
Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

154

A CUCKOO SEARCH BASED PAIRWISE STRATEGY FOR
COMBINATORIAL TESTING PROBLEM

1
ABDULLAH B. NASSER,

2
YAZAN A. SARIERA,

3
ABDUL RAHMAN A. ALSEWARI, AND

4
KAMAL Z. ZAMLI

Faculty of Computer Systems and Software Engineering,

Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia

E-mail: 1abdullahnasser83@gmail.com, 2alsarierah@gmail.com,3alsewari@gmail.com,
4k.z.zamli@gmail.com

ABSTRACT

Combinatorial Testing (CT) is a sampling technique to generate test cases with a focus on the behavior of
interaction system's components with their collaborators. Given its effectiveness to reveal faults, pairwise
testing has often been chosen to perform the required sampling of test cases. The main concern for pairwise
testing is to obtain the most optimal test sets (i.e. pairwise dictates that every pair of input values is covered
by a test case at least once). This paper discusses the design and implementation a new pairwise strategy
based on Cuckoo Search, called Pairwise Cuckoo Search strategy (PairCS). PairCS serves as our vehicle to
investigate the usefulness of Cuckoo Search for pairwise testing.

Keywords: Pairwise testing, Cuckoo Search, Test suite Generator, Software Testing, Combinatorial

Testing Problem.

1. INTRODUCTION

Combinatorial Testing (CT) is a sampling

technique to generate test cases with a focus on the
behavior of interaction system's components with
their collaborators [1]. Given its effectiveness to
reveal faults, pairwise testing has often been chosen
to perform the required sampling of test cases. In
the literature, many studies show that most software
failures are often caused by interaction of two
parameters [2]. In a study conducted by Kuhn,
Wallace et al, it was found that 70% to 90% of bugs
can be detected by using pairwise technique [3].

The main issue for pairwise testing is to obtain
the most optimal test sets (i.e. pairwise dictates that
every pair of input values is covered by a test case
at least once [4, 5]). In fact, searching operation for
the optimal set of test cases is an NP-hard (Non-
deterministic Polynomial-time hard) problem [6-8].
To address this issue, many pairwise strategies have
been designed and implemented such as strategies
based on Simulated Annealing [9], Genetic
algorithm[9], Ant Colony Algorithm (ACA) ,
Particle Swarm Optimization [4], and Harmony
Search [5], to name a few.

In this paper, we introduce a new pairwise
strategy, called PairCS, based on Cuckoo search
algorithm. The adoption of Cuckoo Search
Algorithm (CS) appears to be an attractive option as

it appears more efficient than that of Genetic
Algorithm (GA) and Particle Swarm Optimization
(PSO) [10-13]. In [13], CS was adopted to solve a
milling optimization problem. A comparison
between the CS and other techniques including GA,
Ant Colony Optimization (ACO), hybrid PSO and
Immune Algorithm (AIA) showed that CS performs
better than other techniques. In a study on
scheduling optimization [14], CS performs better
than GA and PSO. Specifically, CS offers the
following advantages [15, 16]:

• Unlike GA, and PSO, CS offers lightweight
computation relying only on three
parameters; max generation, nest size and
probability pa.

• CS embeds elitism mechanism (via
probability pa) to ensure that the best
solutions are carried over the next iteration.

• CS offers balance intensification and
diversification of solutions through the
adoption of Lévy Flight. Essentially, Lévy
Flight consists of random walks that are
interspersed by long jumps which are heavy
tailed according to a power law distribution.
In this manner, CS often can sufficiently
explore regions of interests.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

155

Currently, researches on cuckoo search is very
active and its applications have been proven
successes in many areas such as machine learning
[17], the field of truss optimization problems [18],
clustering of web results [19], nurse scheduling
problems [20], generating test data generation [21],
generating independent paths for software testing
[22].

The rest of this paper is organized as follows.
Section 2 gives an overview of pairwise testing.
Related works are stated in Section 3. Detailed
reviews of Cuckoo Search algorithm is provided in
Section 4. Section 5 presents the proposed strategy.
Section 6 highlights the experimental results and
discussion. Lastly, Section 7 gives the conclusion
and future work.

2. BACKGROUND

In general, any system under test consists of a

number of components, which interact with each
other through a set of parameters with some defined
values.

