EXACT SOLUTIONS FOR SOME TYPES OF NEWTONIAN AND NON-NEWTONIAN FLUIDS

ABID HUSSANAN

DOCTOR OF PHILOSOPHY (MATHEMATICS)
UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in term of scope and quality for the award of the degree Doctor of Philosophy in Mathematics.

Signature
Name of Supervisor: ASSOC. PROF. DR. MOHD ZUKI BIN SALLEH
Position:
Date: 19/12/2016

Signature
Name of Field Supervisor: ASST. PROF. DR. ILYAS KHAN
Position:
Date: 19/12/2016
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

Signature :
Name : ABID HUSSANAN
ID Number : PSE14002
Date : 19/12/2016
EXACT SOLUTIONS FOR SOME TYPES OF NEWTONIAN AND NON-NEWTONIAN FLUIDS

ABID HUSSANAN

Thesis submitted in fulfilment of the requirements for the awards of the degree of Doctor of Philosophy (Mathematics)

Faculty of Industrial Sciences & Technology
UNIVERSITI MALAYSIA PAHANG

December 2016
TO MY BELOVED FAMILY ESPECIALLY MY FATHER AND MOTHER
THANK YOU FOR EVERYTHING
ACKNOWLEDGEMENT

I begin with the name of almighty ALLAH, who bestowed countless blessings upon me to fulfil the requirements for this thesis. Over and above everything else, it gives the greatest satisfaction as I offer my humblest words to thank the almighty ALLAH and millions of Durood o Salaam on Prophet Muhammad (Sallal Laahu Alaiehi Wa Sallam) who is always a torch of guidance for humanity.

This research project would not have been possible without the support of many people. First of all, I would like to express my deep appreciation and gratitude to my supervisor Assoc. Prof. Dr. Mohd Zuki Salleh for his guidance, suggestions and support throughout the course of this study. I wish to acknowledge my vitals thanks to my honourable co-supervisor Prof. Dr. Razman Mat Tahar (late) and field supervisor Asst. Prof. Dr. Ilyas Khan and for their valuable suggestions and guidance throughout my project made me able in completing my project successfully.

I wish to record my acknowledgements to the Universiti Malaysia Pahang, Malaysia for awarding me a scholarship during my study. Special thanks go to the Research and Innovation Department, University Malaysia Pahang, Malaysia for financial support through vote numbers GRS150334 (UMP), RDU140111 (FRGS) and RDU150101 (FRGS).

I would also like to thank my family for the support they provided me throughout my life. In particular, I must acknowledge my parents. Without their love, encouragement and support, I would not have finished this thesis. I wish to express my gratitude to all my friends who helped me directly or indirectly in the completion of the project. I am also thankful to Applied and Industrial Mathematics Research Group, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Malaysia for their helpful and useful discussions.

Abid Hussanan
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DECLARATION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Introduction

1.2 Research Background
 1.2.1 Casson Fluid
 1.2.2 Micropolar Fluid
 1.2.3 Nanofluids
 1.2.4 Laplace Transform Technique

1.3 Problem Statement

1.4 Objectives and Scope of Research

1.5 Research Methodology

1.6 Significance of the Study

1.7 Thesis Outlines

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

2.2 Heat Transfer and Flow of a Casson Fluid Past a Vertical Plate
2.3 Heat and Mass Transfer in MHD Flow of a Casson Fluid Embedded in a Porous Medium

2.4 Heat Transfer and Flow of a Micropolar Fluid Past a Vertical Plate

2.5 Heat and Mass Transfer in Flow of a Micropolar Fluid Past a Vertical Plate with Radiation Effect

2.6 Heat and Mass Transfer in MHD Flow of Nanofluids Past an Accelerated Vertical Plate Embedded in a Porous Medium

2.7 Heat and Mass Transfer in MHD Steady Flow of Nanofluids Containing Carbon Nanotubes

CHAPTER 3 HEAT TRANSFER AND FLOW OF A CASSON FLUID PAST A VERTICAL PLATE

3.1 Introduction

3.2 Mathematical Formulation
 3.2.1 Continuity Equation
 3.2.2 Momentum Equation
 3.2.3 Energy Equation

3.3 Solution of the Problem

3.4 Limiting Cases
 3.4.1 Solution of Stokes First Problem
 3.4.2 Solution for Newtonian Fluid
 3.4.3 Absence of Free Convection

3.5 Numerical Results and Discussion

CHAPTER 4 HEAT AND MASS TRANSFER IN MHD FLOW OF A CASSON FLUID EMBEDDED IN A POROUS MEDIUM

4.1 Introduction

4.2 Mathematical Formulation
 4.2.1 Momentum Equation
 4.2.2 Energy Equation
 4.2.3 Concentration Equation

4.3 Solution of the Problem
4.4 Limiting Cases
 4.4.1 Solution of Stokes First Problem 71
 4.4.2 Absence of Porous and Magnetic Effects 72
 4.4.3 Absence of Thermal Effects 73
 4.4.4 Solution for Newtonian Fluid 74
4.5 Numerical Results and Discussion 75

