 
Aircoil leadout 

flatenning 
ST2 

- Pneumatic 

press 1 
W2 7.8 

a3 
Aircoil leadout 

trimming 
ST3 

- Pneumatic 

press 2 
W3 6.1 

a4 

Aircoil leadout 

stripping (upper 

side) 

 

ST4 

- Stripping 

machine 1 W4 8.3 

a5 

Aircoil leadout side 

stripping 

(lower side) 

 

ST4 

 

- Stripping 

machine 2 W5 7.8 

a6 

 

Leads dip soldering ST5 

- Solder pot 

- Tweezer 

- Flux  

W6 4.5 

a7 Flux cleaning ST6 - Dish washer W6 0.8 
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Table 5.2 Continued 

a8 

Aircoil leadout 

forming ST7 

- Pneumatic 

Forming 

Machine 

W7 4.4 

a9 

 

Rod core assembly 

to aircoil 
ST8 

- Bent tip 

tweezer 

- Varnish 

container 

W8 4.6 

a10 Rod curing ST9 
- Oven 

- Baking tray 
W8 4.0 

a11 Moulding press 
 

ST10 

- Double 

acting 

compression 

moulding  

W9 8.1 

a12 Inductor clamping ST11 

- Tongs  

- Clamping 

machine 

W10 3.2 

a13 Unit curing ST12 

- Oven  

- Baking 

trolley  

- PC profiler 

W10 9.0 

      

a14 

 

Unit unclamping 

from tongs 
ST13 

- Tongs 

- Clamping 

machine 

W10 1.6 

a15 

 

Lead cropping and 

forming 

ST14 

- Semi-auto 

crop & form 

machine 

W11 4.7 

a16 
Part number marking 

ST15 
- Video jet 

printer 
W12 2.2 

a17 IR-reflow ST16 

- IR-Reflow 

machine 

- Baking tray 

W12 2.3 

a18 

VMI, Inductor/DCR 

+ Q-factor ST17 

- Mantis scope  

- Height Gauge 

- LCR meter 

W13 6.4 

a19 Packaging ST17 
- Tape & reel 

machine 
W13 1.5 

 

Indicator: ST = Workstation 

The simulation time was set for 22 hours of working time; equivalent to 2 shifts. 

The objective of the simulation is to measure the changes of the layout based on the 

optimisation result. The simulation is only focused on normal operation and the 

following conditions are applied: 
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1. Simulation is conducted for the period of 22 hours per day, equivalent to 79200 

seconds.  

2. The warm up period is set for 180 minutes. The warm up period is set up to this 

point in order to eliminate the initial bias as the production line that started with 

empty system tend to flow at a faster rate.  

3. The simulation is run for 30 times using different pseudo-random seeds so that 

the output generated from the simulation are non-repeating.  

4. Buffer capacity is set to 300, based on the average capacity.  

5. The reject rate is assumed to be 2%. 

6. The arrival part is unlimited. Meanwhile, the inter-arrival time is set in 

distribution form.  

7. The attendance rate of manpower is assumed to be >80%.  

 

  Table 5.3 presents the simulation result of output for existing layout. From the 

simulation result, the average of the output for the existing layout is 7318 units. 

Table 5.3 Simulation result of output for existing layout 

Run 
Output 

Existing Layout 

1 7313 

2 7329 

3 7319 

4 7325 

5 7327 

6 7313 

7 7323 

8 7314 

9 7317 

10 7321 

11 7312 

12 7321 

13 7323 
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Table 5.3 Continued 

14 7322 

15 7309 

16 7320 

17 7310 

18 7312 

19 7312 

20 7325 

21 7312 

22 7317 

23 7318 

24 7314 

25 7320 

26 7311 

27 7318 

28 7323 

29 7318 

30 7308 

Average 7318 

 

Meanwhile, the actual output in industry is presented in Table 5.4. The output of 

the existing layout was compared with the actual industrial output using t-test in order 

to validate the acceptance of simulation model. Result of t-test is shown in Table 5.5. 

Table 5.4 Actual industrial output 

Actual industrial output 

7200 

7300 

7200 

7500 

6600 



81 

 

 

Table 5.4 Continued 

7300 

7100 

7200 

7500 

7200 

6850 

7300 

7100 

7400 

7500 

7000 

7100 

 

 A t-test was performed using Minitab to validate the significance of existing 

layout simulation with the actual layout. The hypothesis for this t-test is as follow: 

i. Null hypothesis, H0 that assumes the mean of the two samples are equal.  

ii. Alternative hypothesis, H1 which assumes that there are difference of the mean 

between the two samples.  

Table 5.5 shows result of t-test between actual industrial output and existing 

layout. Based on the t-test that was conducted, the calculated t-value is 2.120, while the 

critical t-value is the same which is 2.120. The critical t-value was obtained from T-

table. There are two hypothesis that must be consider: 

i. Null hypothesis, H0 that assumes the mean of the two samples are equal. 

ii. Alternative hypothesis, H1 assumes that there are difference of the mean 

between the two samples. 

After making the hypothesis, the level of confidence will be selected. Usually, 

the confidence level is 95%. The degree of freedom is obtained by taking the sample 

size to be reduced by one (n-1). Later, the calculated value will be compared with the 
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value from the T-table. When the calculated t-value is larger than critical t-value, the 

null hypothesis, H0 will be rejected. On the other hand, if the calculated t-value is 

smaller than critical t-value, the null hypothesis is accepted. In this case, the t-test will 

accept null hypothesis, H0 which means that there should be no difference between the 

two samples (i.e. output of existing layout and actual industrial output). Referring to 

Table 5.5, the t-value obtained from t-test is 2.12 similarly to the critical t-value from T-

table.  

As there are no difference between the mean of the actual industrial output and 

the output of the existing layout, the simulation model is deemed accepted to represent 

the actual assembly layout. 