Definition 1 (Pairwise testing): Given a set of N
parameters P1, P2, P3,.., PN, having vi possible
values {v1,v2,...vm}, a set of test data values Tc,
contains N test values, which is selected for each of
the parameter values such that all test cases in Tc
cover all 2-way pairs of input parameter values.

To illustrate the concept of combinatorial and
pairwise testing for test suite reduction, consider the
following form of design-your-burger application as
given in Figure 1. In this form, the user can order a
burger by selecting his favorite ingredients. Here,
there are 10 inputs; each input with associated
values as shown in Table 1

In order to test all the factors exhaustively, there
are 3072 test cases. By using pairwise testing, each
pair of input parameter values can be covered at
least one time on the test case. To generate test suite
for Design-your-burger example, there are 30 pairs
need to be covered. By using the proposed PairCS
algorithm, all the 3072 test cases can be minimized
to merely 12 test cases.

Figure 1: Design-your-burger Example

Table 1 : Design-your-Burger Input Values

Test Factor Values

Burger Beef, Turkey, Veggie

Cooked None, Rare, Medium , well

Cheese No , Yes

Lettuce No , Yes

Tomato No , Yes

Onion No , Yes

Ketchup No , Yes

Mustard No , Yes

Mayo No , Yes

Secret sauce No , Yes

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

156

3. RELATED WORKS

This section is intended to provide an overview
of the existing works for constructing a pairwise
test suite. Based on [2], the existing approaches
can be classified into two main categories: algebraic
construction, computational construction.

3.1 Algebraic Approach:

In this approach, test data sets are constructed
without enumerating any combinations. Hence, the
generation process adopts lightweight
computations. There are two types of algebraic
approach. The first one is based on mathematical
functions [23-25]. The second one employs a
recursive process to construct test sets by
constructing a large test sets from small test sets
[26]. Strategies adopting this approach CA, MCA
and TConfig, are often restricted to small
configurations.

3.2 Computational construction:

This approaches use a greedy algorithm to
construct the test cases. Each step tries to cover as
many combinations as possible uncovered
combinations. Generating test set is accomplished
by either using one-test-at-a-time strategy (OTAT)
or one-parameter-at-a-time strategy (OPAT). OTAT
strategies start to build one complete test case per
iteration and checks if this test case is the best test
case to cover the most uncovered interaction. The
iteration continues until all the combinations are
covered. In the literature, there are many strategies
that adopts OTAT techniques such as AETG [27],
TConfig [28], Jenny [29], and WHITCH [30]. One-
parameter-at-a-time (OPAT) strategy starts by
building a completed test suite for the first two
parameters, or the smallest number of components,
then extends horizontal by adding one parameter
per iteration, and sometimes, extends vertically
until all the parameters is covered. Examples of
such approach are IPO [7] and its improvement (i.e.
IPOG [31], IPOG-D [6], IPOF and IPAD2 [32]).

Recently, many existing works are focusing on
nature-inspired based strategies. Nature-inspired
based algorithms (e.g. Simulated Annealing,
Genetic Algorithm, Ant Colony Algorithm, Particle
Swarm Optimization and Harmony Search) have
been used successfully for pairwise testing.
Simulated Annealing (SA) algorithm has been
implemented to generate pairwise test cases by
Cohen, 2004, and Patil and Nikumbh, 2012 [8, 33].
In order to avoid getting stuck in a local minimum
solution, SA allows a poor move based on some

probability. Another nature-inspired algorithm that
has been used to generate pairwise test data is
Genetic algorithm (GA) by Shiba, Tsuchiya et al
(2004). GA is based on AETG strategy[27]. For
constructing pairwise test cases, GA generates a
number of objects, called chromosomes. Each
chromosome is subjected to series of operation of
Mutation, Crossover, Selection processes until
certain stopping criteria are met. Ant Colony
Algorithm (ACA) has also been used for pairwise
test cases generation. Simulating the behavior of
ant colony for finding food paths, the places of food
represent the parameter and the food represents the
value of the parameter, and each test case represents
the quality of the paths to the food. The paths to the
food are evaluated based on the quantity of
pheromones which is reinforced by the ants. By
comparison, the best path is selected to be added to
final test cases [34, 35].