CHAPTER 5 HEAT TRANSFER AND FLOW OF A MICROPOLAR FLUID PAST A VERTICAL PLATE

5.1 Introduction 93
5.2 Mathematical Formulation 94
 5.2.1 Momentum Equation 95
 5.2.2 Angular Momentum Equation 96
5.3 Solution of the Problem 97
5.4 Limiting Cases 101
 5.4.1 Solution of Stokes First Problem 102
 5.4.2 Solution for Newtonian Fluid 102
 5.4.3 Absence of Free Convection 103
5.5 Numerical Results and Discussion 104

CHAPTER 6 HEAT AND MASS TRANSFER IN FLOW OF A MICROPOLAR FLUID PAST A VERTICAL PLATE WITH RADIATION EFFECT

6.1 Introduction 118
6.2 Mathematical Formulation 119
6.3 Solution of the Problem 120
6.4 Limiting Cases 125
 6.4.1 Solution of Stokes First Problem 125
 6.4.2 Solution for Newtonian Fluid 127
 6.4.3 Absence of Free Convection 127
6.5 Numerical Results and Discussion 128
CHAPTER 7 HEAT AND MASS TRANSFER IN MHD FLOW OF NANOFLUIDS PAST AN ACCELERATED VERTICAL PLATE EMBEDDED IN A POROUS MEDIUM

- 7.1 Introduction .. 142
- 7.2 Mathematical Formulation 143
 - 7.2.1 Momentum Equation 144
 - 7.2.2 Energy Equation 145
- 7.3 Solution of the Problem 147
- 7.4 Limiting Cases 152
 - 7.4.1 Flow due to a Variably Accelerated Plate 152
 - 7.4.2 Flow due to a Constantly Accelerated Plate ... 154
 - 7.4.3 Stokes First Problem 156
 - 7.4.4 Absence of Mass Diffusion 158
- 7.5 Numerical Results and Discussion 159

CHAPTER 8 HEAT AND MASS TRANSFER IN MHD STEADY FLOW OF NANOFLUIDS CONTAINING CARBON NANOTUBES

- 8.1 Introduction .. 170
- 8.2 Mathematical Formulation 171
 - 8.2.1 Continuity Equation 172
 - 8.2.2 Momentum Equation 172
 - 8.2.3 Energy and Concentration Equation 173
- 8.3 Solution of the Problem 174
- 8.4 Numerical Results and Discussion 178

CHAPTER 9 CONCLUSION

- 9.1 Summary of Research 191
- 9.2 Suggestions for Future Research 193

REFERENCES .. 195
APPENDICES

A Laplace Transformations 213
B Mathcad and Maple Programs 217
C List of Publications 222
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Numerical results of velocity $u(y,t)$ for different Casson parameter α, when $Pr = 3, Gr = 3, t = 0.2, \omega t = \pi/3$</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>Numerical results of skin friction τ for different parameters</td>
<td>56</td>
</tr>
<tr>
<td>3.3</td>
<td>Numerical results of Nusselt number Nu for different parameters</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Numerical results of velocity $u(y,t)$ for different Casson parameter α, when $Pr = 3, Gr = 3, t = 0.2, \omega t = \pi/3$</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>Numerical results of skin friction τ for different parameters</td>
<td>91</td>
</tr>
<tr>
<td>4.3</td>
<td>Numerical results of Nusselt number Nu for different parameters</td>
<td>92</td>
</tr>
<tr>
<td>4.4</td>
<td>Numerical results of Sherwood number Sh for different parameters</td>
<td>92</td>
</tr>
<tr>
<td>5.1</td>
<td>Numerical results of velocity $u(y,t)$ for different microelement n and microrotation parameter β, when $Pr = 3, Gr = 3, \eta = 0.5, t = 0.2, \omega t = \pi/3$</td>
<td>116</td>
</tr>
<tr>
<td>5.2</td>
<td>Numerical results of skin friction τ for different parameters</td>
<td>116</td>
</tr>
<tr>
<td>5.3</td>
<td>Numerical results of wall couple stress C_m for different parameters</td>
<td>117</td>
</tr>
<tr>
<td>6.1</td>
<td>Numerical results of velocity $u(y,t)$ for different microelement n, microrotation parameter β and radiation parameter R, when $Pr = 3, Gr = 3, Gm = 2, Sc = 1, \eta = 0.5, t = 0.2, \omega t = \pi/3$</td>
<td>139</td>
</tr>
<tr>
<td>6.2</td>
<td>Numerical results of skin friction τ for different parameters</td>
<td>140</td>
</tr>
<tr>
<td>6.3</td>
<td>Numerical results of wall couple stress C_m for different parameters</td>
<td>141</td>
</tr>
</tbody>
</table>
7.1 Numerical results of velocity $u(y,t)$ for different volume fraction ϕ and magnetic parameter M for three different cases of plate motions of Cu-water based nanofluid, when $R = 0.5$, $Gr = 5$, $Gm = 2$, $K = 2$, $Sc = 0.5$, $S = 0.5$, $\lambda = 1$, $t = 0.5$

