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Abstract 

The performance of Minimum Variance Distortionless Response (MVDR) 

beamformer is sensitive to errors such as the steering vector errors, the finite 

snapshots, and unsatisfactory null-forming level. In this paper, a combination of 

MVDR with linear antenna arrays (LAAs) for two scanning angles process in 

the azimuth and elevation are used to illustrate the MVDR performance against 

error which results in acquiring the desired signal and suppressing the 

interference and noise. The impact of various parameters, such as the number of 

elements in the array, space separation between array elements, the number of 

interference sources, noise power level, and the number of snapshots on the 

MVDR are investigated. The MVDR performance is evaluated with two 

important metrics: beampattern of two scanning angles and Signal to 

Interference plus Noise Ratio (SINR). The results found that the MVDR 

performance improves as the number of array elements increases. The 

beampattern relies on the number of elements and the separation between array 

elements. The best interelement spacing obtained is 0.5λ that avoids grating 

lobes and mutual coupling effects. Besides, the SINR strongly depends on the 

noise power label and a number of snapshots. When the noise power label 

increased, the MVDR performance degraded as well the null width increases in 

the elevation direction as well as more accurate resolution occurred when the 

number of snapshots increased. Finally, it is found the proposed method 

achieves SINR better than existing techniques. 

Keywords: Beamforming algorithm, Linear antenna array, Minimum variance 

                   distortionless response, MVDR, SINR, Smart antenna. 
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Nomenclatures 
 

a(θi, ϕi) Steering vector for the interference source  

a(θs, ϕs) Steering vector for the desired signal 

d Interelement spacing 

E[.] Expectation operator 

IdL L×L identity matrix 

j Imaginary unit 

L Number of elements 

ns Snapshots 

P(θ, ϕ) Mean output power 

q Wave number 

Ri+n Interference plus noise covariance matrix 

Rs SOI covariance matrix 

𝑅y Theoretical covariance matrix 

w Complex weight vector 

y(t) Array output 

(.)
H
 Conjugate transpose (Hermitian transpose)  

(.)
T
 Transpose operator 

xi(t)  Interference signal   

xn(t) White Gaussian noise 

xs(t) Desired signal 

xT(t) Total received signal 
 

Greek Symbols 

∇ξ(t) Gradient vector  

θ Azimuth angle 

λ Signal wavelength 

ϕ Elevation angle 

𝜇 Step size parameter 

 Interference power 

 Noise power 

 Power of the desired signal 

 

Abbreviations 

ABF Adaptive Beamforming 

AoA Angle of Arrival 

BF Beamforming 

BS Base Station 

CGM Conjugate Gradient Method 

DBF Digital Beamforming 

DoA Direction of Arrival  

LAA Linear Antenna Array 

LMS Least Mean Square 

LTE Long Term Evolution 

MDN Maximum Depth Null 

MLBw Main Lobe Beamwidth 

MSLL Maximum Side Lobe Level 

2

i

2

n
2

s
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MVDR Minimum Variance Distortionless Response 

RAA Rectangular antenna array 

RLS Recursive Least Square 

SINR Signal to Interference plus Noise Ratio 

SNR Signal to Noise Ratio 

SMI Sample Matrix Inversion 

SNOI Signal Not of Interest   

SOI Signal of Interest 

1.  Introduction 

Currently, the mobile cellular networks are experiencing a massive evolution of 

data traffic, because of multimedia and internet applications that are used by a vast 

number of devices such as smartphones, mobile PC, and tablets [1, 2]. Most 

beamforming techniques have been considered for use at the base station (BS) since 

antenna arrays are not feasible at mobile terminals due to space limitations [3]. 

With the increasing trend of the number of subscribers and demand for 

different services in wireless systems, there are always requirements for better 

coverage, higher data rate, improved spectrum efficiency and reduced operating 

cost. To fulfill this requirement, beamforming technique is able to focus the 

antenna array pattern into a particular direction and thereby enhances the desired 

signal power. Interference is one of the significant obstacles in the wireless 

networks. It can be caused by other users or by the signal itself [4]. The signal can 

interfere with itself due to multipath components, where the signal is gathered 

with another version of the signal that is delayed because of another propagation 

path [5]. The fundamental principle of the Adaptive beamforming (ABF) 

algorithm is to track the statistics of the surrounding interference and noise field 

as well as adaptively seek for the optimum nulls location that decreases the 

interference and noise dramatically under the restriction that the desired signal is 

not distorted at the beamformer’s output [6]. The basic idea of the Minimum 

Variance Distortionless Response  (MVDR) algorithm or Capon beamformer [7] 

is to estimate the beamforming coefficients in an adaptive way by minimizing the 

variance of the residual noise and interference while enforcing a set of linear 

constraints to ensure that the desired signals are not distorted [6].  