Particle Swarm Optimization (PSO) algorithm
has been implemented for pairwise test suite
generation using two different based approaches
OTAT and OPAT [2, 4]. The discrete version of
PSO is adopted in Particle Swarm-based Test
Generator (PSTG) strategy [4]. Much recent work
undertaken in this field, Harmony Search has been
adopted in Harmony Search algorithm-based
strategy (PHSS) to implement and generate
pairwise tests suite. PHSS is pairwise test data
generation. Using PHSS, the test data generation
process is mimicking the improvisation process by
a skilled musician [5].

4. CUCKOO SEARCH:

Cuckoo search (CS) is a nature-inspired

algorithm for solving global optimization problems
developed by Xin-She Yang. CS mimics the
behavior of brood parasitic for some birds such as
the Ani and Guira cuckoos [36].

4.1 Cuckoo Breeding Behavior:

The behavior of cuckoo bird is represented in the
obligate brood parasitism of some cuckoo. Parasitic
cuckoos lay eggs their eggs in the nests of other
host birds. If the properties of cuckoo eggs have
developed well enough, then the eggs will take a
great opportunity to survive. To this end, cuckoo
increase phenotypic matching between cuckoo and
host eggs by mimic the external color and pattern of
host eggs. Furthermore, the cuckoos often choose a
nest where the host eggs recently is laid to lay their
eggs. Thus, cuckoo eggs hatch early than the host

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

157

eggs, and then first cuckoo chicks instinctively will
evict the host eggs out of the nest [37].

One issue of importance, Cuckoo search has two

search capabilities: global search, which allows the
algorithm to jump out of local optimum, and local
search by intensify search around the current best,
are controlled by pa probability. If pa=0.25, the
local search takes about %25 and global search
takes about %75 of the total search time[16]. Local
search and global search capabilities combined with
search using Levy Flight makes CS exploration of
the search space efficiently. In this paper, we are
investigating the use of Cuckoo search (CS)
algorithm for pairwise test suite generation.

4.2 Cuckoo Search algorithm:

Cuckoo search algorithm is essentially a
population based algorithm for solving global
optimization problems. For simplification purpose,
Cuckoo Search relies upon three idealized rules
[36]:

1. Each cuckoo chooses a nest randomly to
lays eggs.

2. The number of available host nests is
fixed, and nests with high quality of eggs
will carry over to the next generations.

3. The number of available host nests is
fixed, and the egg laid by a cuckoo is
discovered by the host bird with a
probability pa ∈ [0, 1]. In this case, the
host bird can either get rid of the egg, or
simply abandon the nest and build a
completely new nest.

Based on those three rules, Cuckoo Search
algorithm can be summarized as shown in Figure 3.

Figure 2: Cuckoo Search Algorithm

The CS algorithm is straightforward to use and
implement owing to small number of parameters
and needs a small population to achieve a good
results. The core part of the CS algorithm is
generating new solution using of Lévy Flight
Equation 1, where each position of cuckoo is
updated.

xi
(t+1) =xi(t) +α⊕ Lévy (λ) (1)

where α >0 is the step size which should be related

with problem and Lévy∼u=t
–λ

. Equation 1 is
considered as a generic equation to update cuckoo's
position either using Lévy flights or random walk.
The Lévy flight essentially is a random walk
interspersed by long jumps where the next step is
based on the current location, and step lengths have
a certain probability distribution that is heavy-
tailed.

5. THE PROPOSED STRATEGY

In the following section, the application of CS
outlines in PairCS. PairCS is a composition of
three main steps: Generating Binary Combinations,
Generating Interaction Elements and Finding the
optimal set of test cases using CS as Figure 3 show.
In the following, these three steps are explained.

Figure 1 : Cuckoo Breeding Behaviour

Cuckoo Search Algorithm

Objective function f(x), x = (x1, ..., xd) ;

Initial a population of n host nests xi (i = 1, 2, ..., n);

while (t <MaxGeneration) or (stop criterion)

 Get a cuckoo (say i) randomly by Lévyflights;

 Evaluate its quality/fitness Fi;

 Choose a nest among n (say j) randomly;

 IF (Fi > Fj)

 Replace j by the new solution;

 End if

 Abandon a fraction (pa) of worse nests and

 build new ones at new locations

 Keep the best solutions

 Rank the solutions and find the current best;

 end while

 Postprocess results and visualization;