8.1 Numerical results of velocity $f'(\xi)$ for different volume fraction ϕ and magnetic parameter M for SWCNTs and MWCNTs water based nanofluids, when $K = 0.5$
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Physical model for heat transfer flow of a Casson fluid over a vertical plate and coordinate system</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>Energy fluxes in and out from the control volume</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Heat fluxes entering and exiting the control volume</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>Comparison of the present velocity in case of Newtonian fluid ((\alpha \to \infty)) with results of Narahari and Ishak (2011), when (Pr = 7, Gr = 5, \gamma = 1, \omega t = 0)</td>
<td>49</td>
</tr>
<tr>
<td>3.5</td>
<td>Comparison of the present result of temperature with that obtained by Jain and Chaudhary (2013), when (Pr = 0.71, \gamma = 1)</td>
<td>49</td>
</tr>
<tr>
<td>3.6</td>
<td>Velocity profiles for different values of (\alpha), when (Pr = 1, Gr = 3, \gamma = 0.5, t = 0.3, \omega t = \pi / 3)</td>
<td>50</td>
</tr>
<tr>
<td>3.7</td>
<td>Velocity profiles for different values of (Pr), when (\alpha = 0.2, Gr = 3, \gamma = 0.5, t = 0.3, \omega t = \pi / 3)</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>Velocity profiles for different values of (Gr), when (\alpha = 0.2, Pr = 1, \gamma = 0.5, t = 0.3, \omega t = \pi / 3)</td>
<td>51</td>
</tr>
<tr>
<td>3.9</td>
<td>Velocity profiles for different values of (\gamma), when (\alpha = 0.2, Pr = 1, Gr = 3, t = 0.3, \omega t = \pi / 3)</td>
<td>51</td>
</tr>
<tr>
<td>3.10</td>
<td>Velocity profiles for different values of (t), when (\alpha = 0.2, Pr = 1, Gr = 3, \gamma = 0.5, \omega t = \pi / 3)</td>
<td>52</td>
</tr>
<tr>
<td>3.11</td>
<td>Velocity profiles for different values of (\omega t), when (\alpha = 0.2, Pr = 1, Gr = 3, \gamma = 0.5, t = 0.2)</td>
<td>52</td>
</tr>
<tr>
<td>3.12</td>
<td>Temperature field for different values of (Pr), when (\gamma = 0.5, t = 0.3)</td>
<td>53</td>
</tr>
<tr>
<td>3.13</td>
<td>Temperature field for different values of (\gamma), when (Pr = 1, t = 0.3)</td>
<td>53</td>
</tr>
<tr>
<td>3.14</td>
<td>Temperature field for different values of (t), when (Pr = 1, \gamma = 0.5)</td>
<td>54</td>
</tr>
</tbody>
</table>
3.15 Skin friction variation for different values of α, when $Pr = 7$, $Gr = 3$, $\gamma = 1$, $\cot = 0$

3.16 Nusselt number variation for different values of γ, when $Pr = 3$

4.1 Physical model for heat and mass transfer flow of a Casson fluid over a vertical plate in a porous medium under the effect of magnetic field and coordinate system

4.2 Radiant fluxes in and out from the control volume

4.3 Concentration convected fluxes in and out from the control volume

4.4 Diffusion fluxes in and out from the control volume

4.5 Comparison of the present velocity in case of Newtonian fluid ($\alpha \rightarrow \infty$) with results of Mebine and Adigio (2009), when $Pr = 0.71$, $Gr = 1$, $t = 0.4$, $\gamma = 1$, $\cot = 0$

4.6 Comparison of the present result of temperature with that obtained by Raju et al. (2013), when $Pr = 0.71$, $\gamma = 1$, $t = 0.2$

4.7 Velocity profiles for different values of α, when $Pr = 6.2$, $R = 3$, $Gr = 3$, $Gm = 2$, $M = 2$, $K = 0.2$, $Sc = 0.5$, $\gamma = 0.5$, $t = 0.3$, $\cot = \pi / 3$

4.8 Velocity profiles for different values of Pr, when $\alpha = 0.2$, $R = 3$, $Gr = 3$, $Gm = 2$, $M = 2$, $K = 0.2$, $Sc = 0.5$, $\gamma = 2$, $t = 0.3$, $\cot = \pi / 3$

