ETHANOL DRY REFORMING OVER LANTHANIDE-PROMOTED Ni/Al₂O₃ CATALYSTS FOR SYNGAS PRODUCTION

MAHADI BIN BAHARI

Master of Engineering (Gas)

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Engineering in Gas.

(Supervisor's Signature)

Full Name : Dr. Vo Nguyen Dai Viet

Position : Senior Lecturer

Date : 10th JANUARY 2017

(Co-supervisor's Signature)

Full Name : Dr. Nurul Aini Bt Mohamed Razali

Position : Senior Lecturer

Date : 10th JANUARY 2017

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : MAHADI BIN BAHARI ID Number : MKG 14001 Date : 10th JANUARY 2017

ETHANOL DRY REFORMING OVER LANTHANIDE-PROMOTED Ni/Al₂O₃ CATALYSTS FOR SYNGAS PRODUCTION

MAHADI BIN BAHARI

Thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering

Faculty of Chemical & Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

JANUARY 2017

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Vo Nguyen Dai Viet for his germinal ideas, invaluable guidance, continuous encouragement and constant support throughout the duration of this research. He always impressed me with his outstanding professional conduct, valuable knowledge in the field of reaction engineering and his belief that a Master program is only a start of a life-long learning experience. I am truly grateful for his tolerance of my naive mistakes and his commitment to my future career. I would also like to thank my co-supervisor, Dr. Nurul Aini Bt Mohamed Razali for her suggestions and co-operation throughout the study. I also sincerely thank for her time spent on proofreading and correcting my thesis.

Additionally, I would like to appreciate all my lab mates and staffs of the Faculty of Chemical and Natural Resources Engineering, UMP, who helped me in many ways and made my stay at UMP pleasant and unforgettable. I also would like to thank my colleagues in our research group for their excellent co-operation, inspiration and support during this study.

Lastly, I acknowledge my sincere indebtedness and gratitude to my parents for their love, dream and sacrifice throughout my life. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to attain my goals.

TABLE OF CONTENTS

Page

DECLARATION	
TITLE PAGE	i
ACKNOWLEDGEMENTS	ii
ABSTRAK	iii
ABSTRACT	iv
TABLE OF CONTENTS	V
LIST OF TABLES	х
LIST OF FIGURES	xi
LIST OF SYMBOLS	xvi
LIST OF ABBREVIATIONS	xviii

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	3
1.3	Objectives	3
1.4	Scope of the Study	4
1.5	Overview of Thesis	4

CHAPTER 2 LITERATURE REVIEW

2.1 Fossil Fuels		Fuels	6
	2.1.1	Overview	6
	2.1.2	Limitation of Fossil Fuels	7
2.2	Overv	iew of Syngas	9
	2.2.1	Introduction	9

	2.2.2	Syngas Production Technologies	9
2.3	Ethano	bl	14
	2.3.1	Overview	14
	2.3.2	Partial Oxidation of Ethanol (POE)	16
	2.3.3	Ethanol Steam Reforming (ESR)	17
	2.3.4	Oxidative Steam Reforming of Ethanol (OSRE)	18
2.4	Ethano	ol Dry Reforming (EDR)	18
	2.4.1	Reactions of Ethanol Dry Reforming	22
	2.4.2	Thermodynamics Analysis	23
2.5	Ethano	ol Dry Reforming Catalysts	25
	2.5.1	Introduction	25
	2.5.2	Noble Metals	26
	2.5.3	Non-Noble Metals	26
	2.5.4	Catalyst Supports	27
	2.5.5	Catalyst Promoters	27
2.6	Cataly	st Deactivation	28
	2.6.1	Poisoning	29
	2.6.2	Fouling	30
	2.6.2	Sintering	30
2.7	Conclu	uding Remarks	31
CHAI	PTER 3	METHODOLOGY	

3.1	Introduction	32
3.2	Materials and Equipment	32
3.3	Catalyst Preparation	34
3.4	Catalyst Characterization Techniques	35

	3.4.1	Textural Analysis	35
	3.4.2	X-ray Diffraction (XRD) Measurement	38
	3.4.3	Temperature-programmed Calcination (TPC)	40
	3.4.4	Temperature-programmed Reduction (H ₂ -TPR)	40
	3.4.5	Temperature-programmed Oxidation (TPO)	40
	3.4.6	Temperature-programmed Desorption (NH ₃ -TPD)	41
	3.4.7	X-ray Photoelectron Spectroscopy (XPS)	41
	3.4.8	Raman Spectroscopy	42
	3.4.9	Scanning Electron Microscopy (SEM)	42
	3.4.10	Transmission Electron Microscopy (TEM)	43
3.5	Experi	mental Set Up	43
3.6	Gas C	hromatography (GC)	45

CHAPTER 4 PRELIMINARY WORK

4.1	Introd	uction	46
4.2	Blank	Test	46
4.3	Trans	port Resistance Considerations	47
	4.3.1	External Mass Transfer	49
	4.3.2	Internal Mass Transfer	50
	4.3.3	External Heat Transfer	51
	4.3.4	Internal Heat Transfer	52
	4.3.5	Wall and Radial Heat Dispersion Effects	52
4.4	Ethan	ol Dry Reforming Reaction Metrics	53
4.5	Syring	ge Pump and Mass Flow Controller (MFC) Calibration	55

CHAPTER 5 CATALYST CHARACTERIZATION

5.1	Introduction	56
5.2	N2-Physisorption Measurements	56
5.3	X-ray Diffraction Measurement	58
5.4	Temperature-programmed Calcination (TPC)	60
5.5	Temperature-programmed Reduction (TPR)	62
5.6	NH ₃ Temperature-programmed Desorption (TPD)	63
5.7	X-ray Photoelectron Spectroscopy (XPS)	65
5.8	Raman Spectroscopy Measurements	66
5.9	SEM Measurement	67
5.10	Concluding Remarks	69

CHAPTER 6 ETHANOL DRY REFORMING REACTION STUDY

6.1	Introd	uction	70
6.2	Transi	ent Profiles	70
6.3	Effect	of Operation Conditions	72
	6.3.1	Effect of Reaction Temperature	72
	6.3.2	Effect of CO ₂ Partial Pressure	76
	6.3.3	Effect of C ₂ H ₅ OH Partial Pressure	80
6.4	Effect	of La-promoter Loading	83
6.5	Longe	vity Test	84
6.6	Post-R	eaction Characterizations	88
	6.6.1	Raman Spectroscopy Measurement	88
	6.6.2	SEM and TEM Measurements	90
	6.6.3	Temperature-programmed Oxidation (TPO)	94
6.7	Conclu	uding Remarks	96

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS

APPE	NDICES		
REFE	REFERENCES		
7.2	Recommendations	99	
7.1	Conclusions	97	

A	Catalyst Preparation Calculations	113
В	Transport Resistance Calculations	116
С	Ethanol Dry Reforming Reaction Calculations	127
D	Calibration Curve	130

LIST OF TABLES

Table 2.1	Summarizes of previous research on dry reforming reaction	13
Table 2.2	Advantages and disadvantages of syngas reforming technologies	14
Table 2.3	List of top ten countries by their annual palm oil production in 1000 MT	16
Table 2.4	The summarized results of previous studies for ethanol dry reforming	20
Table 2.5	The summary of thermodynamic features in EDR reaction	24
Table 2.6	Mechanisms of catalyst deactivation	28
Table 2.7	Examples of poisons encountered in industrial processes	29
Table 3.1	List of used chemicals and gas	33
Table 3.2	List of equipment used for the preparation of catalyst and catalytic study	34
Table 3.3	Standard gas data	45
Table 4.1	Properties used in the calculation of transport resistances	48
Table 5.1	Textural properties of fresh γ -Al ₂ O ₃ support, unpromoted and promoted catalysts	57
Table 5.2	The acidic properties of promoted and unpromoted 10%Ni/Al ₂ O ₃ catalysts from NH ₃ -TPD measurements	64
Table 6.1	Summary of I_D/I_G ratio for spent promoted and unpromoted catalysts	90
Table 6.2	The weight loss of the promoted and unpromoted Ni-based catalysts during TPO measurements	96