Lin et al. [8] proposed an enhanced model of MVDR algorithm by changing 

the position of the reference element in steering vector to be in the middle of the 

array and the number of elements must be odd. Simulation results show that 

modified MVDR has a realistic behavior especially for detecting the incoming 

signals direction and outperforms the conventional MVDR. One of the popular 

approaches to improving the classic Capon beamformer in the presence of finite 

sample effect and steering vector errors is the diagonal loading, which was 

studied by Manolakis et al. [9]. The idea behind diagonal loading is to adapt a 

covariance matrix by adding a displacement value to the diagonal elements of the 

estimated covariance matrix. Nevertheless, how to select an appropriate diagonal 

loading level is a challenging task. Das and Sarma [10] mentioned that the 

element spacing must be λ/2 to prevent spatial aliasing. Choi et al. [11] presented 

a comparative study of MVDR algorithm and LMS algorithm, where results show 

that LMS is the better performer. The SINR maximization is another criterion 

employed in the joint transmitter and receiver beamforming algorithms [12-14]. 

Ku et al. [15] analysed the mixing of a differential algorithm based linear antenna 
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array is applied to deepen nulls and lower side lobe levels (SLLs) in the unwanted 

direction, and they found the max null depth of -63dB by using 20-elements. The 

statistic numerical algorithm was proposed to obtain the requirement for the 

amplitude and phase error of multi-beam active phased array antenna [16].  

The radiation beampattern is simulated from the value of the random 

amplitude and phase errors of the phase shifter. From the results, it is found that 

the only way to meet the requirement of the SLL is to use digital beamforming 

(DBF). The researchers in [7] investigate the performance of the MVDR 

beamformer for four different types of noise and source incidence angles using 

Signal to Noise Ratio (SNR) and beampattern as the evaluation criteria. An 

evaluation of the trade-off between noise reduction and reverberation of the 

MVDR filter is presented in [17]. Mu et al. [18] compared the performance of 

four different BF methods which is the Least Mean Square (LMS), Sample 

Matrix Inversion (SMI), Recursive Least Square (RLS), and Conjugate Gradient 

Method (CGM). The comparison is based on the null-forming level, beamwidth, 

and the maximum SLL by varying the number of array elements and the 

separation between array elements. It found that the CGM is the best method that 

gives deep null with a minimum number of iterations. Another study of Shahab et 

al. [19] on MVDR algorithm based on reconstructing the covariance matrix for 

the SOI under the mismatch conditions. Recently, work on MVDR performance 

based on Rectangular Antenna Array (RAA) has been carried out by Lee [20], 

however, the MVDR performance show capability to combine with RAA but its 

need large number of antenna elements. 

Smart antennas system (SAS) include signal processing capabilities that 

perform tasks such as the Direction of Arrival (DoA) estimation and 

beamforming. A smart antenna that is held in the BS of a cellular network 

consists of antenna arrays where the amplitudes are accustomed by a group of 

weight vectors using an ABF algorithm. Before ABF, the DoA estimation is used 

to specify the main directions of users and interferers. Previous research has 

analyzed the accuracy and precision of a proposed wideband capon beamforming 

for estimating the elevation angle, azimuth angle, and velocity for target 

parameters using planner antenna array [21]. The function of ABF algorithms is 

to form the main beam to the user direction and placing nulls towards interference 

and noise directions by adjusting the antenna itself using beamforming (BF) 

techniques to achieve better transmission or reception beam pattern which 

increases SINR by mitigating co-channel interference present in the wireless 

communication system. The ABF algorithm improves the output of the array 

beam pattern in a way which it maximizes the radiated power where it will be 

produced in the wanted users' direction. Moreover, deep nulls are placed in the 

unwanted signal directions that symbolize co-channel interference from desired 

users in the neighboring BSs. 