 End-Procedure

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

158

Figure 3: Graphical Representation of PairCS Strategy Steps

Based on the receiving inputs (i.e. a set of
parameters P = {p1, p2, p3, p4} and parameter
values vi), the proposed strategy, PairCS, begins
generating all possible binary combinations of P-
digit that only contain two 1s (i.e 0011, 0101, 0110,
1001…). Based on the generated binary
combinations, interaction elements list is generated
accordingly. For example, if p1, p2, and p3 are
having two values (i.e., 0 and 1), and p4 is having
three values (0, 1, and 2), interaction elements for
the first binary combination 1100 are 2×2 possible
interaction elements (i.e., 0:0:0:0, 0:0:0:1, 0:0:1:0,
and 0:0:1:1), while interaction elements for 1001
are 0:0:0:0, 0:0:0:1,1:0, 0:0:1:1, 0:0:2:0, and
0:0:2:1).

The complete step for the proposed strategy
includes finding optimal test cases phase using CS.
In PairCS, each nest or solution represents one test
case. PairCS starts to generate initial nests or test
cases randomly, and finds the best nest of those
nests. In order to improve current nest, a new nest,
���� 			
����� 	, ���� 	, … , ������� , ����� 	�,	 is
generated by performing a Levy flight, and
evaluated.

Nest weight or fitness is number of interaction
elements xi that can be cover by candidate nest,
which can be expressed mathematically as follows:

Maximize	�
�� 		 	� ��
�

�
												
2�								

where N is covered interaction elements by
candidate nest.

Based on nest weight, the new nest will be
chosen as a current nest. If the new nest weight is
better than current nest weight, the new nest is taken
as current nest. As part of elitism process, the
algorithm iterates all population and removes the
worse nests based on the value of pa probability.
The best nest will be selected and added to final test
cases and the covered interaction elements are
removed from the interaction list. Finding optimal
test cases phase is repeated till all interaction
elements are covered (i.e., the interaction elements
list is empty). The proposed strategy is summarized
in Figure 4.

Generating Binary Combinations

Generating Interaction Elements

0:1:0:2

1:0:0:1

0:0:1:0
…

Update nest using

Levy flight

Generate

population nest

Discovers and

removes the worse

nests

Find the current

best nest

Finding the optimal

set of test cases

1:0:1:2

0:1:0:0

…

Add the optimal test case to

 final test suite

1

2

3

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

159

Figure 4: PairCS Strategy

6. EXPERIMENTAL RESULTS

In order to evaluate the performance of the

proposed strategy (PairCS), PairCS is implemented
and executed. Results of performance analysis are
displayed with the use of tables. Several existing
comparative experiments [2, 5] are adopted in our
experiments. For our experiment, we have adopted
Pa = 0.25, iteration = 500, and nest size 30 based
on previous work [38]. To measure the performance
of the proposed strategy, NetBeans 8.0.1 was used
to execute the algorithms. The specification of the
machine used is: Intel (R) core™ i7-3770 CPU @
3.40 GHz, 4GB of RAM, Windows 7 professional
and 32-bit Operating System. Here, our experiment
alienated into two groups as following:

1. Comparison with existing pairwise
strategies with 2-valued parameters and P
are varied from 3 to 12 and (50, 100, and
150) to show the ability of PairCS to
address high configuration system.

2. Comparison PairCS with published results
of existing strategies using different
systems configuration.

For a fair comparison due to PairCS is non-
deterministic strategy, we run PairCS 20 times for

every configuration, and the best test suite size is
reported.

Table 2 and 3 show the comparisons between
PairCS and existing strategies. From Table 1, our
PairCS strategy produces the most optimum results
in most of the configurations (as marked with *).
Table 2, also, shows the ability of proposed strategy
to generate test data for systems with high
configurations where then number of parameter P
can go up to 150 parameters.

In Table 3, PairCS strategy produces the most
minimum test size for T1, T2 and T7. In general,
table 3 shows that conventional strategies (i.e.
TVG, PICT, AETG, mAETG, CTEXL and so
on), generate slightly better size than Nature-
Inspired Strategies. However, when we take a
closer look at mAETG, AETG, ACA, SA and GA
perform better that other strategies due to their
randomization. By comparing only nature-inspired
strategies in Table 3, we found that our PairCS
outperforms most of existing strategy in some cases
such as T4, T5 and T7 (as marked by *). The good
obtained results is supported the fact that CS offers
a good balance between global search and local
search through the adoption of Lévy Flight in its
core implementation and achieves good results
when the systems consisting of big values due to
long jumps of Lévy Flight.