Figure 2.1	The share of global energy consumption in 2013	6
Figure 2.2	The sources of CO ₂ emissions in the world	7
Figure 2.3	Discovery versus production of conventional oil	8
Figure 2.4	Structure of ethanol molecule	15
Figure 2.5	Biomass production in Malaysia	15
Figure 2.6	The change in Gibbs free energy for the all reactions in EDR at various temperatures.	23
Figure 2.7	Energy pathway of catalytic reaction	25
Figure 3.1	Flowchart of catalyst preparation	35
Figure 3.2	N ₂ adsorption and desorption isotherm profiles	37
Figure 3.3	The Bragg Law for XRD analysis	39
Figure 3.4	Ejection of photoelectrons	41
Figure 3.5	Schematic diagram for ethanol dry reforming reaction	44
Figure 3.6	Fixed-bed reactor for EDR reaction	44
Figure 5.1	X-ray diffractograms of (a) γ -Al ₂ O ₃ support, (b) 10%Ni/Al ₂ O ₃ , (c) 3%Ce-10%Ni/Al ₂ O ₃ and (d) 3%La-10%Ni/Al ₂ O ₃ catalysts	59
Figure 5.2	XRD patterns of (a) 10% Ni/Al ₂ O ₃ , (b) 2% La- 10% Ni/Al ₂ O ₃ , (c) 3% La- 10% Ni/Al ₂ O ₃ and (d) 5% La- 10% Ni/Al ₂ O ₃ catalysts	60
Figure 5.3	Derivative weight profiles for temperature-programmed calcination of promoted and unpromoted Ni-based catalysts	61
Figure 5.4	H_2 -TPR profiles of promoted and unpromoted catalysts at a ramping rate of 15 K min ⁻¹	63
Figure 5.5	NH ₃ -TPD profiles for promoted and unpromoted 10%Ni/Al ₂ O ₃ catalysts	64

Figure 5.6	XPS spectra of unpromoted and promoted Ni-based catalysts	65
Figure 5.7	The Raman spectra of fresh promoted and unpromoted Ni- based catalysts	66
Figure 5.8	SEM image of 10%Ni/Al ₂ O ₃ catalyst	67
Figure 5.9	SEM image of 3%Ce-10%Ni/Al ₂ O ₃ catalyst	68
Figure 5.10	SEM image of 3%La-10%Ni/Al ₂ O ₃ catalyst	68
Figure 6.1	CO ₂ and C ₂ H ₅ OH conversion profiles for EDR reaction without catalyst at 973 K, $P_{CO_2} = 20$ kPa and $P_{C_2H_5OH} = 20$ kPa	71
Figure 6.2	CO ₂ and C ₂ H ₅ OH conversion profiles for EDR reaction of 10%Ni/Al ₂ O ₃ catalyst at 973 K, $P_{CO_2} = 20$ kPa and $P_{C_2H_5OH} = 20$ kPa	71
Figure 6.3	Effect of temperature on C ₂ H ₅ OH conversion of 10%Ni/Al ₂ O ₃ catalyst at $P_{CO_2} = P_{C_2H_5OH} = 20$ kPa	72
Figure 6.4	Effect of temperature on C ₂ H ₅ OH conversion of unpromoted and promoted Ni-based catalysts at $P_{CO_2} = P_{C_2H_5OH} = 20$ kPa	73
Figure 6.5	Effect of temperature on CO ₂ conversion of unpromoted and promoted Ni-based catalyst at $P_{CO_2} = P_{C_2H_5OH} = 20$ kPa	74
Figure 6.6	Effect of temperature on yield of H ₂ over Ni-based catalysts at $P_{CO_2} = P_{C_2H_5OH} = 20$ kPa	75
Figure 6.7	Effect of temperature on CH ₄ /CO ratio of 10%Ni/Al ₂ O ₃ , 3%Ce-10%Ni/Al ₂ O ₃ and 3%La-10%Ni/Al ₂ O ₃ catalysts at $P_{CO_2} = P_{C_2H_5OH} = 20$ kPa	75
Figure 6.8	Effect of temperature on H ₂ /CO ratio of 10%Ni/Al ₂ O ₃ , 3%Ce-10%Ni/Al ₂ O ₃ and 3%La-10%Ni/Al ₂ O ₃ catalysts at $P_{CO_2} = P_{C_2H_5OH} = 20$ kPa	76

Figure 6.9	Influence of P_{CO_2} on C ₂ H ₅ OH conversion of promoted and unpromoted catalysts at $P_{C_2H_5OH} = 20$ kPa and T = 973 K	77
Figure 6.10	Effect of P_{CO_2} on CO ₂ conversion of promoted and unpromoted catalysts at $P_{C_2H_5OH} = 20$ kPa and T = 973 K	77
Figure 6.11	Effect of P_{CO_2} on H ₂ yield of Ni-based catalysts at $P_{C_2H_5OH} =$ 20 kPa and T = 973 K	78
Figure 6.12	Effect of P_{CO_2} on H ₂ /CO ratio of promoted and unpromoted catalysts at $P_{C_2H_5OH} = 20$ kPa and 973 K	79
Figure 6.13	Effect of P_{CO_2} on CH ₄ /CO ratio of promoted and unpromoted catalysts at $P_{C_2H_5OH} = 20$ kPa and 973 K	79
Figure 6.14	Influence of $P_{C_2H_5OH}$ on C ₂ H ₅ OH conversion of 10%Ni/Al ₂ O ₃ , 3%Ce-10%Ni/Al ₂ O ₃ and 3%La-10%Ni/Al ₂ O ₃ catalysts at $P_{CO_2} = 20$ kPa and 973 K	80
Figure 6.15	Influence of $P_{C_2H_5OH}$ on CO ₂ conversion of 10%Ni/Al ₂ O ₃ , 3%Ce-10%Ni/Al ₂ O ₃ and 3%La-10%Ni/Al ₂ O ₃ catalysts at $P_{CO_2} = 20$ kPa and 973 K	81
Figure 6.16	Effect of $P_{C_2H_5OH}$ on H ₂ yield during EDR at $P_{CO_2} = 20$ kPa and T = 973 K	82
Figure 6.17	Effect of $P_{C_2H_5OH}$ on H ₂ /CO ratio during EDR at $P_{CO_2} = 20$ kPa and T = 973 K	82
Figure 6.18	Effect of La loadings on C ₂ H ₅ OH conversion and CH ₄ yield at $P_{C_2H_5OH} = 20$ kPa and T = 973 K	84

Figure 6.19	Time-on-stream profile for ethanol conversion at $P_{CO_2} = P_{C_2H_5OH} = 20$ kPa and T = 973 K	85
Figure 6.20	Time-on-stream profile for CO ₂ conversion at $P_{CO_2} = P_{C_2H_5OH}$ = 20 kPa and T = 973 K	85
Figure 6.21	Time-on-stream profile for H ₂ yield at $P_{CO_2} = P_{C_2H_5OH} = 20$ kPa and T = 973 K	86
Figure 6.22	Time-on-stream profile for CH ₄ /CO ratio at $P_{CO_2} = P_{C_2H_5OH} =$ 20 kPa and T = 973 K	87
Figure 6.23	Time-on-stream profile for H ₂ /CO ratio at $P_{CO_2} = P_{C_2H_5OH} =$ 20 kPa and T = 973 K	87
Figure 6.24	The Raman spectra of spent Ni-based catalysts after EDR at $P_{CO_2} = 40$ kPa, $P_{CO_2} = 20$ kPa and 973 K	89
Figure 6.25	The SEM microphotograph of spent 10% Ni/Al ₂ O ₃ catalyst at $P_{CO_2} = P_{C_2H_5OH} = 20$ kPa and 973 K	91
Figure 6.26	The SEM microphotograph of spent 3%Ce-10%Ni/Al ₂ O ₃ catalyst at $P_{CO_2} = P_{C_2H_5OH} = 20$ kPa and 973 K	91
Figure 6.27	The SEM microphotograph of spent 3%La-10%Ni/Al ₂ O ₃ catalyst at $P_{CO_2} = P_{C_2H_5OH} = 20$ kPa and 973 K	92
Figure 6.28	TEM images of spent 10%Ni/Al ₂ O ₃ at $P_{CO_2} = 30$ kPa, $P_{C_2H_5OH} = 20$ kPa and 973 K	93
Figure 6.29	TEM images of spent 3%Ce-10%Ni/Al ₂ O ₃ at $P_{CO_2} = 30$ kPa, $P_{C_2H_5OH} = 20$ kPa and 973 K	93
Figure 6.30	TEM images of spent 3%La-10%Ni/Al ₂ O ₃ at $P_{CO_2} = 30$ kPa, $P_{C_2H_5OH} = 20$ kPa and 973 K	94