So far, ABF is a function of the number of elements, spacing between adjacent 

elements, the angular separation between desired user and undesired signals, 

noise power level as well as a number of snapshots. Therefore, it is important to 

investigate the impact of these parameters on the beampattern in the azimuth and 

elevation scan angles that can introduce a sharp and deep null-forming towards 

the Signal-Not-of-Interest (SNOI) direction especially in the elevation angle while 

maximum power placed the majorlobe toward the Signal-of-Interest (SOI) 

direction. This paper includes simulation results and performance analysis of 
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MVDR algorithm, whereas no complete assessment of the SINR as a function of 

all the above-mentioned parameters. The analysis of the MVDR in this work is 

carried out in four different scenarios where the MVDR performance is assessed 

with two important metrics; beampattern for azimuth and elevation scan angles 

and SINR. This analysis not only helps to better understand the MVDR 

beamformer but also helps to better design array systems in practical application. 

The remainder of this paper is organized as follows. In section 2, MVDR 

beamformer based on linear antenna array configuration with the signal 

propagation model is described. The simulation results and performance analysis 

are provided in Section 3. Finally, in Section 4, the paper’s conclusions and 

summary of MVDR performance are described. 

2.  System Model and MVDR Beamformer 

In this section, the mathematical formulation of the design model for adaptive 

beamforming will be presented in detail. Consider a single cell with L element 

antenna arrays. Let there be S wanted signal sources and I interference 

sources spreading on same the frequency channel at the same time. The 

algorithm starts by creating a real life signal model. A number of plane waves 

are considered from K narrowband sources impinging from various angles (θ, 

ϕ). The impinging radio frequency signal reaches into an antenna array from 

the far-field region to the array geometry of linear antenna arrays (LAAs). A 

block diagram of the antenna array using DoA and BF process is shown in 

Fig. 1. As displayed in this figure, after the signals are received by antenna 

arrays consisting of the wanted user signal, the interference source, and the 

noise, the first part is to estimate the direction of the arrival of the S signal and 

I signals using a well-known algorithm developed by Capon [7], named 

MVDR spectrum estimator, to find the DoA angles of several sources. 

However, the MVDR estimator algorithm wants information of the number of 

sources. With the known direction of the source, then the second part is 

applied by using MVDR ABF technique that places a straight beam to S 

signal and placing nulls in the direction of I signals. Each signal is multiplied 

by adaptable complex weights and then summed to form the system output. 

 

Fig. 1. A smart antenna array system using DoA and beamforming process. 

 

The total composite signals received by an adaptive antenna array at time 

index, t, become: 
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( ) ( ) ( , ) ( ) ( , ) ( )
S I

T s s s i i i n

s i

x t x t a x t a x t   
 

                                     (1) 

where xT(t) , xs(t), xi(t), xn(t), denote the desired signal, interference signal 

and noise added from White Gaussian noise, respectively. The unwanted signal 

consists of xi(t)+xn(t) and I is the number of interferences, the desired angle and 

interference direction of arrival angles are θs and θi, i=1, 2…, I, respectively. 

a(θs,ϕs) denote the steering vector or array response for wanted signal while a(θi, 

ϕi) refers to the interference signal steering vector or array response to the 

unwanted signal. (θ, ϕ) composed of azimuth angle ∈ [0°, 2π°] and elevation 

angle ∈ [0°, π/2°] 

Steering vector is a complex vector containing the responses of all 

elements of the array to a narrowband source of unit power depending on the 

incident angle, which is given by [22]: 

],...,,,1[),( )sin()sin()1()sin()sin(2)sin()sin(  dLjqdjqjqd eeea               (2) 

where j is the imaginary unit, (i.e. j
2 
= -1), d is the spacing between elements and 

q is the wave number given as: 

 /2q                                                                                                            (3) 

where λ refers to the received signal wavelength. The signal xT(t) received by 

multiple antenna elements is multiplied with a series of amplitude and phase 

(weight vector coefficients) which accordingly adjust the amplitude and phase of 

the incoming signal. This weighted signal is a linear combination of the data at L 

elements, resulting in the array output, y(t) at any time t, of a narrowband 

beamformer, which is given by; 

                                                                                           (4) 

where y(t) is the beamformer output, xT(t) is the antenna element’s output, w is the 

complex weight vector for the antenna element = [w1, w2, …, wL]
T
 is 

beamforming complex vector. (.)
H
 and (.)

T
 denotes the conjugate transpose (Hermitian 

transpose) of a vector or a matrix, which is used to simplify the mathematical notation 

and transposes operators respectively. The weight vector at time t + 1 for any system 

that uses the immediate gradient vector ∇ξ(t) for weight vector upgrading and evades 

the matrix inverse operation, which is defined as follows: 

1
( 1) ( ) [ ( )]

2
w t w t t                                                                              (5) 

where 𝜇 is the step size parameter, the convergence speed control by µ and lies 

between 0 and 1. The smallest values of 𝜇 facilitate the high-quality estimation 

and sluggish concurrence, while huge values may result in a rapid union. 