4.9 Velocity profiles for different values of R, when $\alpha = 0.2$, $Pr = 6.2$, $Gr = 3$, $Gm = 2$, $M = 2$, $K = 0.2$, $Sc = 0.5$, $\gamma = 2$, $t = 0.3$, $\cot = \pi / 3$

4.10 Velocity profiles for different values of Gr, when $\alpha = 0.2$, $Pr = 6.2$, $R = 3$, $Gm = 2$, $M = 2$, $K = 0.2$, $Sc = 0.5$, $\gamma = 2$, $t = 0.3$, $\cot = \pi / 3$

4.11 Velocity profiles for different values of Gm, when $\alpha = 0.2$, $Pr = 6.2$, $R = 3$, $Gr = 3$, $M = 2$, $K = 0.2$, $Sc = 0.5$, $\gamma = 2$, $t = 0.3$, $\cot = \pi / 3$
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.12</td>
<td>Velocity profiles for different values of (M), when (\alpha = 0.2, \Pr = 6.2, R = 3, \Gr = 3, Gm = 2, K = 0.2, Sc = 0.5, \gamma = 2, t = 0.3, \omega t = \pi / 3)</td>
</tr>
<tr>
<td>4.13</td>
<td>Velocity profiles for different values of (K), when (\alpha = 0.2, \Pr = 6.2, R = 3, \Gr = 3, Gm = 2, M = 2, Sc = 0.5, \gamma = 2, t = 0.3, \omega t = \pi / 3)</td>
</tr>
<tr>
<td>4.14</td>
<td>Velocity profiles for different values of (Sc), when (\alpha = 0.2, \Pr = 6.2, R = 3, \Gr = 3, Gm = 2, M = 2, K = 0.2, \gamma = 2, t = 0.3, \omega t = \pi / 3)</td>
</tr>
<tr>
<td>4.15</td>
<td>Velocity profiles for different values of (\gamma), when (\alpha = 0.2, \Pr = 6.2, R = 3, \Gr = 3, Gm = 2, M = 2, K = 0.2, Sc = 0.5, t = 0.3, \omega t = \pi / 3)</td>
</tr>
<tr>
<td>4.16</td>
<td>Velocity profiles for different values of (t), when (\alpha = 0.2, \Pr = 6.2, R = 3, \Gr = 3, Gm = 2, M = 2, K = 0.2, Sc = 0.5, \gamma = 2, \omega t = \pi / 3)</td>
</tr>
<tr>
<td>4.17</td>
<td>Velocity profiles for different values of (\omega t), when (\alpha = 0.2, \Pr = 6.2, R = 3, \Gr = 3, Gm = 2, M = 2, K = 0.2, Sc = 0.5, \gamma = 2, t = 0.3)</td>
</tr>
<tr>
<td>4.18</td>
<td>Temperature field for different values of (\Pr), when (R = 3, \gamma = 2, t = 0.3)</td>
</tr>
<tr>
<td>4.19</td>
<td>Temperature field for different values of (R), when (\Pr = 6.2, \gamma = 2, t = 0.3)</td>
</tr>
<tr>
<td>4.20</td>
<td>Temperature field for different values of (\gamma), when (\Pr = 6.2, R = 3, t = 0.3)</td>
</tr>
<tr>
<td>4.21</td>
<td>Temperature field for different values of (t), when (\Pr = 6.2, R = 3, \gamma = 2)</td>
</tr>
<tr>
<td>4.22</td>
<td>Concentration field for different values of (Sc), when (t = 0.3)</td>
</tr>
<tr>
<td>4.23</td>
<td>Concentration field for different values of (t), when (Sc = 0.5)</td>
</tr>
<tr>
<td>4.24</td>
<td>Skin friction variation for different values of (Gr), when (\alpha = 0.2, \Pr = 6.2, R = 3, Gm = 2, M = 2, K = 0.2, Sc = 0.2, \gamma = 0.5, \omega t = 0)</td>
</tr>
</tbody>
</table>
4.25 Nusselt number variation for different values of γ, when Pr = 6.2, $R = 3$

89

4.26 Sherwood number variation for different values of Sc

89

5.1 Physical model for heat transfer flow of micropolar fluid over a vertical plate and coordinate system

94

5.2 Comparison of the present result of velocity with that obtained by Chaudhary and Jain (2006), when Pr = 1, $Gr = 5$, $\gamma = 1$, $\omega t = 0$

107

5.3 Velocity profiles for different values of β, when Pr = 3, $Gr = 5$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.2$, $\omega t = \pi / 3$

107

5.4 Velocity profiles for different values of Pr, when $\beta = 1.5$, $Gr = 5$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.4$, $\omega t = \pi / 3$