Figure 6.31 TPO profiles of the spent promoted and unpromoted Ni-based 95 catalysts

LIST OF SYMBOLS

Α	Pre-exponential factor
В	The line broadening at half the maximum intensity (FWHM)
С	A constant characteristic of adsorbate
C_{Ab}	Bulk gas-phase concentration of component A
C_D	Percentage of amorphous carbon
C_P	Specific heat capacity
$D_{e\!f\!f}$	Effective diffusivity
E_A	Activation energy
E_l	The excitation of laser energy
F	Flow rate
h	Heat transfer coefficient
j _D	Colburn's mass transfer factor
k_c	Mass transfer coefficient
L_a	Crystallite size
n_m	Number of molecules adsorbed
Ν	Avogadro's number
n	Reaction order
M_{ad}	Molecular weight of adsorbate
Р	Gas pressure
Pr	Prandtl number
P_s	Saturation pressure of adsorbed gas
R	Universal gas constant
r	Production rate
r _{exp}	Rate of reaction

R_p	Catalyst particle radius
<i>r</i> _p	Actual radius
S_A	Total surface area of sample
Sc	Schmidt number
T_b	Boiling point
t _{ads}	Thickness of the adsorbed layer
U	Superficial gas velocity
V_a	Volume of gas adsorbed
W _{cat}	Weight of the catalyst
λ	Wavelength
heta	Bragg angle
$ ho_b$	Bulk density of catalyst bed
ω_p	Catalyst pellet porosity
σ_c	Construction factor
ĩ	Tortuosity
λ_p	Thermal conductivity
3	Void fraction
β	Heating rate
ΔH	Heat of reaction
ΔG	Gibbs free energy

LIST OF ABBREVIATIONS

BET	Brunauer-Emmett-Teller
DC	Direct current
DOE	Department of Energy
EDR	Ethanol dry reforming
EPA	Environmental Protection Agency
ESR	Ethanol steam reforming
FID	Flame ionization detector
FTS	Fischer-Tropsch synthesis
GHSV	Gas hourly space velocity
I.D.	Inner diameter
LPG	Liquefied Petroleum Gas
O.D.	Outer diameter
OSR	Oxidative steam reforming
POE	Partial oxidation of ethanol
SEM	Scanning electron microscopy
SOFCs	Solid Oxide Fuel Cells
TCD	Thermal conductivity detector
TEM	Transmission electron microscopy
TGA	Thermogravimetric analysis
TPC	Temperature-programmed calcination
TPD	Temperature-programmed desorption
ТРО	Temperature-programmed oxidation
TPR	Temperature-programmed reduction
WGS	Water-gas shift

LIST OF ABBREVIATIONS

XPS	X-ray photoelectron spectroscopy
XRD	X-ray diffraction

ETHANOL DRY REFORMING OVER LANTHANIDE-PROMOTED Ni/Al₂O₃ CATALYSTS FOR SYNGAS PRODUCTION

MAHADI BIN BAHARI

Thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering

Faculty of Chemical & Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

JANUARY 2017

ABSTRAK

Pembaharuan semula kering etanol telah dianggap sebagai satu pendekatan yang menarik dan menjanjikan peluang cerah kerana ia menggunakan gas rumah hijau, CO₂ dan bio-komponen yang boleh diperbaharui iaitu etanol untuk menghasilkan produk bernilai. Pemangkin berasaskan Ni adalah pemangkin yang selalu digunakan dalam pembaharuan semula kerana mempunyai kebolehan yang tinggi untuk membelah ikatan C-C dan C-O. Walaubagaimanapun, pemangkin ini mengalami masalah pensinteran dan karbon terenap yang terbentuk hasil daripada tindak balas pempolimeran etilena, Boudouard dan penguraian metana. Oleh itu, tesis ini mengkaji kesan penggalak (CeO₂ and La₂O₃) dan kadar kuantiti penggalak terhadap sifat-sifat fizikokimia bagi pemangkin 10% Ni/Al₂O₃ menggunakan penjerapan fizik N₂ (kaedah BET), pengkalsinan suhu berprogram (TPC), penuruna suhu berprogram (TPR), pengoksidaan suhu berprogram (TPO), penyahjerapan suhu berprogram (TPD), analisis pembelauan sinar-X (XRD), mikroskop elektron pengimbasan (SEM), mikroskop elektron transmisi (TEM), spektroskopi electron sinar-X (XPS) dan spektroskopi Raman. Pengaruh keadaan operasi yang berbeza termasuk tindak balas tekanan separa dan suhu terhadap prestasi pembentukan semula kering etanol juga dikaji dalam projek ini. Pemangkin 10%Ni/Al₂O₃ dengan penggalak dan tanpa penggalak telah disediakan dengan kaedah pengisitepuan dan dikaji dalam reaktor kuarza turus tetal pada nisbah berbeza CO₂:C₂H₅OH 2.5:1 hingga 1:2.5 dan suhu 923-973 K pada tekanan atmosfera. Pemangkin dengan penggalak dan tanpa penggalak memiliki luas permukaan yang tinggi iaitu kira-kira 71-108 m² g⁻¹ dan semua penggalak telah tersebar rata di atas permukaan sokongan. Kedua-dua fasa, NiO dan NiAl₂O₄ telah dikesan pada permukaan pemangkin dengan penggalak dan tanpa penggalak manakala fasa CeO₂ dan La₂O₃ telah dilihat bagi pemangkin dengan penggalak Ce dan La. Penurunan spesies NiO kepada logam Ni⁰ berlaku pada dua suhu penurunan yang berbeza bergantung kepada tahap interaksi diantara logam dan sokongan. Selain itu, kadar kepekatan tapak asid telah bekurangan degan ketara sebananyak 30.45% dan 40.68% bagi penambahan unsur penggalak Ce dan La. Untuk penilaian pemangkin, kedua-dua penukaran C₂H₅OH dan CO₂ telah dipertingkatkan dengan ketara apabila suhu suhu tindak balas ditingkatkan dari 923 hingga 973 K kerana sifat endoterma bagi tindak balas pembaharuan semula kering etanol. Peningkatan tekana separa bagi CO₂ dari 20 hingga 50 kPa memperbaiki kadar penukaran bahan tindak balas untuk kesemua pemangkin manakala tekanan separa yng optimum bagi C₂H₅OH dilihat pada 30-40 kPa bergantung kepada jenis pemangkin. Menariknya, nisbah H₂/CO sentiasa mencapai jumlah 1.1 hingga 1.9 tidak mengira keadaan operasi sesuai untuk process Fischer-Tropsch. Tanpa mengira operasi parameter, pemangkin dengan unsur penggalak La muncul sebagai pemangkin terbaik dari segi penghasilan H₂ dan kandungan 3%La adalah kandungan penggalak yang optimum bagi pemangkin yang berunsurkan pengalak La kerana mempunyai kandungan oxygen yang tinggi dalam La2O3. Pemangkin 3%La-10%Ni/Al₂O₃ mencapai kestabilan dalam 24 jam pada komposisi stoikiometri dan pada suhu tindak balas 973 K dari segi kadar penukaran bahan tindak balas dan nisbah H2/CO. Sifat heterogen karbon terbukti dengan kehadiran kedua-dua karbon amorfus dan grafit di permukaan pemangkin yang telah digunakan. Walau bagaimanapun, peratusan karbon telah berkurang dengan tambahan penggalak dalam turutan; La-penggalak < Cepenggalak < pemangkin tanpa penggalak 10%Ni/Al₂O₃. Di akhir kajian ini, kesemua objektif yang ditetapkan telah tercapai secara keseluruhannya.

