REFERENCES

Jiang, J. and Dahn, J. R. (2006). Insignificant impact of designed oxygen release from high capacity Li[(Ni$_{1/2}$Mn$_{1/2}$)$_x$Co$_y$(Li$_{1/3}$Mn$_{2/3}$)$_{1/3}$]O$_2$ (x + y = 2/3) positive electrodes during the cycling of Li-ion cells. *Electrochimica Acta, 51*(17), 3413-3416.

Ohzuku, T., Nagayama, M., Tsuji, K. and Ariyoshi, K. (2011). High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g$^{-1}$. *Journal of Materials Chemistry*, 21(27), 10179-10188.

Rusi and Majid, S. R. (2015). Electrodeposited Mn\textsubscript{3}O\textsubscript{4}-NiO-Co\textsubscript{3}O\textsubscript{4} as a composite electrode material for electrochemical capacitor. *Electrochimica Acta*, 175, 193-201.

Sharma, Y., Sharma, N., Subba Rao, G. V. and Chowdari, B. V. R. (2008). Studies on spinel cobaltites, FeCo\textsubscript{2}O\textsubscript{4} and MgCo\textsubscript{2}O\textsubscript{4} as anodes for Li-ion batteries. *Solid State Ionics*, 179(15–16), 587-597.

183