Table 5.5 Result of t-test between actual industrial output and existing layout 

T-Test Output 

T-value 2.120 

Critical t-value 2.120 

 Table 5.6 records the percentage of busy as well as percentage of idle for 

workstation of existing layout, obtained from simulation. It is apparent from this table 

that the average percentage of busy workstation obtained from the simulation is 

45.25%. This percentage is consider as low due to large number of workstation as well 

as less tasks were performed in one workstation. In the meantime, the average idle 

workstation records an average of 43.78% idle. This value is consider as too high 

because of less tasks were performed by the workers. 

Table 5.6 Percentage of busy and idle of workstation of existing layout 

Run 
Workstation 

Busy (%) Idle (%) 

1 45.27 43.70 

2 45.28 43.78 

3 45.27 43.72 
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Table 5.6 Continued 

4 45.27 43.80 

5 45.31 43.66 

6 45.23 43.85 

7 45.24 43.91 

8 45.21 43.87 

9 45.20 43.94 

10 45.27 43.63 

11 45.18 43.97 

12 45.29 43.56 

13 45.26 43.86 

14 45.25 43.88 

15 45.20 43.99 

16 45.28 43.62 

17 45.23 43.77 

18 45.22 43.84 

19 45.23 43.79 

20 45.33 43.50 

21 45.23 43.72 

22 45.19 44.11 

23 45.28 43.59 

24 45.24 43.84 

25 45.25 43.81 

26 45.23 43.70 

27 45.23 43.85 

28 45.28 43.66 

29 45.27 43.64 

30 45.21 43.72 

Average 45.25 43.78 
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Table 5.7 shows the percentage of busy and idle of worker of existing layout. 

Based on Table 5.7, the simulation result for the existing layout reveals that the average 

of busy percentage of worker is 66.40%, meanwhile the average idle of the worker is 

33.23%. The busy percentage of worker is less because most of the worker only 

perform single task. This situation leads to high idle percentage of the worker. The 

result of the simulation for the existing layout later will be compared with the 

simulation result after the optimisation using paired t-test to measure the improvement 

of the optimisation result in section 5.2.5. 

Table 5.7 Percentage of busy and idle of worker of existing layout 

Run 
Worker 

Busy (%) Idle (%) 

1 66.79 33.21 

2 66.80 33.20 

3 66.80 33.20 

4 66.79 33.21 

5 66.85 33.15 

6 66.74 33.26 

7 66.76 33.24 

8 66.72 33.28 

9 66.71 33.29 

10 66.79 33.21 

11 66.68 33.32 

12 66.83 33.17 

13 66.79 33.21 

14 66.78 33.22 

15 66.70 33.30 

16 66.82 33.18 

17 66.74 33.26 

18 66.71 33.29 

19 66.74 33.26 

20 66.90 33.10 
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Table 5.7 Continued  

21 66.74 33.26 

22 66.68 33.32 

23 66.79 33.21 

24 66.75 33.25 

25 66.79 33.21 

26 66.75 33.25 

27 66.76 33.24 

28 55.83 33.17 

29 66.79 33.21 

30 66.70 33.30 

Average 66.40 33.23 

 

Table 5.8 shows the result of simulation for existing layout. It is apparent from 

this table that the number of workstation and resources used were the same as the 

previously mentioned figure, which were 17 and 43 respectively, with cycle time being 

16.1 seconds. The percentage of line efficiency was obtained from the Eq. (2.1).  The 

figure in Table 5.8 shows that the line efficiency of the existing layout is 33.8%. The 

simulation result shows the daily output achieved from the existing layout is 7318 units. 

Meanwhile, the actual average output is 7200 units per day. The result from t-test as in 

Table 5.5 provides evidence that the simulation model is acceptable.  

Table 5.8 Result of simulation for existing layout 

Data Existing 

Number of workstation 17 

Cycle time (s) 16.1 

Number of resources 43 

Line efficiency (%) 33.8 

Daily output 7318 
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5.2.5 Optimisation using NSGA-II and Simulation Results 

In this research, there are three objective functions that needed to be optimised 

i.e. to minimise the number of workstations, to minimise the cycle time, and to 

minimise the number of resources. The optimisation for the case study data was done 

using NSGA-II approach and later followed by simulation.   

The proposed layout from optimisation process is presented in Figure 5.6. The 

output of the optimisation process revealed that a total of nine workstations were 

needed to run all processes with one worker assigned at each workstation, except for the 

first workstation that has two workers. A few tasks that use the same resource were 

assigned to one workstation; respecting the precedence relationship and ensuring that 

the total processing time in each workstation does not exceed the cycle time.  

ST1 ST2 ST3 ST4 ST5 ST6

ST7
ST8

0

W1 

0

0 0 0 0

00

W4 W5 W6 W7

W8 W8 W10 

0

W3 

ST9

0

W2 

 

Figure 5.6 Proposed layout 

Details on the tasks that have been assigned to each workstation and their 

respective total processing time are tabulated as in Table 5.9. The information in the 

table demonstrates that task a1 and task a2 were assigned to ST1 with total processing 

time, 12.9 seconds. Aircoil leadout trimming (a3) was assigned in the second 

workstation, ST2 with the total processing time of 6.1 seconds. Meanwhile, aircoil 

leadout stripping (a4) were allocated in the third workstation, ST3 with the total of 
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processing time of 8.3 seconds. ST4 consists of three tasks; a5 (aircoil leadout side 

stripping), a6 (leads dip soldering), and a7 (flux cleaning). The total processing time 

recorded was 13.1 seconds, which is the highest processing time. There were three tasks 

assigned to ST5 which were task a8 (aircoil leadout forming), task a9 (rod core assembly 

to aircoil) and task a10 (rod curing), with a total processing time of 13.0 seconds.  

Two tasks were allocated in ST6: moulded pressing (a11) and inductor clamping 

(a12). A total of 11.3 seconds of processing time is required to carry out all these tasks. 