ABSTRACT

Ethanol dry reforming has been regarded as an alluring and promising approach since it consumes greenhouse gas, CO₂ and renewable bio-component of ethanol to generate value-added products. Ni-based catalysts are the conventional reforming catalysts due to their high capacity of C-C and C-O bond cleavage. However, these catalysts suffer from sintering and deposited carbon formed from ethylene polymerization, Boudouard and methane decomposition reactions. Therefore, the aim of this thesis was to investigate the effect of promoters (CeO₂ and La₂O₃) and promoter loading on the physicochemical properties of 10%Ni/Al₂O₃ catalyst using N₂ physisorption (BET method), temperatureprogrammed calcination (TPC), temperature-programmed reduction (TPR), temperatureprogrammed oxidation (TPO), temperature-programmed desorption (TPD), X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The influence of different operation conditions including reactant partial pressure and temperature on catalytic performance of ethanol dry reforming was also studied in this project. Promoted and unpromoted 10%Ni/Al₂O₃ catalysts were prepared by coimpregnation method and evaluated in a quartz fixed-bed reactor at different CO₂:C₂H₅OH ratios of 2.5:1 to 1:2.5 and temperature of 923-973 K under atmospheric pressure. Promoted and unpromoted catalysts possessed relatively high BET surface area of about 71-108 m² g⁻¹ and both promoters were well dispersed on catalyst surface. Both NiO and NiAl₂O₄ phases were detected on the surface of promoted and unpromoted catalysts whilst CeO₂ and La₂O₃ phases were observed for Ce- and La-promoted catalysts, respectively. The reduction of NiO species to metallic Ni⁰ phase occurred at two different reduction temperatures depending on the degree of metal-support interaction. Moreover, the acid site concentration was significantly reduced about 30.45% and 40.68% with the addition of Ce and La promoters, respectively. For catalytic evaluation, both C₂H₅OH and CO₂ conversions enhanced considerably with growing reaction temperature from 923 to 973 K due to the endothermic nature of ethanol dry reforming reaction. The increase in CO₂ partial pressure from 20 to 50 kPa improved reactant conversions for all catalysts whilst the optimal C₂H₅OH partial pressure was observed at 30-40 kPa depending on catalyst types. Interestingly, H₂/CO ratio was always achieved within 1.1 to 1.9 regardless of operation conditions suitable for downstream Fischer-Tropsch synthesis. Irrespective of operating parameters, La-promoted catalyst appeared to be the best catalyst in terms of H₂ yield and 3%La loading was the optimal promoter loading for La-doped catalysts because of the high mobile oxygen storage capacity of La₂O₃. 3%La-10%Ni/Al₂O₃ catalyst also seemed to be stable for 24 h onstream at stoichiometric feed composition and reaction temperature of 973 K in terms of reactant conversion and H₂/CO ratio. The heterogeneous nature of deposited carbons was evident with the presence of both amorphous and graphitic carbons on spent catalyst surface. However, the percentage of deposited carbon was reduced with promoter addition in the order; La-promoted < Ce-promoted < unpromoted 10%Ni/Al₂O₃ catalysts. At the end of this research, all the objectives that were set out have been achieved completely.

REFERENCES

- Abasaeed, A.E., Al-Fatesh, A.S., Naeem, M.A., Ibrahim, A.A. and Fakeeha, A.H. (2015). Catalytic performance of CeO₂ and ZrO₂ supported Co catalysts for hydrogen production via dry reforming of methane. *International Journal of Hydrogen Energy*, 40(21), 6818-6826.
- Adeeb, Z. (2004). Glycerol delignification of poplar wood chips in aqueous medium. *Energy Education Science and Technology*, 13, 81-87.
- Adhikari, S, Fernando, S. and Haryanto, A. (2007). Production of hydrogen by steam reforming of glycerine over alumina-supported metal catalysts. *Catalysis Today*, *129*, 355–364.
- Adris, A.M., Pruden, B.B., Lim, C.J. and Grace, J. R. (1996). On the reported attempts to radically improve the performance of the steam methane reforming reactor. *The Canadian Journal of Chemical Engineering*, 74(2), 177-186.
- Albarazi, A., Gálvez, M.E. and Costa, P.D. (2015). Synthesis strategies of ceria–zirconia doped Ni/SBA-15 catalysts for methane dry reforming. *Catalysis Communications*, 59, 108-112.
- Anderson, J.B. (1963). A criterion for isothermal behaviour of a catalyst pellet. *Chemical Engineering Science*, *18*, 147-148.
- Arcotumapathy, V. (2013). Artificial neural networks assisted catalyst design and optimisation of methane steam reforming. Ph.D. Thesis. The University of New South Wales, Australia.
- Arcotumapathy, V., Vo, D.-V. N., Chesterfield, D., Tin, C.T., Siahvashi, A., Lucien, F.P. and Adesina, A.A. (2014). Catalyst design for methane steam reforming. *Applied Catalysis A: General*, 479, 87-102.
- Argyle, M.D. and Bartholomew, C.H. (2015). Heterogeneous Catalyst Deactivation and Regeneration: A Review. *Catalysts*, 5, 145-269
- Armor, J.N. (1999). The multiple roles for catalysis in the production of H₂. *Applied Catalysis A: General*, *176*(2), 159-176.
- Ay, H. and Üner, D. (2015). Dry reforming of methane over CeO₂ supported Ni, Co and Ni–Co catalysts. *Applied Catalysis B: Environmental*, *179*, 128-138.

- Balat, H. and Kirtay, E. (2010). Hydrogen from biomass Present scenario and future prospects. *International Journal of Hydrogen Energy*, *35*(14), 7416-7426.
- Bang, Y., Park, S., Han, S.J., Yoo, J., Song, J.H., Choi, J.H., Kang, K.H. and Song, I.K. (2016). Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni/Al₂O₃ catalyst prepared by an EDTA-assisted impregnation method. *Applied Catalysis B: Environmental, 180*, 179-188.
- Batista, M.S, Santos, R.K.S., Assaf, E.M., Assaf, J.M. and Ticianelli, E.A. (2004). High efficiency steam reforming of ethanol by cobalt-based catalysts. *Journal of Power Sources*, 134(1), 27-32.
- Bartholomew, C.H. (2001). Mechanisms of catalyst deactivation. *Applied Catalysis A: General*, 212, 17–60.
- Barthos, R., Lønyi, F., Onyestyák, G. and Valyon, J. (2001). An NH₃-TPD and -FR study on the acidity of sulfated zirconia. *Solid State Ionics*, 141–142, 253-258.
- Bellido J.G.A., Tanabe E.Y. and Assaf E.M. (2009). Carbon dioxide reforming of ethanol over Ni/Y₂O₃–ZrO₂ catalysts. *Applied Catalysis B: Environmental*, *90*, 485–488.
- Berman, A., Karn, R.K. and Epstein, M. (2005). Kinetics of steam reforming of methane on Ru/Al₂O₃ catalyst promoted with Mn oxides. *Applied Catalysis A: General*, 282, 73-83.
- Blanchard, J., Oudghiri-Hassani, H., Abatzoglou, N., Jankhah, S. and Gitzhofer, F. (2008). Synthesis of nanocarbons via ethanol dry reforming over a carbon steel catalyst. *Chemical Engineering Journal*, *143*(1-3), 186-194.
- BP. (2015). Statistical Review of World Energy 2015 (online). Retrieved from http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy.html on 11 January 2016.
- Brunauer, S., Emmett, P.H. and Teller, E. (1938). Adsorption of gases in multimolecular layers. *Journal of the American Chemical Society*, *60*(2), 309-319.
- Campos, C.H, Osorio-Vargas, P., Flores-González, N., Fierro, J.L.G., and Reyes, P. (2016). Effect of Ni Loading on Lanthanide (La and Ce) Promoted γ-Al₂O₃ Catalysts Applied to Ethanol Steam Reforming. *Catalysis Letters*, 146, 433–441.
- Cançado, L.G., Takai, K., Enoki, T., Endo, M., Kim, Y.A., Mizusaki, H., Jorio, A., Coelho, L.N., Magalhães-Paniago, R. and Pimenta, M.A. (2006). General equation for the determination of the crystallite size La of nanographite by raman spectroscopy. *Applied Physics Letters*, 88, 163106.
- Ceper, B.A. (2012). Use of Hydrogen-Methane Blends in Internal Combustion Engines, Hydrogen Energy - Challenges and Perspectives (online). Retrieved from http://www.intechopen.com/books/hydrogen-energy-challenges-andperspectives/use-of-hydrogen-methane-blends-in-internal-combustion-engines on 12 January 2016.