108

5.5 Velocity profiles for different values of Gr, when $\beta = 1.5$, Pr = 1, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.4$, $\omega t = \pi / 3$

108

5.6 Velocity profiles for different values of η, when $\beta = 3$, Pr = 3, $Gr = 3$, $n = 0.5$, $\gamma = 0.5$, $t = 0.5$, $\omega t = \pi / 3$

109

5.7 Velocity profiles for different values of γ, when $\beta = 1.5$, Pr = 1, $Gr = 3$, $n = 0.5$, $\eta = 0.5$, $t = 0.2$, $\omega t = \pi / 3$

109

5.8 Velocity profiles for different values of t, when $\beta = 1.5$, Pr = 1, $Gr = 3$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $\omega t = \pi / 3$

110

5.9 Velocity profiles for different values of ωt, when $\beta = 0.5$, Pr = 3, $Gr = 5$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.5$

110

5.10 Microrotation profiles for different values of β, when Pr = 3, $Gr = 5$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.2$, $\omega t = \pi / 3$

111

5.11 Microrotation profiles for different values of Pr, when $\beta = 1.5$, $Gr = 5$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.4$, $\omega t = \pi / 3$

111

5.12 Microrotation profiles for different values of Gr, when $\beta = 1.5$, Pr = 1, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.4$, $\omega t = \pi / 3$

112

5.13 Microrotation profiles for different values of η, when $\beta = 3$, Pr = 3, $Gr = 3$, $n = 0.5$, $\gamma = 0.5$, $t = 0.5$, $\omega t = \pi / 3$

112
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.14</td>
<td>Microrotation profiles for different values of γ, when $Pr = 1$, $Gr = 3$, $\beta = 1.5$, $n = 0.5$, $\eta = 0.5$, $t = 0.2$, $\omega t = \pi / 3$</td>
</tr>
<tr>
<td>5.15</td>
<td>Microrotation profiles for different values of t, when $Pr = 1$, $Gr = 3$, $\beta = 1.5$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $\omega t = \pi / 3$</td>
</tr>
<tr>
<td>5.16</td>
<td>Microrotation profiles for different values of ωt, when $Pr = 3$, $Gr = 5$, $\beta = 0.5$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.5$</td>
</tr>
<tr>
<td>5.17</td>
<td>Skin friction variation for different values of β, when $Pr = 3$, $Gr = 5$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $\omega t = \pi / 2$</td>
</tr>
<tr>
<td>5.18</td>
<td>Wall couple stress variation for different values of β, when $Pr = 3$, $Gr = 5$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $\omega t = \pi / 2$</td>
</tr>
<tr>
<td>6.1</td>
<td>Physical model for heat and mass transfer flow of micropolar fluid over a vertical plate and coordinate system</td>
</tr>
<tr>
<td>6.2</td>
<td>Comparison of the present velocity in case of constant wall temperature ($\gamma = 0$) with results of the Khalid et al. (2015b), when $\beta = 0.5$, $R = 0$, $Gr = 5$, $Gm = 5$, $Sc = 0.2$, $n = 0.6$, $\eta = 1.5$, $t = 0.2$, $\omega t = \pi / 3$</td>
</tr>
<tr>
<td>6.3</td>
<td>Velocity profiles for different values of β, when $Pr = 1$, $R = 2$, $Gr = 3$, $Gm = 2$, $Sc = 1$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.2$, $\omega t = \pi / 3$</td>
</tr>
<tr>
<td>6.4</td>
<td>Velocity profiles for different values of Pr, when $\beta = 1.5$, $R = 2$, $Gr = 3$, $Gm = 2$, $Sc = 1$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.2$, $\omega t = \pi / 3$</td>
</tr>
<tr>
<td>6.5</td>
<td>Velocity profiles for different values of R, when $\beta = 1.5$, $Pr = 1$, $Gr = 3$, $Gm = 2$, $Sc = 1$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.2$, $\omega t = \pi / 3$</td>
</tr>
<tr>
<td>6.6</td>
<td>Velocity profiles for different values of Gr, when $\beta = 1.5$, $Pr = 1$, $R = 2$, $Gm = 2$, $Sc = 1$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.2$, $\omega t = \pi / 3$</td>
</tr>
<tr>
<td>6.7</td>
<td>Velocity profiles for different values of Gm, when $\beta = 1.5$, $Pr = 1$, $R = 2$, $Gr = 3$, $Sc = 1$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.2$, $\omega t = \pi / 3$</td>
</tr>
</tbody>
</table>
6.8 Velocity profiles for different values of Sc, when
$\beta = 1.5$, $Pr = 1$, $R = 2$, $Gr = 3$, $Gm = 2$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.2$, $\omega t = \pi / 3$