However, the constancy over the minimum value may disappear. Consider 

max/10                                                                                                     (6) 
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An instantaneous estimation of gradient vector is written as 

( ) 2 ( ) 2 ( ) ( )yt p t R t w t                                                                            (7) 

*( ) ( ) ( )Tp t d t x t                                                                                               (8) 

                                                                                                (9) 

A precise calculation of ∇ξ(t) is not possible because prior information on 

cross-correlation vector, 𝑝 and covariance matrix, 𝑅y of the measurement vector 

are required. By substituting (8) with (6), the weight vector is derived as follows: 

*

*

( 1) ( ) [ ( ) ( ) ( )]

( ) ( )[ ( ) ( ) ( )]

( ) ( )

y

T T

T

w t w t p t R t w t

w t x t d t x t w t

w t x e t






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 

                                                (10) 

The following three formulas can further define the desired signal: 

                                                                                          (11) 

* *( ) ( ). ( ) ( 1) ( ) ( ) ( )Te t d t y t w t w t x t e t                                            (12) 

The covariance matrix, Ry is constructed conventionally with unlimited 

snapshots. However, it is estimated by using the limited snapshots signal in the 

actual application. It can be expressed as: 
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where Ry, , , , IdL, Rs, Ri+n and E[.] denotes, respectively, the L×L 

theoretical covariance matrix, power of the desired signal, interference power, 

noise power, L×L identity matrix, SOI covariance matrix, interference plus noise 

covariance matrix and expectation operator. 

The common formulation of the MVDR beamformer that determines the L×1 

optimum weight vector is the solution to the following constrained problem [23]: 
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where P(θ,ϕ)denotes the mean output power, the beampattern can be given as [24]: 

Max
P

P
nbeampatter

),(

),(
log20 10




                                                          (20) 

This method reduces the contribution of the unwanted signal by minimizing 

the power of output noise and interference and ensuring the power of useful signal 

equals to 1 (constant) in the direction of useful signal w
H
a(θs,ϕs)=1. By using 

Lagrange multiplier, the MVDR weight vector that gives the solution for the 

above equation as per the following formula [25]: 
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Inserting Eq. (21) into Eq. (11), the output of MVDR beamformer is given by; 
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                                        (22) 

The output signal power of the array as a function of the DoA estimation, 

using optimum weight vector from MVDR beamforming method [26], it is given 

by MVDR spatial spectrum for angle of arrival estimated by detecting the peaks 

in this angular spectrum as [7]: 
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Finally, the SINR is defined as the ratio of the average power of the desired 

signal divided by the average power of the undesired signal: 
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                                                               (24) 

 

3.  Simulation Results and Analysis 

In this study, L-elements linear antenna array configuration is arranged along 

some axis added to the beamformer system at the BS. The array receives 

signals from different spatially separated users. The received signal consists 

of the intended signal, co-channel interference, and a random noise 

component. To increase the output power of the desired signal and reduce the 

power of co-channel interference and noise, BF is employed at the BS. The 
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ABF performance analysis shows an array of even and an odd number of 

elements that separated by interelement spacing, d, at a carrier frequency (Fc) 

of 2.6 GHz. The 2.6 GHz is the spectrum band allocated to LTE operators in 

Malaysia [27]. To measure the performance of the MVDR algorithm for ABF 

applications with varying parameters like the number of array sensors, the 

separation between the array elements, the number of SNOIs, accuracy to 

distinguish interference source in the location very close to the SOI, finite 

length samples, and noise power.  

MVDR algorithm can be used in multiple user environments, whereas the 

goal of this study is to place a deep null in the unwanted directions with a 

single desired user in the base station and hence improving the overall system 

capacity. The analysis of each parameter mentioned above that achieve the 

best beamforming capabilities to form the maximum power in the SOI 

direction and null in the directions of interference with highest SINR output. 

Four different scenarios are considered, and the simulation parameters setting 

in this paper are shown in Table 1. 

 

Table 1. Key simulation parameters of MVDR beamformer. 