At the same time, task a13 (unit curing) and task a14 (unit unclamping from tongs) were 

assigned in ST7 with a total processing time of 10.6 seconds. The other tasks which 

lead to cropping and forming (a15), part number marking (a16), and IR-reflow (a17) were 

assigned to workstation 8 (ST8). The total processing time recorded at the workstation 

is 9.2 seconds. The last workstation, ST9 consisted of two tasks i.e. (i) VMI, 

inductor/DCR + Q-factor (a18) (ii) Packaging (a19).  Both tasks recorded 7.9 seconds of 

total processing time.               

Table 5.9 Proposed task assignment based on NSGA-II optimisation result 

ST Task Resources 
Processing 

time (s) 

ST1 

a1 – aircoil winding - W1, W2 

- Auto CNC aircoil machine 

- Pneumatic press 1 

12.9 a2 – aircoil leadout 

flattening 

ST2 
a3 – aircoil leadout 

trimming 

- W3 

- Pneumatic press 2 
6.1 

ST3 
a4 – aircoil leadout 

stripping  

- W4 

- Stripping machine 1 
8.3 

ST4 

a5 - aircoil leadout 

side stripping 

- W5 

- Stripping machine 2 

- Solder pot 

- Tweezer 

- Flux 

- Dish washer 

13.1 
a6 – leads dip 

soldering 

a7 – flux cleaning 
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Table 5.9 Continued 

ST5 

a8 – aircoil leadout 

forming 

- W6 

- Pneumatic forming machine 

- Bent tip tweezer 

- Varnish container 

- Oven 

- Baking tray 

13.0 

a9 – rod core assembly 

to aircoil 

a10 – rod curing 

a12 – inductor 

clamping 

ST7 

a13 – unit curing 
- W8 

- Oven 

- Baking tray 

- PC profiler 

 

 

10.6 
a14 -  unit unclamping 

from tongs 

ST8 

a15 – lead cropping 

and forming 

- W9 

- Semi auto cropping and 

forming machine 

- Video jet printer 

- IR-reflow machine 

- Baking tray 

9.2 
a16 – part number 

marking 

a17 – IR-reflow 

ST9 

a18 – VMI, 

inductor/DCR + Q-

factor 

- W10 

- Mantis scope 

- Height gauge 

- LCR meter 

- Tape and reel machine 

7.9 

a19 – Packaging 

 

 

 

 



89 

 

Table 5.10 Comparison of simulation results for the average of output of existing 

layout and after optimisation  

Run 
Output 

Existing Layout After Optimisation 

1 7313 8073 

2 7329 8079 

3 7319 8072 

4 7325 8076 

5 7327 8068 

6 7313 8079 

7 7323 8084 

8 7314 8082 

9 7317 8076 

10 7321 8074 

11 7312 8072 

12 7321 8078 

13 7323 8072 

14 7322 8081 

15 7309 8079 

16 7320 8076 

17 7310 8070 

18 7312 8080 

19 7312 8077 

20 7325 8071 

21 7312 8079 

22 7317 8080 

23 7318 8084 

24 7314 8079 

25 7320 8072 

26 7311 8081 

27 7318 8074 

28 7323 8080 
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Table 5.10 Continued 

29 7318 8078 

30 7308 8079 

Average 7318 8077 

 

 The results in Table 5.10 demonstrate the comparison on the average of 

output of the existing layout and the proposed layout based on the optimisation result. It 

is apparent from the table that there are an average of 8077 units were produced after 

the optimisation compared to the existing layout that only produced 7318 units. In order 

to measure the improvement of the output between the existing layout and after the 

optimisation, a pair t-test was performed.  

 The pair t-test was conducted to compare the mean of two different samples. 

In this study, we want to figure out if there exist any improvement on the optimisation 

based on the case study that was performed in industry. There are two hypothesis that 

must be considered. First, null hypothesis (H0) that assumes the mean of the two 

samples are equal. The second one is alternative hypothesis (H1) which assumes that 

there are difference of the mean between the two samples. 

 The result of the test is presented in Table 5.11. From the results, we can see 

that the t-value (545.06) is much higher compared with critical t-value (2.000-2.021). 

The critical t-test value was obtained from T-table, with 53 degree of freedom and 95% 

confidence interval. Based on the t-value and critical t-value, we will reject the null 

hypothesis, H0 since the calculated value is greater than the value from the table. Hence, 

it can be concluded that there exists significant improvement of the output after the 

optimisation. 
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Table 5.11 Result of pair t-test for output between the existing layout and after 

optimisation 

Pair T-Test 
Output 

After Optimization and Existing Layout 

T-value 545.06 

Critical t-value 2.000 – 2.021 

 Table 5.12 records the percentage of busy and idle of workstation after 

optimisation. From the table, an average of 61.74% denotes the busy of workstation 

meanwhile, 29.68% indicated an average of idle workstation. These values are 

improved compared to the existing condition as the number of workstations have been 

reduced from 14 workstations to eight (8) workstations after the optimisation. This 

situation caused the average of busy percentage to be higher than the existing layout. 

Apart from that, the average percentage of idle workstation also was reduced.   

 

Table 5.12 Percentage of busy and idle of workstation after optimisation  

Run 
Workstation 

Busy (%) Idle (%) 

1 61.31 29.28 

2 61.75 29.66 

3 61.74 29.73 

4 61.76 29.71 

5 61.71 29.73 

6 61.77 29.68 

7 61.79 29.65 

8 61.78 29.66 

9 61.75 29.65 

10 61.76 29.70 

11 61.70 29.71 

12 61.74 29.68 
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Table 5.12 Continued 

13 61.75 29.69 

14 61.76 29.68 

15 61.74 29.72 

16 61.72 29.72 

17 61.72 29.74 

18 61.77 29.68 

19 61.77 29.67 

20 61.75 29.73 

21 61.77 29.66 

22 61.76 29.71 

23 61.80 29.64 

24 61.75 29.70 

25 61.76 29.71 

26 61.76 29.67 

27 61.73 29.74 

28 61.74 29.68 

29 61.75 29.66 

30 61.79 29.69 

Average 61.74 29.68 

 