6.9 Velocity profiles for different values of η, when
$\beta = 1.5$, $Pr = 1$, $R = 2$, $Gr = 3$, $Gm = 2$, $Sc = 1$, $n = 0.5$, $\gamma = 0.5$, $t = 0.2$, $\omega t = \pi / 3$

6.10 Velocity profiles for different values of ωt, when
$\beta = 1.5$, $Pr = 1$, $R = 2$, $Gr = 3$, $Gm = 2$, $Sc = 1$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.2$

6.11 Microrotation profiles for different values of β, when
$Pr = 1$, $R = 2$, $Gr = 3$, $Gm = 2$, $Sc = 1$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.2$, $\omega t = \pi / 3$

6.12 Microrotation profiles for different values of Pr, when
$\beta = 1.5$, $R = 2$, $Gr = 3$, $Gm = 2$, $Sc = 1$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.2$, $\omega t = \pi / 3$

6.13 Microrotation profiles for different values of R, when
$\beta = 1.5$, $Pr = 1$, $Gr = 3$, $Gm = 2$, $Sc = 1$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.2$, $\omega t = \pi / 3$

6.14 Microrotation profiles for different values of Gr, when
$\beta = 1.5$, $Pr = 1$, $R = 2$, $Gm = 2$, $Sc = 1$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.2$, $\omega t = \pi / 3$

6.15 Microrotation profiles for different values of Gm, when
$\beta = 1.5$, $Pr = 1$, $R = 2$, $Gr = 3$, $Sc = 1$, $n = 0.5$, $\eta = 0.5$, $\gamma = 0.5$, $t = 0.2$, $\omega t = \pi / 3$

6.16 Skin friction variation for different values of Gr, when
$\beta = 3$, $Pr = 3$, $R = 2$, $Gm = 2$, $Sc = 0.2$, $n = 0.2$, $\gamma = 1$, $\eta = 1.5$, $\omega t = \pi / 3$

6.17 Wall couple stress variation for different values of R, when
$\beta = 3$, $Pr = 3$, $Gr = 3$, $Gm = 2$, $Sc = 0.2$, $n = 0.2$, $\gamma = 1$, $\eta = 1.5$, $\omega t = \pi / 3$

7.1 Physical model for heat and mass transfer flow of nanofluids over a vertical plate in a porous medium under the effect of magnetic field and coordinate system.
7.2 Comparison of the present velocity in case of constant moving plate \((p = 0)\) with results of Das and Jana (2015), when \(\text{Pr} = 6.2, \text{R} = 0.5, \text{Gm} = 0, M = 5, \phi = 0.1, t = 0.5\)

7.3 Comparison of the present result for temperature field with those obtained by Das and Jana (2015), when \(\text{Pr} = 6.2, S = 0, \phi = 0.1, t = 0.5\)

7.4 Comparison of velocity for water based nanofluids with different nanoparticles, when \(R = 0.5, \text{Gr} = 5, \text{Gm} = 2, M = 3, K = 2, Sc = 0.5, S = 0.5, \gamma = 1, \lambda = 1, \phi = 0.2, t = 0.6, p = 3\)

7.5 Comparison of velocity for different based fluids with Ag and Cu nanoparticles, when \(R = 0.5, \text{Gr} = 5, \text{Gm} = 2, M = 3, K = 0.2, Sc = 0.5, S = 0.5, \gamma = 1, \lambda = 1, \phi = 0.2, t = 0.6, p = 3\)

7.6 Velocity profiles of Ag-water based nanofluids for different values of \(\gamma\), when \(R = 0.5, \text{Gr} = 5, \text{Gm} = 2, M = 3, K = 2, Sc = 0.5, S = 0.5, \gamma = 1, \lambda = 1, \phi = 0.2, t = 0.6, p = 1\)

7.7 Velocity profiles of Ag-water based nanofluids for different values of \(M\), when \(R = 0.5, \text{Gr} = 5, \text{Gm} = 2, K = 2, Sc = 0.5, S = 0.5, \gamma = 1, \lambda = 1, \phi = 0.2, t = 0.6, p = 1\)

7.8 Velocity profiles of Ag-water based nanofluids for different acceleration of the plate, when \(R = 0.5, \text{Gr} = 5, \text{Gm} = 2, K = 2, Sc = 0.5, S = 0.5, \gamma = 1, \lambda = 1, \phi = 0.2, t = 2\)

7.9 Comparison of the temperature for water based nanofluids with different nanoparticles, when \(R = 2, S = 3, \gamma = 1.5, \phi = 0.8, t = 0.3\)

7.10 Comparison of temperature for water based nanofluids with Ag and Cu nanoparticles, when \(R = 2, S = 3, \gamma = 1.5, \phi = 0.8, t = 0.3\)