Key system parameters Values 

Array antenna configuration Linear antenna array (LAA) 

Antenna type Isotropic 

Carrier frequency (Fc) 2.6 GHz 

Beam scanning range (θ, ϕ) (0°-180°, 0°-90°) 

Number of elements (L) 5, 8, 11, 16 

Element spacing (d) λ/8, λ/4, λ/2, λ 

# SNOIs 1, 2, 3, 4 

Noise power label (σn) -50, -10, 10, 50 

Snapshots (ns) 10, 50, 250, 500 

 

3.1. The first scenario 

The first simulation scenario depicted the results calculated by considering the 

distance between array elements are fixed to 0.5λ. The MVDR system during 

DoA estimation was evaluated by changing the number of array sensors. Figure 2 

illustrates the spatial spectrum of MVDR estimator for the source directions 

implemented in this scenario. Consider a uniform linear antenna array with L=5, 

8, 11, and 16-elements plus a background noise is modeled as a complex zero-

mean white Gaussian noise used to estimate K directional sources at each sensor. 

Three undesired sources are assumed to have AoAs (θi) at ±60º and 0º 

respectively. The SOI is considered to be a plane wave from the presumed 

direction θs = 30º. The reference element is at the one-end side of the array of an 

odd and an even number of elements. The obtained results provide evidence that 

the received signals identified the SOI and SNOIs perfectly as assumed by 

producing peaks in the directions of -60º, 0º, 30º and 60º azimuth angles 

respectively, which are computed using Eq. (23), where peak points of the 

spectrum are shown for clear observation. The peaks become sharper and accurate 
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resolution of MVDR spectrum estimator to find the source direction by adding 

more elements in the array. 

 

 

Fig. 2. MVDR-DoA estimation analysis for varying number of elements. 

 

With the direction of the incoming signals known or estimated, the next 

step is to use the MVDR ABF technique to improve the signal performance of 

the desired target and nullifying interference directions. Figures 3 and 4 show 

a typical 2D beampattern plot displayed in both rectangular and polar 

coordinates, which demonstrate the effect if the number of elements is 

increased for SOI at (30º, 0º) and SNOIs at (±60º, 0º) and (0º, 0º) respectively. 

This simulation was repeated for 5, 8, 11, and 16-antenna elements with an 

input SNR of 10dB and data samples=300. The plots observe that the MVDR 

successfully introduce null at the interference source, and it provides 

maximum gain to the look direction of the SOI. Moreover, the result of 

increasing the number of elements is a narrower beamwidth which is very 

useful in directing the antenna beam to the desired user while the number of 

nulls in the pattern increases. The number of side lobes (SLs) increases, 

whereas the level of the first and subsequent SLs decreases compared to the 

mainbeam. SLs represent power radiated in potentially unwanted directions.  

In a wireless communications system that is using antenna arrays, the SLs 

will contribute to the level of interference radiated in the cell by a transmitter 

as well as the level of interference seen by a receiver. Therefore, the increases 

in a number of elements in a linear array would result in higher directivity, as 

well as a sharper and narrower main lobe beamwidth. The main lobe 

beamwidth (MLBw), maximum side lobe level (MSLL) that is closest to the 

main beam, maximum depth null (MDN) at interference direction and output 

SINR are shown in Table 2. On the other hand, the computing operations 

become more complex. Besides, the implementation cost of the array 

increases as more sensors are used, due to the increasing number of RF 

modules, A/D converters. 



1376       S. N. Shahab et al. 

 
 
Journal of Engineering Science and Technology                 May 2017, Vol. 12(5) 

 

 

Fig. 3. Line plot - beampattern analysis of MVDR                                                

varying L=5, 8, 11, and 16 with d=λ/2. 

 

 

Fig. 4. Polar plot - beampattern analysis of MVDR                                            

varying L = 5, 8, 11, and 16 with d=λ/2. 

Table 2. MVDR performance analysis     for SOI                                                                               

at 30° and SNOIs at -60º, 0º and 60º with varying L. 

L d [m] MLBw [30°] MSLL [dB] MDN [dB] SINR [dB] 

5 

8 

 

λ/2 

[0.057] 

60° -14.8 -76.2 55.8 

47° -15.3 -64.7 56.5 

11 24° -10.6 -67.1 57.9 

16 16° -12.6 -65.6 59.4 

3.2. The second scenario 

One of the important parameters in the design of an antenna array is the 

separation space between the array elements. Second simulation scenario 

illustrates the results calculated by considering an 8-elements with interelement 

spacing of one-eighth wavelength (λ/8), a quarter wavelength (λ/4), half wavelen-

gth (λ/2), and full wavelength (λ) for SOI at 30° and SNOIs at -60°, 0°, 60°.  