- Chan, S.S. and Bell, A.T. (1984). Characterization of the preparation of PdSiO₂ and PdLa₂O₃ by laser Raman spectroscopy. *Journal of Catalysis*, 89(2), 433-441.
- Chen, K., Xue, Z., Liu, H., Guo, A. and Wang, Z. (2013). A temperature-programmed oxidation method for quantitative characterization of the thermal cokes morphology. *Fuel*, *113*, 274–279.
- Cheng, C.K., Foo, S.Y. and Adesina, A.A. (2011). Steam reforming of glycerol over Ni/Al₂O₃ catalyst. *Catalysis Today*, *178*, 25–33.
- Chiou, J.Y.Z., Lee, C.-C., Bi, J.-L., Ho, K.F., Chuang, C.-L. and Wang, C.-B. (2014). Removal of coke during steam reforming of ethanol over La-CoO_x catalyst. *International Journal of Engineering And Science*, 4(8), 40-48.
- Chorkendorff, I. and Niemantsverdriet, J.W. (2003). *Concepts of Modern Catalysis and Kinetics*. Weinheim, Germany: Wiley-VCH.
- Cooper, C.G., Nguyen, T.-H., Lee, Y.-J., Hardiman, K.M., Safinski, T., Lucien, F.P. and Adesina, A.A. (2008). Alumina-supported cobalt-molybdenum catalyst for slurry phase Fischer–Tropsch synthesis. *Catalysis Today*, 131(1-4), 255-261.
- Da Silva, A.M., De Souza, K.R., Jacobs, G., Graham, U.M. and Davis, B.H., Mattos, L.V. and Noronha, F.B. (2011). Steam and CO₂ reforming of ethanol over Rh/CeO₂ catalyst. *Applied Catalysis B: Environmental*, *102*(1-2), 94-109.
- Darujati, A.R.S. and Thomson, W.J. (2006). Kinetic study of a ceria-promoted Mo₂C/gamma-Al₂O₃ catalyst in dry-methane reforming. *Chemical Engineering Science*, *61*(13), 4309-4315.
- Daza, C.E., Gallego, J., Mondragón, F., Moreno, S. and Molina, R. (2010). High stability of Ce-promoted Ni/Mg–Al catalysts derived from hydrotalcites in dry reforming of methane. *Fuel*, 89(3), 592-603.
- De Oliveira-Vigier, K., Abatzoglou, N. and Gitzhofer, F. (2005). Dry-reforming of ethanol in the presence of A 316 stainless steel catalyst. *The Canadian Journal of Chemical Engineering*, 83(6), 978-984.
- Deluga, G.A., Salge, J.R., Schmidt, L.D., Verykios, X.E. (2004). Renewable Hydrogen from Ethanol by Autothermal Reforming. *Science*, *303*(5660), 993-997.
- Der Heide, P.V. (2012). X-ray photoelectron spectroscopy: An introduction to principles and practices. Hoboken, New Jersey: John Wiley & Sons, Inc.
- Dieuzeide, M.L., Iannibelli, V., Jobbagy, M. and Amadeo, N. (2012). Steam reforming of glycerol over Ni/Mg/γ-Al2O3 catalysts. Effect of calcination temperatures. *International Journal of Hydrogen Energy*, *37*(19), 14926-14930.
- Dixon, A.G. (1997). Heat transfer in fixed beds at very low (<4) tube-to-particle diameter ratio. *Industrial & Engineering Chemistry Research*, *36*(8), 3053–3064.

- Drif, A., Bion, N., Brahmi, R., Ojala, S., Pirault-Roy, L., Turpeinen, E., Seelam, P.K., Keiski, R.L. and Epron, F. (2015). Study of the dry reforming of methane and ethanol using Rh catalysts supported on doped alumina. *Applied Catalysis A: General*, 504, 576–584.
- Du, X., Zhang, D., Shi, L., Gao, R. and Zhang, J. (2012). Morphology dependence of catalytic properties of Ni/CeO₂ nanostructures for carbon dioxide reforming of methane. *Journal of Physical Chemistry C*, *116*, 10009–10016.
- Dwivedi, P.N. and Upadhyay, S.N. (1977). Particle-fluid mass transfer in fixed and fluidized beds. *Industrial & Engineering Chemistry Process Design & Development*, 16, 157-165.
- Estephane, J., Aouad, S., Hany, S., El Khoury, B., Gennequin, C., El Zakhem, H., El Nakat, J., Aboukaïs, A. and Aad, E.A. (2015). CO₂ reforming of methane over Ni–Co/ZSM5 catalysts. Aging and carbon deposition study. *International Journal of Hydrogen Energy*, 40(30), 9201-9208.
- Fayaz, F., Danh, H.T., Nguyen-Huy, C., Vud, K.B., Abdullah, B. and Vo, D.-V.N. (2002). Promotional effect of Ce-dopant on Al₂O₃-supported Co catalysts for syngas production via CO₂ reforming of ethanol. *Procedia Engineering*, 148, 646 – 653.
- Fatsikostas, A.N., Kondarides, D.I. and Verykios, X.E. (2002). Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. *Catalysis Today*, 75(1–4), 145–155.
- Fatsikostas, A.N. and Verykios, X.E. (2004). Reaction network of steam reforming of ethanol over Ni-based catalysts. *Journal of Catalysis*, 225(2), 439–452.
- Figen, H.E. and Baykara, S.Z. (2015). Hydrogen production by partial oxidation of methane over Co based, Ni and Ru monolithic catalysts. *International Journal of Hydrogen Energy*, 40(24), 7439–7451.
- Fogler, H.S. (2006). *Elements of Chemical Reaction Engineering*. 4th ed. Upper Saddle River, NJ, USA: Pearson Education, Inc.
- Foo, S.Y., Cheng, C.K., Nguyen, T.-H. and Adesina, A.A. (2011). Evaluation of lanthanide-group promoters on Co–Ni/Al₂O₃ catalysts for CH₄ dry reforming. *Journal* of Molecular Catalysis A: Chemical, 344(1-2), 28-36.
- Foo, S.Y. (2012). Oxidative dry reforming of methane over alumina-supported Co-Ni catalyst systems. Ph.D. Thesis. The University of New South Wales, Australia.
- Foo, S.Y., Cheng, C.K., Nguyen, T.-H., Kennedy, E.M., Dlugogorski, B.Z. and Adesina, A.A. (2012). Carbon deposition and gasification kinetics of used lanthanide-promoted Co-Ni/Al₂O₃ catalysts from CH₄ dry reforming. *Catalysis Communications*, 26, 183-188.

Forzatti, P., Lietti, L. (1999). Catalyst deactivation. Catalysis Today 52, 165-181.