 Apart of that, the percentage of busy as well as the percentage of idle for 

worker are clearly stated in Table 5.13. In different with the existing layout, 69.16% of 

worker are busy and 35.39% of them are idle. The busy percentage of worker after the 

optimisation is higher compared to the existing layout. The result of simulation after the 

optimisation reveals that the idle percentage of the worker are much lower compared to 

the idle worker of the existing layout. However, the significant of the difference only 

can be confirmed once the t-test is conducted.  
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Table 5.13 Percentage of busy and idle of worker after optimisation 

Run Worker 

Busy (%) Idle (%) 

1 69.17 30.83 

2 68.57 31.43 

3 69.18 30.82 

4 69.20 30.80 

5 69.14 30.86 

6 69.19 30.82 

7 69.22 30.78 

8 69.22 30.78 

9 69.16 30.84 

10 69.20 30.80 

11 69.10 30.90 

12 69.16 30.84 

13 69.16 30.84 

14 69.18 30.83 

15 69.16 30.84 

16 69.16 30.84 

17 69.15 30.85 

18 69.19 30.81 

19 69.20 30.80 

20 69.17 30.83 

21 69.20 30.80 

22 69.19 30.81 

23 69.22 30.79 

24 69.19 30.81 

25 69.18 30.82 

26 69.18 30.82 

27 69.15 30.85 

28 69.17 30.83 

29 69.19 30.84 
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Table 5.13 Continued 

30 69.22 30.78 

Average 69.16 30.84 

 

A pair t-test of busy and idle workstation between the existing layout and 

optimised layout was performed. The results are demonstrated in Table 5.14. It is 

apparent from this table that the t-value of busy (283.82) surpasses the critical t-value 

(2.000-2.021). The result of pair t-test also revealed that the t-value of idle workstation 

are differ compared to the critical t-value. These imply that both parameters (i.e. busy 

and idle of workstation) have a significance improvement after the optimisation. 

Table 5.14 Result of pair t-test of busy and idle workstation between the existing 

layout and after optimisation 

Pair T-Test 

Workstation 

After Optimisation and Existing Layout 

Busy Idle 

T-value 283.82 525.6 

Critical t-value 2.000 - 2.021 2.000 - 2.021 

 

  Table 5.15 illustrates the result of pair t-test of busy and idle worker between the 

existing layout and after optimisation. The result highlights that the busy of worker has 

a slight improvement between the existing layout and after the optimisation. The t-value 

of busy worker (7.62) is slightly higher than the critical t-value (2.000-2.021). 

Interestingly, the result shows that the idle worker has better improvement between the 

existing layout and after the optimisation. In comparing the t-value (210.21) and the 

critical t-value (2.000-2.021), there exists much different between these values. 
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Table 5.15 Result of pair t-test of busy and idle worker between the existing layout 

and after optimisation 

Pair T-Test 

Worker 

After Optimisation and Existing Layout 

Busy Idle 

T-value 7.62 210.21 

Critical t-value 2.000 - 2.021 2.000 - 2.021 

 

Table 5.16 demonstrates the comparison of simulation results summary between 

the existing layout and that of after the NSGA-II optimisation. It is noteworthy that the 

results indicated the number of workstation decreased from 17 to nine (9) after the 

optimisation. The simulation results also highlighted that the cycle time decreased from 

16.1 seconds to 13.1 seconds. Tasks that employ the same resources were assigned to 

one workstation by ensuring that the cycle time is not exceeded and the precedence 

constraints are not violated. The results from this table revealed that there were 3 

resources less used after the optimisation.  

The other important observation to note from this table is the efficiency of the 

line that increased to 78.4% after the optimisation. As mentioned previously, the value 

of line efficiency was calculated by using the Eq. (2.1). Therefore, the simulation result 

indicates that the most efficient line was the one that went through optimisation. Among 

the simulation results of the existing layout and that of after NSGA-II optimisation, the 

latter indicates that the daily output obtained from the simulation after the optimisation 

is 8077 units meanwhile, the existing output is 7318 units.    
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Table 5.16 Comparison of simulation results between existing layout and after 

NSGA-II optimisation 

Data Existing After NSGA-II 

optimisation 

Number of workstation 17 9 

Cycle time (s) 16.1 13.1 

Number of resource 43 40 

Line efficiency (%) 33.8 78.4 

Daily output  7318 8077 

 

5.3 Validation  

This section describes a validation phase that was performed with an industrial 

expert from BI Technologies Corporation to validate the applicability of the 

optimisation process. The validation stage was conducted through an interview and 

discussion session with their Senior Manufacturing Engineer in BI Technologies, Mr. 

Rashidi bin Jamaluddin. The results of current layout were compared to the results after 

the optimisation in order to get feedback from the expert. For validation purpose, some 

queries were raised during the interview and discussion session; (i) Is the proposed 

layout possible to implement in the production line? (ii) Does the line effectiveness 

meet the industrial target?  

The findings from the validation suggested that the proposed layout should be 

modified because some of the equipment’s are isolated and cannot be allocated to 

another place. The modification is also needed due to safety issue. With regards to the 

optimisation output in Table 5.9, the aircoil winding a1 was assigned together with 

aircoil lead out flattening a2 in ST1. This assignment will cause ear-splitting because the 

operation of CNC winding machine to conduct task a1 will produce too much noise. 