7. CONCLUSION AND FURTHER WORK

In this paper, we have proposed and evaluated a

new pairwise strategy based on Cuckoo search
algorithm, called PairCS. Our experience with
PairCS has been promising, as we have managed to
obtain good test sizes for most of the considered
configurations. Our results, in most cases
outperform the existing nature-inspired-based as
well as other computational-based strategies.

Furthermore, our case study evaluation also
demonstrates the capability of proposed strategy in
generating efficient test suites. As part of the future
work, we plan to introduce seeding and constraints
into the current implementation. We are also
currently improving PairCS to support both
sequence and sequence-less t-way testing.

 PairCS Strategy Algorithm

 Input N: Parameters number n, and
 V: set of values for each parameter V = [v0 ..vj];
 Output: test suite List TS;

Let IPairs all Interaction Pairs.
Let TS be a set of candidate tests;
Generate initial population of host nest randomly
while IPairs is not empty do

while t <MaxGeneration or stop criterion do
Get a cuckoo (say i) randomly by Lévyflights;
Evaluate its quality/fitness Fi;
Choose a nest among n (say j) randomly;
IF (Fi > Fj)
 Replace j by the new solution;
End if
Abandon a fraction (pa) of worse nests and
build new ones at new locations
Keep the best solutions
Rank the solutions and find the current best;

End while

Add the best test case into TS.
Remove covered interactions elements from
IPairs.

End while

 End-Procedure

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

160

ACKNOWLEDGMENT

The work reported in this paper is funded by

MOSTI eScience fund for the project titled:
Constraints T-Way Testing Strategy with Modified
Condition/Decision Coverage from the Ministry of
Science, Technology, and Innovation, Malaysia.
We thank MOSTI for the contribution and support.
Mr. Abdullah B. Nasser is the recipient of the
Graduate Research Scheme (GRS) from Universiti
Malaysia Pahang.

Table 2 : Comparison with Existing Strategies using V = 2 and P varied From 3 to 150

P TVG PICT CTE_XL TConfig IPOG Jenny PPSTG PHSS PairCS

3 4* 4* 6 4* 4* 5 4* 4* 4*

4 6 5* 6 6 6 6 6 6 5*

5 6* 7 6* 6* 6* 7 6* 6* 6*

6 6* 6* 8 7 8 8 7 7 6*

7 8 7 8 9 8 8 7 7 7*

8 8 8 7 9 8 8 8 8 8

9 8 9 9 9 8 8 8 8 8*

10 9 9 9 9 10 10 8 8 8*

11 9 9 10 10 9 9 8 8*

12 10 9 10 9 10 10 9 9 9*

50 NA NA NA NA NA NA NA NA 12

100 NA NA NA NA NA NA NA NA 15

150 NA NA NA NA NA NA NA NA 17

Table 3 : Comparison with Existing Strategies using Different System Configuration with Mixed Parameter Values

Config-

rations
TVG PICT AETG mAETG CTEXL TConfig AllPairs Jenny IPO IPOG IRPS G2Way SA GA ACA PPSTG PHSS PairCS

T1 11 10 NA NA 10 10 10 9* NA 11 9* 10 NA NA NA 9* 9* 9*

T2 12 13 9* 11 10 10 10 13 9 12 9* 10 9* 9* 9* 9* 9* 9*

T3 20 20 15* 17 21 20 22 20 17 20 17 19 16 17 17 17 18 18

T4 189 170 NA NA 192 170 177 157 169 176 149* 160 NA 157 159 170 155 151

T5 473 NA NA NA NA NA 390 336 361 373 321* 343 NA NA NA NA 341 333

T6 NA NA 180 198 NA NA 230 NA 212 NA 210 200 183* 227 225 NA 224 209

T7 50 47 NA NA 50 48 49 45 47 50 45 46 NA NA NA 45 43 42*

T8 23 21 19 20 21 22 21 41 NA 19 17 23 15* 15* 16 21 20 20

T9 41 38 34 35 39 33 NA 31* NA 36 NA NA NA 33 32 39 39 38

T10 52 46 45 44 53 49 NA 51 NA 44 NA NA NA 42* 42* 49 48 47

T11 100 101 NA NA 102 92 NA 98 NA 91* NA NA NA NA NA 97 95 96

The configurations are shown as follows:

T1: 33 ,

T2: 34

T3: 313

T4: 1010

T5: 1510

T6: 1020

T7: 510

T8: 51 38 21

T9: 61 51 46 38 23

T10: 71 61 51 46 38 23

T11: 101 91 81 71 61 51 41 31 21

yx means : means that task take x parameters, each parameter with y values.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

161

REFERENCES:

[1] D. M. Cohen, S. R. Dalal, J. Parelius, and
G. C. Patton, "The combinatorial design
approach to automatic test generation,"
IEEE software, pp. 83-88, 1996.

[2] X. Chen, Q. Gu, J. Qi, and D. Chen,
"Applying particle swarm optimization to
pairwise testing," in Computer Software

and Applications Conference

(COMPSAC), 2010 IEEE 34th Annual,
2010, pp. 107-116.

[3] D. R. Kuhn, D. R. Wallace, and J. AM
Gallo, "Software fault interactions and
implications for software testing,"
Software Engineering, IEEE Transactions

on, vol. 30, pp. 418-421, 2004.
[4] B. S. Ahmed, K. Z. Zamli, and C. Lim,

"The development of a particle swarm
based optimization strategy for pairwise
testing," Journal of Artificial Intelligence,

vol. 4, pp. 156-165, 2011.
[5] A. R. A. Alsewari and K. Z. Zamli, "A

harmony search based pairwise sampling
strategy for combinatorial testing,"
International Journal of the Physical

Sciences, vol. 7, pp. 1062-1072, 2012.
[6] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun,

and J. Lawrence, "IPOG/IPOG‐D:
efficient test generation for multi‐way
combinatorial testing," Software Testing,

Verification and Reliability, vol. 18, pp.
125-148, 2008.

[7] Y. Lei and K.-C. Tai, "In-parameter-order:
A test generation strategy for pairwise
testing," in High-Assurance Systems

Engineering Symposium, 1998.

Proceedings. Third IEEE International,
1998, pp. 254-261.

[8] M. B. Cohen, "Designing test suites for
software interaction testing," Citeseer,
2004.

[9] J. Stardom, "Metaheuristics and the search
for covering and packing arrays," Trent
University, 2001.

[10] X.-S. Yang and S. Deb, "Engineering
optimisation by cuckoo search,"
International Journal of Mathematical

Modelling and Numerical Optimisation,

vol. 1, pp. 330-343, 2010.
[11] X.-S. Yang, Nature-inspired metaheuristic

algorithms: Luniver press, 2010.
[12] X.-S. Yang, S. Deb, M. Karamanoglu, and

X. He, "Cuckoo search for business
optimization applications," 2012.

[13] A. R. Yildiz, "Cuckoo search algorithm for
the selection of optimal machining
parameters in milling operations," The

International Journal of Advanced

Manufacturing Technology, vol. 64, pp.
55-61, 2013.

[14] S. Burnwal and S. Deb, "Scheduling
optimization of flexible manufacturing
system using cuckoo search-based
approach," The International Journal of

Advanced Manufacturing Technology, vol.
64, pp. 951-959, 2013.

[15] X. S. Yang, S. Deb, and S. Fong,
"Metaheuristic algorithms: optimal
balance of intensification and
diversification," 2013.

[16] X.-S. Yang and S. Deb, "Cuckoo search:
recent advances and applications," Neural

Computing and Applications, vol. 24, pp.
169-174, 2014.

[17] R. A. Vázquez, "Training spiking neural
models using cuckoo search algorithm," in
Evolutionary Computation (CEC), 2011

IEEE Congress on, 2011, pp. 679-686.
[18] A. H. Gandomi, S. Talatahari, X. S. Yang,

and S. Deb, "Design optimization of truss
structures using cuckoo search algorithm,"
The Structural Design of Tall and Special

Buildings, vol. 22, pp. 1330-1349, 2013.
[19] C. Cobos, H. Muñoz-Collazos, R. Urbano-

Muñoz, M. Mendoza, E. León, and E.
Herrera-Viedma, "Clustering of Web
Search Results based on the Cuckoo
Search Algorithm and Balanced Bayesian
Information Criterion," Information

Sciences, 2014.
[20] L. H. Tein and R. Ramli, "Recent

advancements of nurse scheduling models
and a potential path," in Proceedings of

6th IMT-GT Conference on Mathematics,

Statistics and its Applications, 2010, pp.
395-409.