- Gabbott, P. (2008). *Principles and Applications of Thermal Analysis*. Oxford, UK: Blackwell Publishing Ltd.
- Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L. and Michael, J.R. (2003). *Scanning Electron Microscopy and X-ray Microanalysis*. 3rd ed. New York, USA: Springer US, Inc.
- González, D., Altin, O., Eser, S. and Garcia, A.B. (2007). Temperature-programmed oxidation studies of carbon materials prepared from anthracites by high temperature treatment. *Materials Chemistry and Physics*, *101*(1), 137–141.
- Gregg, S.J. and Sing, K. S. W. 1982. *Adsorption, surface area and porosity*. 2nd ed. New York, USA: Academic Press, Inc.
- Green, D.W. and Perry, R.H. (2008). *Perry's Chemical Engineers' Handbook*. 8th ed. New York, USA: The McGraw-Hill Companies, Inc.
- Hagen, J. (2006). *Industrial Catalysis: A Practical Approach*. 2nd ed. Weinheim, Germany: Wiley-VCH.
- Han, G., Lee, S. and Bae, J. (2015). Diesel autothermal reforming with hydrogen peroxide for low-oxygen environments. *Applied Energy*, 156, 99-106.
- Hardiman, K.M., Cooper, C.G. and Adesina, A.A. (2004). Multivariate analysis of the role of preparation conditions on the intrinsic properties of a Co-Ni/Al₂O₃ steamreforming catalyst. *Industrial & Engineering Chemistry Research*, 43(19), 6006-6013.
- Hardiman, K.M., Cooper, C.G., Adesina, A.A. and Lange, R. (2006). Post-mortem characterization of coke-induced deactivated alumina-supported Co–Ni catalysts. *Chemical Engineering Science*, 61(8), 2565-2573.
- Haryanto, A., Fernando, S., Murali, N. and Adhikari, S. (2005). Current status of hydrogen production techniques by steam reforming of ethanol: A review. *Energy & Fuels*, 19, 2098-2106.
- Hassan, M.A. and Shirai, Y. (2008). *Palm Biomass Utilisation in Malaysia for the Production of Bioplastics*. Slide. Malaysia. Universiti Putra Malaysia.
- Helveg, S., Lòpez-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B.S., Rostrup-Nielsen, J.R., Abild-Pedersen, F. and Nørskov, J.K. (2004). Atomic-scale imaging of carbon nanofibre growth. *Nature*, 427, 426-429.
- Herrero-Latorre, C., Álvarez-Méndez, J., Barciela-García, J., García-Martín, S. and Peña-Crecente, R.M. (2015). Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review. *Analytica Chimica Acta*, 853, 77-94.
- Holladay, J., Jones, E., Palo, D.R., Phelps, M., Chin, Y.-H., Dagle, R., Hu, J., Wang, Y. and Baker, E. (2003). Materials Research Society Symposium–Proceedings, Miniature

Fuel Processors for Portable Fuel Cell Power Supplies, Materials Research Society, Boston, MA, United States. 429–434.

- Hou, T., Zhang, S., Chen, Y., Wang, D. and Cai, W. (2015). Hydrogen production from ethanol reforming: Catalysts and reaction mechanism. *Renewable and Sustainable Energy Reviews*, 44, 134-148.
- Hu, X. and Lu, G. (2009). Syngas production by CO₂ reforming of ethanol over Ni/Al₂O₃ catalyst. *Catalysis Communications*, *10*, 1633–1637.
- Hu, Y.H. and Ruckenstein, E. (2004). Catalytic conversion of methane to synthesis gas by partial oxidation and CO₂ reforming. *Advances in Catalysis, 48, 297–345*.
- IEA. (2006). World Energy Outlook 2006 Factsheet. Paris: International Energy Agency.
- Italiano, C., Vita, A., Fabiano, C., Laganà, M. and Pino, L. (2015). Bio-hydrogen production by oxidative steam reforming of biogas over nanocrystalline Ni/CeO₂ catalysts. *International Journal of Hydrogen Energy*, 40(35), 11823–11830.
- Jankhah, S., Abatzoglou, N. and Gitzhofer, F. (2008a). Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nanofilaments' production. *International Journal of Hydrogen Energy*, 33(18), 4769-4779.
- Jankhah, S., Abatzoglou, N., Gitzhofer, F., Blanchard, J. and Oudghiri-Hassani, H. (2008b). Catalytic properties of carbon nano-filaments produced by iron-catalysed reforming of ethanol. *Chemical Engineering Journal*, 139(3), 532–539.
- JCPDS Powder Diffraction File (2000), International Centre for Diffraction Data, Swarthmore, PA.
- Karoshi, G., Kolar, P., Shah, S.B., Gilleskie, G. and Das, L. (2015). Calcined eggshell as an inexpensive catalyst for partial oxidation of methane. *Journal of the Taiwan Institute of Chemical Engineers*, 57, 123-128.
- Khajenoori, M., Rezaei, M. and Meshkani, F. (2015). Dry reforming over CeO₂-promoted Ni/MgO nano-catalyst: Effect of Ni loading and CH₄/CO₂ molar ratio. *Journal of Industrial and Engineering Chemistry*, 21, 717-722.
- Kim, S.S., Lee, S.M., Won, J.M., Yang, H.J. and Hong, S.C. (2015). Effect of Ce/Ti ratio on the catalytic activity and stability of Ni/CeO₂–TiO₂ catalyst for dry reforming of methane. *Chemical Engineering Journal*, 280, 433-440.
- Kissinger, H.E. (1957). Reaction Kinetics in Differential Thermal Analysis. *Analytical Chemistry*, 29(11), 1702-1706.
- Kugai, J., Subramani, V., Song, C., Engelhard, M.H. and Chin, Y.-H. (2006). Effects of nanocrystalline CeO₂ supports on the properties and performance of Ni–Rh bimetallic catalyst for oxidative steam reforming of ethanol. *Journal of Catalysis 238*(2), 430– 440.

- Kumar, A., Prasad, R. and Sharma, Y.C. (2014). Steam reforming of ethanol production of renewable hydrogen. *International Journal of Environmental Research and Development*, 4(3), 203-212.
- Lee, Y.J., Nguyen, T.-H., Khodakov, A. and Adesina, A.A. (2004). Physicochemical attributes of oxide supported Mo2N catalysts synthesised via sulphide nitridation. *Journal of Molecular Catalysis A: Chemical*, 211(1-2), 191-197.
- Lee, W.J. and Li, C.-Z. (2008). Opposite effects of gas flow rate on the rate of formation of carbon during the pyrolysis of ethane and acetylene on a nickel mesh catalyst. *Carbon*, *46*(9), 1208-1217.
- Leroy, R.L. (1983). Industrial water electrolysis-present and future. *International Journal* of Hydrogen Energy, 8(6), 401-417.
- Levenspiel, O. (1999). *Chemical Reaction Engineering*. 3rd ed. Hoboken, New Jersey: John Wiley & Sons, Inc.
- Li, D., Nakagawa, Y. and Tomishige K. (2011). Methane reforming to synthesis gas over Ni catalysts modified with noble metals. *Applied Catalysis A: General, 408*(1-2), 1-24.
- Li, M., Wang, X., Li, S., Wang, S. and Ma, X. (2010). Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds. *International Journal of Hydrogen Energy*, *35*(13), 6699-6708.
- Li, D., Zeng, L., Li, X., Wang, X., Ma, H., Assabumrungrat, S. and Gong, J. (2015). Ceria-promoted Ni/SBA-15 catalyst for ethanol steam reforming with enhanced activity and resistance to deactivation, *Applied Catalysis B: Environmental*, 176-177, 532-541.
- Liander, H. (1929). The utilisation of natural gases for the ammonia process. *Transactions* of the Faraday Society, 25, 462-472.
- Liberatori, J.W.C., Ribeiro, R.U., Zanchet, D., Noronha, F.B. and Bueno, J.M.C. (2007). Steam reforming of ethanol on supported nickel catalysts. *Applied Catalysis A: General*, 327(2), 197–204.
- Liguras, D.K., Kondarides, D.I. and Verykios, X.E. (2003). Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. *Applied Catalysis B: Environmental*, 43(4), 345–354.
- Liu, W.-W., Chai, S.–P., Mohamed, A.R. and Hashim, U. (2014). Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments. *Journal of Industrial and Engineering Chemistry*, 20(4), 1171-1185.
- Llorca, J., de la Piscina, P. R., Dalmon, J.-A., Sales, J. and Homs, N. (2001). CO-Free Hydrogen from Steam-Reforming of Bioethanol over ZnOSupported Cobalt Catalysts: Effect of the Metallic Precursor. *Applied Catalysis B: Environmental*, 43 (4), 355-369.