7.11 Temperature field of Ag and Cu water based nanofluids for different values of \(R\), when \(S = 1, \gamma = 1.5, \phi = 0.8, t = 0.3\)

7.12 Temperature field of Ag and Cu water based nanofluids for different values of \(S\), when \(R = 2, \gamma = 1.5, \phi = 0.8, t = 0.3\)
7.13 Temperature field of Ag and Cu water based nanofluids for different values of \(\gamma \), when \(R = 2, S = 3, \phi = 0.8, t = 0.3 \)

7.14 Nusselt number variation of Ag-water based nanofluids for different values of \(\gamma \), when \(R = 3, S = 1, \phi = 0.5 \)

7.15 Sherwood number variation for different values of \(Sc \), when \(\lambda = 1, \phi = 0.5 \)

8.1 Physical model for heat and mass transfer flow of nanofluids over a stretching sheet in a porous medium under the effect of magnetic field and coordinate system.

8.2 Comparison of the present result of velocity with that obtained by Ebaid and Sharif (2015), when \(\phi = 0.1 \)

8.3 Comparison of the present result of temperature with that obtained by Ebaid and Sharif (2015), when \(Pr = 6.2, \phi = 0.2 \)

8.4 Velocity profiles for different values of \(M \), when \(K = 1, \phi = 0.2 \)

8.5 Velocity profiles for different values of \(K \), when \(M = 2, \phi = 0.2 \)

8.6 Velocity profiles for different values of \(\phi \), when \(M = 2, K = 1 \)

8.7 Temperature field for different values of \(M \), when \(K = 0.1, Pr = 6.2, R = 0.5, \gamma = 0.1, \phi = 0.1 \)

8.8 Temperature filed for different values of \(K \), when \(M = 2, Pr = 6.2, R = 0.5, \gamma = 0.1, \phi = 0.1 \)

8.9 Temperature field for different values of \(R \), when \(M = 2, K = 0.1, Pr = 0.2, \gamma = 0.1, \phi = 0.1 \)

8.10 Temperature field for different values of \(\gamma \), when \(M = 2, K = 0.1, Pr = 0.2, R = 0.5, \phi = 0.1 \)

8.11 Temperature field for different values of \(\phi \), when \(M = 2, K = 0.1, Pr = 0.2, R = 0.5, \gamma = 0.1 \)

8.12 Comparison of temperature field for different type of based fluids containing SWCNTs and MWCNTs
8.13 Concentration field for different values of M, when $K = 0.1$, $Sc = 2$, $\phi = 0.1$

8.14 Concentration field for different values of K, when $M = 2$, $Sc = 2$, $\phi = 0.1$

8.15 Concentration field for different values of Sc, when $M = 2$, $K = 0.1$, $\phi = 0.1$

8.16 Concentration profiles for different values of ϕ, when $M = 2$, $K = 0.1$, $Sc = 2$

8.17 Skin friction variation for different values of K, when $\phi = 0.5$
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Acceleration</td>
</tr>
<tr>
<td>B_0</td>
<td>Strength of magnetic field</td>
</tr>
<tr>
<td>B_b</td>
<td>Imposed magnetic field</td>
</tr>
<tr>
<td>b</td>
<td>Body force per unit mass vector</td>
</tr>
<tr>
<td>b_1</td>
<td>Induced magnetic field</td>
</tr>
<tr>
<td>C</td>
<td>Species concentration</td>
</tr>
<tr>
<td>C_w</td>
<td>Species concentration near the plate</td>
</tr>
<tr>
<td>C_∞</td>
<td>Species concentration far away from the plate</td>
</tr>
<tr>
<td>C_p</td>
<td>Heat capacity at constant pressure</td>
</tr>
<tr>
<td>$(C_p)_f$</td>
<td>Base fluid heat capacity at constant pressure</td>
</tr>
<tr>
<td>$(C_p)_s$</td>
<td>Solid particle heat capacity at constant pressure</td>
</tr>
<tr>
<td>$(C_p)_{nf}$</td>
<td>Nanofluid heat capacity at constant pressure</td>
</tr>
<tr>
<td>D</td>
<td>Mass diffusivity</td>
</tr>
<tr>
<td>D_f</td>
<td>Base fluid mass diffusivity</td>
</tr>
<tr>
<td>D_{nf}</td>
<td>Nanofluid mass diffusivity</td>
</tr>
<tr>
<td>E</td>
<td>Electric current</td>
</tr>
<tr>
<td>e</td>
<td>Specific internal energy</td>
</tr>
<tr>
<td>Gr</td>
<td>Grashof number</td>
</tr>
<tr>
<td>Gm</td>
<td>Modified Grashof number</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity</td>
</tr>
<tr>
<td>$H(t)$</td>
<td>Unit step function</td>
</tr>
</tbody>
</table>
\(h \) Heat transfer coefficient
\(\mathbf{I} \) Body couple per unit mass vector
\(\mathbf{i} \) Unit vector
\(\mathbf{J} \) Current density
\(j \) Microinertia per unit mass
\(K \) Porosity parameter
\(K_1 \) Chemical reaction parameter
\(K_f \) Base fluid thermal conductivity
\(K_s \) Solid particle thermal conductivity
\(K_{CNT} \) Carbon nanotubes thermal conductivity
\(K_{nf} \) Nanofluid thermal conductivity
\(k \) Thermal conductivity
\(k_i \) Permeability
\(k^* \) Mean absorption coefficient
\(M \) Magnetic parameter
\(M(\cdot) \) WhittakerM function
\(\mathbf{N} \) Angular velocity
\(\mathbf{N} \) Microrotation vector
\(\text{Nu} \) Nusselt number
\(n \) Microelement
\(\text{Pr} \) Prandtl number
\(p \) Pressure
\(p_y \) Yield stress
\(Q \) Heat generation rate per unit volume
\(Q_o \) Heat generation parameter
\(q \) Laplace transform parameter
\(q_r \) Radiative heat flux
\(R \) Radiation parameter
\(R \) Darcy's resistance
\(S \) Dimensionless heat generation parameter
\(Sc \) Schmidt number
\(Sh \) Sherwood number
\(T \) Temperature of the fluid
\(T_\infty \) Ambient temperature
\(t \) Time
\(U \) Amplitude of plate oscillations
\(u \) Velocity components in \(x \)-direction
\(v \) Velocity components in \(y \)-direction
\(x \) Coordinate axis parallel to the plate
\(y \) Coordinate axis normal to the plate
\(\omega t \) Phase angle