[21] K. Perumal, J. M. Ungati, G. Kumar, N.
Jain, R. Gaurav, and P. R. Srivastava,
"Test data generation: a hybrid approach
using cuckoo and tabu Search," in Swarm,

Evolutionary, and Memetic Computing,
ed: Springer, 2011, pp. 46-54.

[22] P. R. Srivastava, R. Khandelwal, S.
Khandelwal, S. Kumar, and S.
Santebennur Ranganatha, "Automated test
data generation using cuckoo search and
tabu search (csts) algorithm," 2012.

Journal of Theoretical and Applied Information Technology
 10

th
 December 2015. Vol.82. No.1

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

162

[23] A. Hartman and L. Raskin, "Problems and
algorithms for covering arrays," Discrete

Mathematics, vol. 284, pp. 149-156, 2004.
[24] R. Mandl, "Orthogonal Latin squares: an

application of experiment design to
compiler testing," Communications of the

ACM, vol. 28, pp. 1054-1058, 1985.
[25] K. A. Bush, "Orthogonal arrays of index

unity," The Annals of Mathematical

Statistics, vol. 23, pp. 426-434, 1952.
[26] A. W. Williams, "Determination of test

configurations for pair-wise interaction
coverage," in Testing of Communicating

Systems, ed: Springer, 2000, pp. 59-74.
[27] D. M. Cohen, S. R. Dalal, M. L. Fredman,

and G. C. Patton, "The AETG system: An
approach to testing based on combinatorial
design," Software Engineering, IEEE

Transactions on, vol. 23, pp. 437-444,
1997.

[28] A. Williams, "TConfig download page
[Online]," p. University of Ottawa.
Available:
http://www.site.uottawa.ca/~awilliam/[Ac
cessed 23 Dec 2014]. 2008.

[29] B. Jenkins, "Jenny download page
[Online]," p. Available :
http://www.burtleburtle.net/bob/math.
[Accessed 16 Dec 2014]. 2003.

[30] A. Hartman, T. Klinger, and L. Raskin,
"IBM intelligent test case handler,"
Discrete Mathematics, vol. 284, pp. 149-
156, 2010.

[31] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun,
and J. Lawrence, "IPOG: A general
strategy for t-way software testing," in
Engineering of Computer-Based Systems,

2007. ECBS'07. 14th Annual IEEE

International Conference and Workshops

on the, 2007, pp. 549-556.
[32] M. Forbes, J. Lawrence, Y. Lei, R. N.

Kacker, and D. R. Kuhn, "Refining the in-
parameter-order strategy for constructing
covering arrays," Journal of Research of

the National Institute of Standards and

Technology, vol. 113, pp. 287-297, 2008.
[33] M. Patil and P. Nikumbh, "Pair-wise

testing using simulated annealing,"
Procedia Technology, vol. 4, pp. 778-782,
2012.

[34] T. Shiba, T. Tsuchiya, and T. Kikuno,
"Using artificial life techniques to generate
test cases for combinatorial testing," in
Computer Software and Applications

Conference, 2004. COMPSAC 2004.

Proceedings of the 28th Annual

International, 2004, pp. 72-77.
[35] C. Nie and H. Leung, "A survey of

combinatorial testing," ACM Computing

Surveys (CSUR), vol. 43, p. 11, 2011.
[36] X.-S. Yang and S. Deb, "Cuckoo search

via Lévy flights," in Nature & Biologically

Inspired Computing, 2009. NaBIC 2009.

World Congress on, 2009, pp. 210-214.
[37] J. Avilés, B. Stokke, A. Moksnes, E.

Røskaft, M. Åsmul, and A. Møller, "Rapid
increase in cuckoo egg matching in a
recently parasitized reed warbler
population," Journal of evolutionary

biology, vol. 19, pp. 1901-1910, 2006.
[38] A. B. Nasser, A. R. A. Alsewari, and K. Z.

Zamli, "Tuning of Cuckoo Search Based
Strategy for T-way Testing," in
International Conference on Electrical

and Electronic Engineering, 2015.