Thus, task a1 and task a2 should be allocated in two different workstations as shown in 

Table 5.17.  
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Table 5.17  Task assignment after validation      

ST Task Resources Processing time 

(s) 

ST1 a1 – aircoil winding 

- W1 

- Auto CNC aircoil 

machine 

5.1 

ST2 a2 – aircoil leadout flattening 
- W2 

- Pneumatic press 1 
7.8 

ST3 a3 – aircoil leadout trimming 
-W3 

- Pneumatic press 2 
6.1 

ST4 
a4 – aircoil leadout stripping 

(upper side) 

-W4 

- Stripping machine 1 
8.3 

ST5 

a5 - aircoil leadout side 

stripping (lower side) 

 - W5 

- Stripping machine 2 

- Solder pot 

- Tweezer 

- Flux 

- Dish washer 

13.1 

a6 – leads dip soldering 

a7 – flux cleaning 

ST6 

a8 – aircoil leadout forming - W6 

- Pneumatic forming     

machine 

- Bent tip tweezer 

- Varnish container 

- Oven  

- Baking tray  

13.0 

a9 – rod core assembly to 

aircoil 

a10 – rod curing 

ST7 

a11 – moulding press -W7 

- Double acting 

compression 

moulding 

- Tong 

- Clamping machine 

11.3 
a12 – inductor clamping 

ST8 

a13 – unit curing -W8 

- Oven 

- Baking tray 

- PC profiler 

10.6 a14 -  unit unclamping from 

tongs 

ST9 

a15 – lead cropping and 

forming 

-W9 

- Semi auto cropping 

and forming machine 

- Video jet printer 

- IR-reflow machine 

- Baking tray 

9.2 
a16 – part number marking 

a17 – IR-reflow 
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Table 5.17 Continued 

ST10 

a18 – VMI, inductor/DCR + 

Q-factor 

-W10 

- Mantis scope 

- Height gauge 

- LCR meter 

- Tape and reel 

machine 

7.9 

a19 – Packaging 

 

ST1 ST2 ST3 ST4 ST5 ST6

ST7
ST8

0

W1 

0

0 0 0 0

00

W3 W4 W5 W6

W7 W8 W9 

0

W2 

ST9 ST10

0

W10

 

Figure 5.7 Layout after validation 

Figure 5.7 exhibits the layout after validation whereas Table 5.17 provides the 

details on task assignment at each workstation and their respective total processing 

time. After the validation, some changes were made by taking into account the feedback 

from industrial expert. Task a1 (aircoil winding) should be assigned in workstation 1, 

ST1 with processing time 5.1 seconds meanwhile, task a2 (aircoil leadout flattening) is 

assigned in workstation 2, ST2 with the processing time of 7.8 seconds. The rest of the 

tasks remain unchanged as the optimisation result in Table 5.9. 
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Table 5.18 presents the comparison of simulation results for output of existing 

layout and after validation. The tabulated results show that the average number of 

output obtained after the validation (8056) is slightly higher than the existing layout 

(7318). On top of that, the output after the validation was compared with the existing 

layout by perform a pair t-test. 

Table 5.18 Comparison of simulation results for output of existing layout and after 

validation 

Run 
Output 

Existing Layout After Validation 

1 7313 8053 

2 7329 8057 

3 7319 8052 

4 7325 8054 

5 7327 8048 

6 7313 8057 

7 7323 8063 

8 7314 8061 

9 7317 8054 

10 7321 8053 

11 7312 8051 

12 7321 8055 

13 7323 8051 

14 7322 8061 

15 7309 8057 

16 7320 8054 

17 7310 8049 

18 7312 8058 

19 7312 8054 

20 7325 8050 

21 7312 8057 



100 

 

The result of pair t-test for output between the existing layout and after 

validation is tabulated in Table 5.19. From here we can see that, the t-value (546.65) is 

excessively higher than critical t-value which is in the range of 2.000-2.021.  The output 

after the validation is greater than the output of existing layout. In this case, the null 

hypothesis is rejected since there are significant difference of the mean between the 

output of the existing layout and after the validation. 

Table 5.19 Result of pair t-test for output between the existing layout and after 

validation 

Pair T-Test 
Output 

After Validation and Existing Layout 

T-value 546.65 

Critical t-value 2.000 - 2.021 

 

The percentage of busy and idle of workstation after the validation are recorded 

in Table 5.20. From the table, it is clearly stated that the average percentage of busy 

workstation is 63.73%, slightly higher than the value after the optimisation. In the 

meantime, the simulation result shows that 28.85% of workstations are idle. Following 

22 7317 8057 

23 7318 8064 

24 7314 8057 

25 7320 8050 

26 7311 8061 

27 7318 8054 

28 7323 8058 

29 7318 8055 

30 7308 8055 

Average 7318 8056 
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that, these simulation results are compared with the results of existing layout through a 

pair t-test. 

Table 5.20 Percentage of busy and idle of workstation after validation 

Run 
Workstation 

Busy (%) Idle (%) 

1 63.72 28.87 

2 63.72 28.87 

3 63.72 28.85 

4 63.71 28.87 

5 63.74 28.85 

6 63.76 28.84 

7 63.77 28.81 

8 63.79 28.81 

9 63.7 28.88 

10 63.7 28.87 

11 63.72 28.85 

12 63.74 28.86 

13 63.71 28.87 

14 63.77 28.81 

15 63.72 28.86 

16 63.74 28.85 

17 63.73 28.87 

18 63.71 28.87 

19 63.7 28.87 

20 63.73 28.84 

21 63.75 28.84 

22 63.76 28.83 

23 63.75 28.83 

24 63.74 28.85 

25 63.69 28.89 

26 63.71 28.86 
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Table 5.20 Continued 

27 63.72 28.86 

28 63.73 28.84 

29 63.76 28.83 

30 63.76 28.84 

Average 63.73 28.85 

 

  Table 5.21 presents the result of pair t-test of busy and idle workstation of 

existing layout and after validation. It appears from the table that the t-value of busy 

and idle are 317.68 and 559.77 correspondingly. These values are vary compare with 

the critical t-value which is in the range of 2.000-2.021. Since the t-value is greater than 

the critical t-value from the table, the null hypothesis (H0) will be rejected. In this case, 

we will accept the alternative hypothesis (H1) as there are difference of the mean of 

busy and workstation between the existing layout and after validation. In a simple word, 

it can be conclude that the validation phase out did the existing layout.    