Greek symbols
\(\alpha \) Casson parameter
\(\alpha_{nf} \) Nanofluid thermal diffusivity
\(\beta \) Microrotation parameter
\(\beta_T \) Volumetric coefficient of thermal expansion
\(\beta_C \) Volumetric coefficient of mass expansion
\(\chi \) Spin gradient viscosity coefficient
\(\phi \) Nanoparticle volume fraction

\(\varphi \) Porosity of the medium

\(\zeta \) Similarity variable

\(\gamma \) Newtonian heating parameter

\(\eta \) Spin gradient viscosity parameter

\(\kappa \) Vortex viscosity coefficient

\(\lambda \) Dimensionless chemical reaction parameter

\(\mu \) Dynamic viscosity

\(\mu_B \) Plastic dynamic viscosity

\(\mu_f \) Base fluid dynamic viscosity

\(\mu_{nf} \) Nanofluid dynamic viscosity

\(\nu \) Kinematic viscosity

\(\nu_{nf} \) Nanofluid kinematic viscosity

\(\theta \) Dimensionless temperature

\(\rho \) Fluid density

\(\rho_f \) Base fluid density

\(\rho_s \) Solid particle density

\(\rho_{nf} \) Nanofluid density

\(\rho_{CNT} \) Carbon nanotubes density

\(\sigma \) Electrical conductivity

\(\sigma^* \) Stefan Boltzmann constant

\(\sigma_f \) Base fluid electric conductivity

\(\sigma_s \) Solid particle electric conductivity
\(\sigma_{nf} \) Nanofluid electric conductivity

\(\sigma_{CNT} \) Carbon nanotubes electric conductivity

\(\tau \) Skin friction

\(\tau_{ij} \) Shear stress

\(\omega \) Frequency of oscillation

\(\Phi \) Dimensionless concentration

Subscripts

- \(CNT \) Carbon nanotubes
- \(f \) Base fluid
- \(nf \) Nanofluid
- \(s \) Solid particle
- \(w \) Condition at wall
- \(\infty \) Condition at infinity

Superscripts

- * Dimensional variables
- \(p \) Scalar constant
- tr Transpose
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNT</td>
<td>Carbon nanotube</td>
</tr>
<tr>
<td>CBL</td>
<td>Concentration boundary layer</td>
</tr>
<tr>
<td>MBL</td>
<td>Momentum boundary layer</td>
</tr>
<tr>
<td>MHD</td>
<td>Magnetohydrodynamic</td>
</tr>
<tr>
<td>MWCNT</td>
<td>Multi walls carbon nanotube</td>
</tr>
<tr>
<td>NH</td>
<td>Newtonian Heating</td>
</tr>
<tr>
<td>SWCNT</td>
<td>Single wall carbon nanotube</td>
</tr>
<tr>
<td>TBL</td>
<td>Temperature boundary layer</td>
</tr>
<tr>
<td>erf</td>
<td>Error function</td>
</tr>
<tr>
<td>erfc</td>
<td>Complementary error function</td>
</tr>
</tbody>
</table>