- Llorca, J., Homs, N., Sales, J., Fierro, J.-L. G. and de la Piscina, P. R. (2004). Effect of Sodium Addition on the Performance of Co-ZnO-Based Catalysts for Hydrogen Production from Bioethanol. *Journal of Catalysis*, 222(2), 470-480.
- Longwell, H. (2002). The future of the oil and gas industry: past approaches, new challenges. *World Energy*, 5(3), 100-104.
- Lu, Y., Li, S. and Guo, L. (2013). Hydrogen production by supercritical water gasification of glucose with Ni/CeO₂/Al₂O₃: Effect of Ce loading. *Fuel*, *103*, 193–199.
- Luisetto, I., Tuti, S., Battocchio, C., Mastro, S.L. and Sodo, A. (2015). Ni/CeO₂–Al₂O₃ catalysts for the dry reforming of methane: The effect of CeAlO₃ content and nickel crystallite size on catalytic activity and coke resistance. *Applied Catalysis A: General*, *500*, 12-22.
- Luo, C., Li, D., Wu, W., Zhang, Y. and Pan, C. (2014). Preparation of porous micronano-structure NiO/ZnO heterojunction and its photocatalytic property. *RSC Advances*, 4, 3090-3095.
- Mahoney, E.G., Pusel, J.M., Stagg-Williams, S.M. and Faraji, S. (2014). The effects of Pt addition to supported Ni catalysts on dry (CO₂) reforming of methane to syngas. *Journal of CO₂ Utilization*, *6*, 40-44.
- MarinÕ, F., Boveri, M., Baronetti, G. and Laborde, M. (2001). Hydrogen Production from Steam Reforming of Bioethanol Using Cu/Ni/K/γ-Al₂O₃ Catalysts. Effect of Ni. *International Journal of Hydrogen Energy*, 26(7), 665-668.
- Mattos, L.V. and Noronha, F.B. (2005). Partial oxidation of ethanol on supported Pt catalysts. *Journal of Power Sources*, 145(1), 10–15.
- Mattos, L.V., Jacobs, G., Davis, B.H. and Noronha, F.B. (2012). Production of hydrogen from ethanol: Review of reaction mechanism and catalyst deactivation. *Chemical Reviews*, 112(7), 4094–4123.
- Mears, D.E. (1971). Tests for Transport Limitations in Experimental Catalytic Reactors. Industrial & Engineering Chemistry Process Design and Development, 10(4), 541-547.
- Melchor-Hernández, C., Gómez-Cortés, A. and Díaz, G. (2013). Hydrogen production by steam reforming of ethanol over nickel supported on La-modified alumina catalysts prepared by sol–gel. *Fuel*, 107(2), 828–835.
- Mordor Intelligence (2016). Asia-Pacific Synthesis Gas (Syngas) Market Segmented by End-uses, Feedstock and Geography Trends and Forecasts (2015-2020) (online). Retrieved from http://www.mordorintelligence.com/industry-reports/asia-pacificsynthesis-gas-syngas-market-industry
- Moulijn, J.A., van Diepen, A.E. and Kapteijn, F. (2001). Catalyst deactivation: is it predictable? What to do? *Applied Catalysis A: General*, 212, 3-16.

- National Biomass Strategy 2020: New wealth creation for Malaysia's biomass industry Version 2.0, 2013. (online). Retrieved from https://biobs.jrc.ec.europa.eu/sites/default/files/generated/files/policy/Biomass% 20St rategy% 202013.pdf
- Navarro, R.M., Peña, M.A. and Fierro, J.L.G. (2007). Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass. *Chemical Reviews*, 107(10), 3952-3991.
- Nguyen, T.-H., Yue, E.M.T., Lee, Y.J., Khodakov, A., Adesina, A.A. and Brungs, M.P. (2003). Synthesis of bimetallic Mo-W carbide from its sulphide precursor via propane carburization: Statistical correlation of the physicochemical properties with preparation conditions. *Catalysis Communications*, *4*(8), 353-359.
- Ni, M., Leung, D.Y.C. and Leung, M.K.H. (2007). A review on reforming bio-ethanol for hydrogen production. *International Journal of Hydrogen Energy*, *32*(15), 3238-3247.
- Oemar, U., Kathiraser, Y., Mo, L., Ho, X.K. and Kawi, S. (2016). CO₂ reforming of methane over highly active La-promoted Ni supported on SBA-15 catalysts: mechanism and kinetic modelling. *Catalysis Science & Technology*, 6, 1173-1186.
- Ogden, J.M. (2001). Review of small stationary reformers for hydrogen production. A report for the International Energy Agency.
- Osorio-Vargas, P., Flores-González, N.A., Navarro, R.M., Fierro, J.L.G., Campos, C.H. and Reyes, P. (2016). Improved stability of Ni/Al₂O₃ catalysts by effect of promoters (La₂O₃, CeO₂) for ethanol steam-reforming reaction. *Catalysis Today*, 259, 27-38.
- Organization of the Petroleum Exporting Countries (OPEC) (2016). (online). Retrieved from http://www.opec.org/opec_web/en/data_graphs/40.htm on 22 July 2016.
- Özkara-Aydınoğlu, Ş. and Aksoylu, A.E. (2010). Carbon dioxide reforming of methane over Co-X/ZrO₂ catalysts (X = La, Ce, Mn, Mg, K). *Catalysis Communications*, 11(15), 1165-1170.
- Padban, N. and Becher, V. (2005). Clean hydrogen-rich synthesis gas. Literature and state of art review (Re: Methane Steam Reforming), Report No. CHRISGAS, WP11 D89.
- Paksoy, A.I., Caglayan, B.S. and Aksoylu, A.E. (2015). A study on characterization and methane dry reforming performance of Co–Ce/ZrO₂ catalyst. *Applied Catalysis B: Environmental*, 168–169, 164-174.
- Palm, C., Cremer, P., Peters, R. and Stolten, D. (2002). Small-scale testing of a precious metal catalyst in the autothermal reforming of various hydrocarbon feeds. *Journal of Power Sources*, 106(1-2), 231-237.
- Palo, R.D., Dagle, R.A. and Holladay, J.D. (2007). Methanol steam reforming for hydrogen production. *Chemical Reviews*. 107, 3992–4021.

- Patterson, A.L. (1939). The Scherrer formula for x-ray particle size determination. *Physical Review*, 56(10), 978.
- Peck, M.A. and Langell, M.A. (2012). Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS and XPS. *Chemistry of Materials*, 24(23), 4483-4490.
- Profeti, L.P.R., Ticianelli, E.A. and Assaf, E.M. (2009). Ethanol steam reforming for production of hydrogen on magnesium aluminate-supported cobalt catalysts promoted by noble metals. *Applied Catalysis A: General*, 360(1), 17–25.
- Qian, L., Ma, Z., Ren, Y., Shi, H., Yue, B., Feng, S., Shen, J. and Xie, S. (2014). Investigation of La promotion mechanism on Ni/SBA-15 catalysts in CH₄ reforming with CO₂. *Fuel*, *122*, 47-53.
- Qin, D. and Lapszewicz, J. (1994). Study of mixed steam and CO₂ reforming of CH₄ to syngas on MgO-supported metals. *Catalysis Today*, 21(2-3), 551-560.
- Rase, H.F. (2000). *Handbook of Commercial Catalysts: Heterogeneous Catalysts*. New York: CRC Press.
- Rashid, M.M., Al Mesfer, M.K., Naseem, H. and Danish, M. (2015). Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. *International Journal of Engineering and Advanced Technology*, 4, 80-93.
- Robertson, A.J.B. (1975). The early history of catalysis. *Platinum Metals Review*, 19, 64-69.
- Rostrup-Nielsen, J.R. and Hansen, J.H.B. (1993). CO₂-Reforming of Methane over Transition Metals. *Journal of Catalysis*, 144(1), 38–49.
- Rostrup-Nielsen, J.R. (1997). Industrial relevance of coking. *Catalysis Today*, 37, 225-232.
- Rostrup-Nielsen, J.R., Calvin, H.B. and John, B.B. (1991). Promotion by Poisoning. *Studies in Surface Science and Catalysis*, 68, 85-101.
- Rostrup-Nielsen, J.R., Sehested, J., and Norskov, J.K. (2002). Hydrogen and Synthesis Gas by Steam- and CO₂ Reforming. *Advances in Catalysis*, 47, 65-139
- Sánchez-Sánchez, M.C., Navarro, R.M. and Fierro, J.L.G. (2007). Ethanol steam reforming over Ni/MxOy–Al₂O₃ (M = Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production. *International Journal of Hydrogen Energy*, *32*(10-11), 1462–1471.
- Salge, J.R., Deluga, G.A. and Schmidt, L.D. (2005). Catalytic partial oxidation of ethanol over noble metal catalysts. *Journal of Catalysis*, 235(1), 69–78.