 

Table 5.21 Result of pair t-test of busy and idle workstation between the existing 

layout and after validation 

Pair T-Test 

Workstation 

After Validation and Existing Layout 

Busy Idle 

T-value 317.68 559.77 

Critical t-value 2.000 - 2.021 2.000 - 2.021 
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  Table 5.22 records the percentage of busy and idle of worker after the 

validation. The results in the table revealed that an average of 64.71% of workers are 

busy performing their tasks. Meanwhile, in average, 35.39% of the workers are in idle 

state. These situations might be caused by some of the workers have less jobs to 

conduct. 

Table 5.22 Percentage of busy and idle of worker after validation 

Run 
Worker 

Busy (%) Idle (%) 

1 65.24 34.76 

2 65.24 34.76 

3 58.72 41.28 

4 58.72 41.28 

5 58.74 41.26 

6 65.29 34.71 

7 65.29 34.71 

8 65.31 34.69 

9 65.22 34.78 

10 65.22 34.78 

11 65.24 34.76 

12 65.26 34.74 

13 65.24 34.76 

14 65.30 34.70 

15 65.25 34.75 

16 65.26 34.74 

17 65.25 34.75 

18 65.24 34.76 

19 65.23 34.77 

20 65.27 34.73 

21 65.28 34.72 

22 65.29 34.71 

23 65.28 34.72 
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Table 5.22 Continued 

24 65.27 34.73 

25 65.22 34.78 

26 65.24 34.76 

27 65.26 34.74 

28 65.25 34.75 

29 65.29 34.71 

30 65.29 34.71 

Average  64.61 35.39 

 

Table 5.23 demonstrates the result of pair t-test of busy and idle worker between 

the existing layout and after validation. It is apparent from this table that very few 

different between the t-value of busy (3.37) and the critical t-value which is in the range 

of 2.000-2.021. It also appear from the table that the t-value of idle which is 5.90 has a 

small different with the critical t-value (2.000-2.021). Therefore, there is no much 

significance between the output of the existing layout and after the validation.  

Table 5.23 Result of pair t-test of busy and idle worker between the existing layout 

and after validation 

Pair T-Test 

Worker 

After Validation and Existing Layout 

Busy Idle 

T-value 3.37 5.90 

Critical t-value 2.000 - 2.021 2.000 - 2.021 
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The comparison of simulation result summary after NSGA-II optimisation and 

after validation is illustrated as in Table 5.24. Among the feedback from the validation 

stage, it is suggested that task a1 (aircoil winding) and task a2 (aircoil leadout flattening) 

should be assigned to two different workstations. As a result, the number of workstation 

after validation increased to 10 workstations from 9 after the optimisation. From Table 

5.24, it is apparent that the average percentage of busy in workstation is 70.5%. Last but 

not least, the simulation result yields an average of 8077 units of daily output. Whereas, 

the actual average output for this product is 7200 units per day.   

               

Table 5.24 Comparison of results after optimisation and validation 

Data 
After NSGA-II 

optimisation 

After 

validation 

Number of workstation 9 10 

Cycle time (s) 13.1 13.1 

Number of resource 40 40 

Line efficiency (%) 78.4 70.5 

Daily output  8077 8056 

  

Table 5.25 exhibits the comparison of optimisation parameters for different 

stages i.e. existing layout, after optimisation as well as after validation.  From the 

results, it is apparent that the cycle time was decreased from 16.1 seconds to 13.1 

seconds both after the optimisation and validation. The results in Table 5.25 show that 

there are 17 workstations used in existing layout. In this research, a few tasks operated 

by similar resources are assigned to the same workstation given that it does not violate 

the precedence constraint and cycle time as well. Due to that, the number of 

workstations had drastically decreased to 9 workstations after the optimisation. 

However, this figure increased to 10 to include one additional workstation after the 

validation phase. The number of resources after the optimisation and validation are way 

different than the number of resources in existing layout.    
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Table 5.25 Comparison of optimisation parameters for different stages 

 Existing Layout After Optimisation After Validation 

Cycle time 16.1 13.1 13.1 

Number of 

workstation 
17 9 10 

Number of 

resources 
43 40 40 

Assembly line 

efficiency (%) 
33.8 78.4 70.5 

 

The comparison results show that the number of resources used for existing 

layout is 43 resources. Meanwhile, the number of resources used after both, the 

optimisation and validation is 40 resources. The most striking observation from the 

comparative result is that the line efficiency after the optimisation phase (78.4%) 

surpassed the line efficiency of the existing layout (33.9%) and that of after validation 

(70.5%) as well. Apart from that, the feedback from the industrial expert also suggested 

that the optimisation technique is applicable in manufacturing field as it can reduce the 

utilisation of workstations, resources and time. Last but not least, the aforementioned 

approach also can enhance the line efficiency.  

5.4 Chapter Summary 

This chapter aims to provide detailed explanation on the case study that was 

performed in BI Technologies Sdn. Bhd. including some background of the company 

and product. Apart from that, the existing production layout is presented in this chapter 

with a clear description of the process flow. The industrial case study was conducted in 

order to validate the ALBE-RC model and NSGA-II algorithm. Related assembly data 

had been collected to be simulated in WITNESS™ Simulation Software.  

The results from the statistical test between the actual industrial output and 

existing layout found that the calculated t-value and the critical t-value from the table 

are the same which is 2.120. As there are no different between the mean of these two 



107 

 

conditions, the null hypothesis is accepted. Thus the simulation model is accepted to 

represent the actual layout.  

The simulation result shows that the average daily output obtained after the 

optimisation is 8077. Meanwhile, the actual average output is 7200 units per day. The 

result from the statistical test proves that the H0 is rejected. There exist major different 

among the two situations. The validation stage with the industrial expert was performed 

to validate the applicability of the optimisation process. The result from the statistical 

test also highlight that there are significant different of the mean between the output of 

the existing layout and after validation.  The optimisation parameters i.e. number of 

workstations, cycle time and number of resources had recorded the minimum value that 

could be achieved using the proposed model and algorithm. In the meantime, the 

ALBE-RC model and the proposed algorithm was validated and can be implemented 

for industrial application. However, for the selected case study, a minor change in the 

optimisation result is needed due to isolated equipment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



108 

 

 

CHAPTER 6 

CONCLUSION AND RECOMMENDATION 

 

6.1 Introduction 

This chapter summarises the research works and highlights the contribution of 

the research to knowledge. Lastly, some recommendations for the future research are 

suggested. 

6.2 Summary of Research 

This section summarises the work that had been done throughout the research.  

The first phase in this research is conductance of literature review. The literature review 

presented the classification of assembly line balancing (ALB) which is divided to two 

categories (i) Simple Assembly Line Balancing Problem, SALBP (ii) General 

Assembly Line Balancing Problem, GALBP (Scholl and Becker, 2006, Boysen et al., 

2007). Meanwhile, SALBP is classified into four groups i.e. ALB-1, ALB-2, ALB-E 

and ALB-F. However, very few studies were carried out on ALB-E.  

In literature review, it is common to see previous researchers considering cycle 

time, workstation, precedence, zoning and other constraints in their works. The 

researches focuses on those constraints rather than resource constraint in ALB-E itself. 

Thus, this research is focused on ALB-E by considering the resource constraint (ALE-

RC). The literature review reveals that most researchers used GA-based approach as the 

optimisation technique in ALB (Al-Hawari et al., 2014, Ranjan and Pawar, 2014, 

Zacharia and Nearchou, 2013, Mohd Razali and Geraghty, 2011). However, no reports 
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so far were found using the Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-

II) for the optimisation of ALB-E itself. 

This research had established a methodology to represent ALBE-RC. The 

optimisation of ALBE-RC problem is demonstrated by a few steps. Primarily, a liaison 

matrix is established to generate feasible assembly sequence and followed by the 

application of DeFazio’s question and answer to identify the existence of precedence 

diagram mapping. Later, the matrix data is tabulated into respective table. Last but not 

least, the assembly sequence is evaluated according to three objective functions (i) to 

minimise the number of workstation (ii) to minimise the cycle time (iii) to minimise the 

number of resource.  

The research work is continued with algorithm development to optimise the 

ALBE-RC. In this stage, NSGA-II is developed for the optimisation purpose and has 

been coded into a computer program, MATLAB. Then, the algorithm is verified to 

ensure the program provide the required output.  

A computational test is conducted to test the performance of the algorithm. The 

performance of the proposed algorithm is compared to the other two comparative 

algorithms within Genetic Algorithm family; Multi-Objective Genetic Algorithm 

(MOGA) and Hybrid Genetic Algorithm (HGA). Out of the five performance indicators 

that had been used, the proposed algorithm, NSGA-II consistently performed in three 

indicators i.e. Number of Non-Dominated Solutions (NDS), Error Ratio (ER), and 

Generational Distance (GD). 

Apart from that, an industrial case study is conducted in BI Technologies Sdn. 

Bhd. to validate the applicability of optimised algorithm as well as the mathematical 

model. The related assembly data had been collected to be simulated in WITNESS™ 

Simulation Software. The existing layout simulation is used to validate the simulation 

model with actual layout. The feedback from the industrial expert indicated that the 

output from the optimised algorithm cannot be fully implemented due to the fact that 

their equipment is isolated and cannot be moved to another place. Nevertheless, the 

industrial expert concluded that the proposed algorithm and model is applicable and can 
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be implemented for industrial application as it can minimise the usage of resources and 

the number of workstation in production line. In fact, it also can enhance the line 

efficiency by minimising production time. 

6.3 Conclusions 

This section concludes the research objectives that lead to research contribution. 

Generally, this research reported on Assembly Line Balancing of Type-E problem 

focusing on single model. Specifically, this research consists of three objectives, upon 

achieving them, will result in research contribution.  

The first objective is to study ALB-E problem and to establish a mathematical 

model for ALB-E problem with resource constraint. This objective is achieved by 

focusing on the Assembly Line Balancing Type-E problem to develop a mathematical 

model based on some constraints. In this work, the three objective functions need to be 

optimised. The first objective function is to minimise the cycle time. The next is to 

minimise the number of workstation and the last one is to minimise the number of 

resources used. These objective functions are subjected to the constraints detailed in 

Chapter 3. 

The second objective; to optimise the ALB-E problem with resource constraint 

using Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II), is accomplished by 

developing an algorithm to optimise the problem. A computational test had been set to 

test the performance of NSGA-II. Six problems of different sizes taken from open 

literature were used to test the algorithm. The NSGA-II was compared with different 

versions of GA-based algorithms; MOGA and HGA. The computational test showed 

that NSGA-II performed well in finding the non-dominated solutions and has the ability 

to explore the search space. It also has higher accuracy of solution as discussed in 

Chapter 4. 

The third objective; which is to validate the mathematical model and optimise 

algorithm through an industrial case study were achieved by collecting related data 

from industry to be optimised and simulated using software as reported in Chapter 5.  
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An interview and discussion session had been conducted with the industrial expert to 

validate the simulation model with the actual layout. The feedback from the expert 

suggested that the proposed algorithm and the ALBE-RC model are suitable for 

industrial application. 

In summary, a methodology and algorithm for the optimisation of ALBE-RC 

problem using an Elitist Non-Dominated Sorting Genetic Algorithm had been 

successfully demonstrated in this research. The main contribution of this research are 

the establishment of ABLE-RC problem modelling and the implementation of NSGA-II 

for ABLE-RC which lead to the improvement of efficiency in assembly process. The 

accomplishment of the aforementioned objectives concluded that this research is 

capable to improve the industrial productivity by proposing an efficient way to 

assemble product.  By accomplishing the research aim, it is proven that the proposed 

algorithm, NSGA-II is a good method to optimise the ALBE-RC problem. As discussed 

previously, this algorithm has dominated the other comparative algorithms such as 

MOGA and HGA in terms of the ability to explore the search space and also to obtain 

better accuracy of solutions.  