- Selvarajah, K., Phuc, N.H.H., Abdullah, B., Alenazey, F., and Vo, D.-V.N. (2016). Syngas production from methane dry reforming over Ni/Al₂O₃ catalyst. *Research on Chemical Intermediates*, 42(1), 269–288.
- Shepherd, R. (2002). United Kingdom Geologist Equipment (online). Retrieved from http://www.discoveringfossils.co.uk/fossilfuels.html on 21 January 2016.
- Siew, K.W., Lee, H.C., Gimbun, J. and Cheng, C.K. (2014). Characterization of Lapromoted Ni/Al₂O₃ catalysts for hydrogen production from glycerol dry reforming. *Journal of Energy Chemistry*, 23(1), 15-21.
- Siew, K.W., Lee, H.C., Khan, M.R., Gimbun, J. and Cheng, C.K. (2015). CO₂ reforming of glycerol over La-Ni/Al₂O₃ catalyst: A longevity evaluative study. *Journal of Energy Chemistry*, 24(3), 366-373.
- Siew, K.W., Lee, H.C., Gimbun, J., Chin, S.Y., Khan, M.R., Taufiq-Yap, Y.H. and Cheng, C.K. (2015). Syngas production from glycerol-dry (CO₂) reforming over Lapromoted Ni/Al₂O₃ catalyst. *Renewable Energy*, 74, 441-447.
- Singh, P.S. (2008). High surface area nanoporous amorphous silica prepared by dodecanol assisted silica formate sol-gel approach. *Journal of Colloid and Interface Science*, *325*(1), 207-214.
- Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller. (2007). Report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom.
- Spivey, J.J. (2005). Catalysis in the development of clean energy technologies. *Catalysis Today*, *100*(1-2), 171-180.
- Srisiriwat, N., Therdthianwong, S. and Therdthianwong, A. (2009). Oxidative steam reforming of ethanol over Ni/Al₂O₃ catalysts promoted by CeO₂, ZrO₂ and CeO₂–ZrO₂. *International Journal of Hydrogen Energy*, *34*(5), 2224–2234.
- Sunding, M.F., Hadidi, K., Diplas, S., Løvvik, O.M., Norby, T.E. and Gunnæs, A.E. (2011). XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. *Journal of Electron Spectroscopy and Related Phenomena*, 184(7), 399–409.
- Tanabe, K., Misono, M., Ono, Y. and Hattori, H. (1989). Determination of acidic and basic properties on solid surfaces. *Studies in Surface Science and Catalysis*, 51, 5-25.
- Taufiq-Yap, Y.H., Sudarno, Rashid, U. and Zainal, Z. (2013). CeO₂–SiO₂ supported nickel catalysts for dry reforming of methane toward syngas production. *Applied Catalysis A: General*, 468, 359-369.
- Tsiakaras, P. and Demin, A. (2001). Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol. *Journal of Power Sources*, *102*(1-2), 210-217.

- United States Department of Agriculture (2015). Palm Oil Production by Country in 1000 MT (Online). Retrieved from http://www.pecad.fas.usda.gov/ on 20 January 2016.
- United States Environmental Protection Agency. (2014). U.S. Greenhouse Gas Inventory Report: 1990-2013 (online). Retrieved from http://www3.epa.gov/climatechange/ghgemissions/inventoryexplorer/#allsectors/all gas/econsect/all on 14 January 2016.
- Vizcaíno, A.J., Lindo, M., Carrero, A. and Calles, J.A. (2012). Hydrogen production by steam reforming of ethanol using Ni catalysts based on ternary mixed oxides prepared by co-precipitation. *International Journal of Hydrogen Energy*, *37*(2), 1985-1992.
- Vo, D.-V.N. and Adesina, A.A. (2011). Fischer–Tropsch synthesis over aluminasupported molybdenum carbide catalyst. *Applied Catalysis A: General*, 399(1-2), 221– 232.
- Vo, D.-V.N., Arcotumapathy, V., Abdullah, B. and Adesina, A.A. (2013). Non-linear ASF product distribution over alkaline-earth promoted molybdenum carbide catalysts for hydrocarbon synthesis. *Catalysis Today*, *214*, 42-49.
- Wan, Li, X., Ji, S., Huang, B., Wang, K. and Li, C. (2007). Effect of Ni Loading and Ce_xZr_{1-x}O₂ Promoter on Ni-Based SBA-15 Catalysts for Steam Reforming of Methane. *Journal of Natural Gas Chemistry*, *16*,139–147.
- Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F. and Muilenberg, G.E. (1979). *Handbook of X-ray Photoelectron Spectroscopy*, Perkin-Elmer Corporation, Minnesota, US.
- Wang, M., Au, C.-T. and Lai, S.-Y. (2015). H₂ production from catalytic steam reforming of n-propanol over ruthenium and ruthenium-nickel bimetallic catalysts supported on ceria-alumina oxides with different ceria loadings. *International Journal of Hydrogen Energy*, 40(40), 13926–13935.
- Wang, N., Chu, W., Zhang, T. and Zhao, X.S. (2012). Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas. *International Journal of Hydrogen Energy*, 37(1), 19-30.
- Wang, S. and Lu, G.Q. (1999). A comprehensive study on carbon dioxide reforming of methane over Ni/γ-Al₂O₃ catalysts. *Industrial & Engineering Chemistry Research*, 38(7), 2615-2625.
- Wang, S., Wang, W., Zuo, J. and Qian, Y. (2001). Study of the raman spectrum of CeO₂ nanometer thin films, *Materials Chemistry and Physics*, 68(1-3), 246–248.
- Wang, W. (2011). Hydrogen production via dry reforming of butanol: Thermodynamic analysis. *Fuel*, 90(4), 1681-1688.

- Wang, W. and Wang, Y. (2009). Dry reforming of ethanol for hydrogen production: Thermodynamic investigation. *International Journal of Hydrogen Energy*, 34(13), 5382-5389.
- Wang, X. Li, M., Wang, M., Wang, H., Li, S., Wang, S. and Ma, X. (2009). Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production. *Fuel*, 88(11), 2148-2153.
- Wilhelm, D.J., Simbeck, D.R., Karp, A.D. and Dickenson, R.L. (2001). Syngas production for gas-to-liquids applications: technologies, issues and outlook. *Fuel Processing Technology*, 71(1-3), 139–148.
- Wilhelm, R.H., Johnson, W.C., Wynkoop, R. and Collier, D.W. (1948). Reaction rate, heat transfer, and temperature distribution in fixed-bed catalytic converters-solution by electrical network. *Chemical Engineering Progress*, 44, 105.
- Williams, D.B. and Carter, C.B. (2009). *Transmission electron microscopy: A textbook for materials science*. 2nd ed. New York, USA: Springer US, Inc.
- Xie, J., Sun, X., Barrett, L., Walker, B.R., Karote, D.R., Langemeier, J.M., Leaym, X., Kroh, F., Traylor, W., Feng, J. and Hohn, K.L. (2015). Autothermal reforming and partial oxidation of n-hexadecane via Pt/Ni bimetallic catalysts on ceria-based supports. *International Journal of Hydrogen Energy*, 40(27), 8510-8521.
- York, A.P.E., Xiao, T.-C., Green, M.L.H., and Claridge, J.B. (2007). Methane Oxyforming for Synthesis Gas Production. *Catalysis Reviews-Science and Engineering*, 49, 511-560.
- Zawadzki, A., Bellido, J.D.A., Lucrédio, A.F. and Assaf, E.M. (2014). Dry reforming of ethanol over supported Ni catalysts prepared by impregnation with methanolic solution. *Fuel Processing Technology*, 128, 432-440.
- Zhang, Y., Wang, W., Wang, Z., Zhou, X., Wang, Z. and Liu, C.-J. (2015). Steam reforming of methane over Ni/SiO₂ catalyst with enhanced coke resistance at low steam to methane ratio. *Catalysis Today*, 256, 130-136.
- Zhang, Z.L. and Verykios, X.E. (1994). Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts. *Catalysis Today*, 21, 589-595.