6.4 Limitations and Recommendations  

This part highlights the limitations that had been examined throughout the 

research. The NSGA-II only showed the best performance in three indicators (i.e. Non-

Dominated Solutions, Error Ratio and Generational Distance) out of five indicators that 

were used while testing the algorithm. The NSGA-II algorithm demonstrated a 

restricted performance in achieving a uniformed solutions as well as better spread of 

solutions.  

The other limitation in this research is the generic problems taken from literature 

which are randomly modified to suit the studied problem because the ALBE-RC 

problem had not been given great attention by researchers in the past. Apart from that, 

the industrial case study had only focused on and conducted in one company.  
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Based on the limitations of the research, some recommendations are proposed 

for future research. Primarily, a modification to improve NSGA-II to have better 

uniformity of solution and to obtain better solution spread is suggested. For validation 

stage, the industrial case study is also proposed to be conducted in a few companies to 

further validate the proposed method and algorithm. 
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APPENDIX A1 

Main Program 

function y = fitness_func2(x,n,ct_ref) 

%n = 30; %size of problem 

seq=x; 

Tuncel_Topaloglu_4 

 

r=zeros(5,n); 

 j=1; 

    for i=1:n 

        r(1,i)= DM(seq(j,i),1); 

        r(2,i)= DM(seq(j,i),2); 

        r(3,i)= DM(seq(j,i),3); 

        r(4,i)= DM(seq(j,i),4); 

        r(5,i)= DM(seq(j,i),5); 

         

    end 

    

    ptime=0; 

    w_s=1; 

    for i=1:n 

        if ptime+ r(1,i)<= ct_ref 

            ptime=ptime+r(1,i); 

            ws_assign(1,i) = w_s; 

            ws_assign(2,i) = ptime; 

            %ws_assign(3,i) = 

            

        else 

            w_s=w_s+1; 

            ptime=r(1,i); 

            ws_assign(1,i) = w_s; 
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            ws_assign(2,i) = ptime; 

        end 

         

    end 

    ws_assign; 

    rs=[r;ws_assign]; 

    res=zeros(ws_assign(1,n),n); 

    ws=1; rc=0; 

    

    for i=1:n 

        if rs(6,i)==ws 

            rc=rc+1; 

            res(ws,rc)=rs(2,i); 

            rc=rc+1; 

            res(ws,rc)=rs(3,i); 

             rc=rc+1; 

            res(ws,rc)=rs(4,i); 

             rc=rc+1; 

            res(ws,rc)=rs(5,i); 

             

             

        else 

            ws=ws+1; 

            rc=1; 

            res(ws,rc)=rs(2,i); 

            rc=rc+1; 

            res(ws,rc)=rs(3,i); 
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APPENDIX A2 

View of WITNESS™ software 
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APPENDIX A3 

Name % Idle % Busy % Filling 
% 
Emptying 

% 
Blocked 

% Cycle 
Wait 
Labor % Setup 

% Setup 
Wait 
Labor 

% 
Broken 
Down 

% 
Repair 
Wait 
Labor 

No. Of 
Operations 

st1 6.75 6.84 0 0 86.4 0 0 0 0 0 10645 

st2 0 100 0 0 0 0 0 0 0 0 10140 

st3 23.45 76.55 0 0 0 0 0 0 0 0 9933 

st4 1.44 98.56 0 0 0 0 0 0 0 0 9705 

st5 45.91 54.09 0 0 0 0 0 0 0 0 9520 

st6 95.3 4.7 0 0 0 0 0 0 0 0 9323 

st7 49.21 50.79 0 0 0 0 0 0 0 0 9149 

st8 46.33 52.08 0 0 0 1.59 0 0 0 0 8958 

st9 77.87 22.13 0 0 0 0 0 0 0 0 8774 

st10 12 88 0 0 0 0 0 0 0 0 8605 

st11 10.32 34.01 0 0 0 55.67 0 0 0 0 8426 

st12 38.13 47.23 0 0 0 14.64 0 0 0 0 8245 

st13 53.75 16.32 0 0 0 29.93 0 0 0 0 8080 

st14 52.99 47.01 0 0 0 0 0 0 0 0 7925 

st15 78.46 21.54 0 0 0 0 0 0 0 0 7764 

st16 89.04 10.96 0 0 0 0 0 0 0 0 7611 

st17 62.32 37.68 0 0 0 0 0 0 0 0 7452 

Average 43.72176 45.20529 
         

            

Name % Busy % Idle Quantity 
No. Of 
Jobs 

No. Of 
Jobs 

No. Of 
Jobs 

No. Of 
Jobs Avg Job Time 
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Started Ended Now Pre-
empted 

worker1 6.84 93.16 1 10646 10645 1 0 0.51 
   worker2 100 0 1 10141 10140 1 0 7.81 
   worker3 76.55 23.45 1 9934 9933 1 0 6.1 
   worker4 98.56 1.44 1 9706 9705 1 0 8.04 
   worker5 98.56 1.44 1 9706 9705 1 0 8.04 
   worker6 58.78 41.22 1 18843 18843 0 0 2.47 
   worker7 50.79 49.21 1 9150 9149 1 0 4.4 
   worker8 74.21 25.79 1 17733 17732 1 0 3.31 
   worker9 88 12 1 8606 8605 1 0 8.1 
   worker10 97.56 2.44 1 24752 24751 1 0 3.12 
   worker11 47.01 52.99 1 7925 7925 0 0 4.7 
   worker12 32.51 67.49 1 15375 15375 0 0 1.67 
   worker13 37.68 62.32 1 7453 7452 1 0 4 
   Average 66.69615 33.30385 

         

            

Name 
No. 
Entered 

No. 
Shipped 

No. 
Scrapped 

No. 
Assembled 

No. 
Rejected W.I.P. 

Avg 
W.I.P. 

Avg 
Time 

   Part001 10536 8079 1589 0 68665 568 203.28 4534.9 
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APPENDIX A4 

 

Figure A1. Validation letter for proposed method and model 
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