Figures 5 and 6 display the rectangular and polar plots that demonstrate the 

effect of the element spacing on MVDR performance. It is found that for d=λ/8 and 

λ/4, the mainlobe beamwidth is approximately the same whereas the narrowest 
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mainbeam is achieved when the sensors separated by λ. However, as element 

spacing of full wavelength the grating lobe appears on -30° azimuth with almost 

equal gain for the mainbeam which leads to MVDR performance degradation. The 

coupling effects appear when elements are spaced closely as shown in Fig. 6 for 

d=λ/8 at -27° with a power of -0.5dB. The SLL that is closest to the mainbeam for 

each interelement spacing has a height of  -0.5dB, -8.8dB, -15.3dB, and -13.2dB at -

27°, 90°, 7°, and 19° respectively. Furthermore, if the spacing is less than λ/2, it 

does not improve the MVDR performance in terms of resolution, and the coupling 

effects will be bigger and tend to reduce as space increases. If the spacing is greater 

than λ/2, this causes grating lobes that degrade the MVDR performance as well. 

Thus, the spacing has to be ≤ λ/2 to avoid grating lobes, and the interelement 

separation has to be spaced enough to prevent mutual coupling. As the spacing 

between elements increases, the mainlobe beamwidth decreases, the number of SLs 

also increases and the highest output SINR obtained from λ/2 as depicted in Table 3. 

Besides, increasing d produces a sharper beam and the angle of the grating lobe is 

not a function of L, but it relies on d. It is observed that an increase in interelement 

spacing in an LAA will result in higher directivity and a smaller beamwidth. 

Although this is a favorable condition, it is found that the number of undesirable 

SLs also increases with increasing d. 

 

3.3. The third scenario 

Using multiple antennas at the BS can reduce the effects of co-channel interferenc

e, multipath fading, and background noise. Many BF algorithms have been devise

d to cancel interference sources that appear in the cellular system. MVDR algorith

m can null the interferences without any distortion to the desired path. 

To study the effect of SNOIs on the MVDR performance is highlighted in 

this part. The subsequent MVDR pattern plots with cancellation for all 

interferences are shown in Fig. 7. It shows the 3D power spectrum for an eight-

element linear array in the presence of a different angle of arrival (AoA) for 

SOI and SNOIs. In Fig. 7, the output of MVDR BF algorithm is illustrated 

against a different number of interference sources as listed in Table 4. The 

elevation angle is assumed to be ϕs=ϕi=0° for all cases. Assume a single 

desired user signal at 40° azimuth angle with a single interference source at 

0° azimuth angle as shown in Fig. 7(a). Figure 7(b) shows the SOI direction 

at 0° with two SNOIs at 40° and 60°. Figure 7(c) deals with three undesired 

sources at -60°, 0°, and 50° directions respectively with single desired 

signal direction at -20°.  

Four unwanted signals arrive from 0°, 15°, 45° and 60° with real user 

angle at 30° as illustrated in Fig. 7(d). It can be seen that the performance of the 

MVDR is affected by the number of SNOIs, as the number of SNOI increases, the 

SINR decreases with 10° null widths in the elevation angles. MVDR technique is 

distortionless to SOI with respect to the i
th

 signal and places a perfect null of the 

other L-1 signals. In the case of two interference sources, the deep null of -68.7dB 

compared to -48.5dB for 16-elements was found for a study conducted by [18] 

based on conjugate gradient method ABF algorithm. For 4 interference sources, 

the MVDR was capable of forming the mainlobe to reach the look angle even for 

the closer interference to the real user direction, which is the same result obtained 

by using enhanced MVDR model proposed by [8]. 
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Fig. 5. Line plot - beampattern analysis of MVDR                                               

varying d = λ/8, λ/4, λ/2, and λ with L=8. 

 

Fig. 6. Polar plot - beampattern analysis of MVDR                                                          

varying d = λ/8, λ/4, λ/2, and λ with L=8. 

 

Table 3. MVDR performance analysis for SOI                                                                        

at 30° and SNOIs at -60º, -30º, 0º and 60º with different d. 

L d [m] MLBw [30°] MSLL [dB] MDN [dB] SINR [dB] 

 

 

8 

λ/8 [0.014] 60° -0.5 -50.0 42.5 

λ/4 [0.028] 60° -8.8 -66.6 56.3 

λ/2 [0.057] 47° -15.3 -64.7 56.6 

λ    [0.115] 17° -13.2 -83.2 53.8 
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(a) 1 SNOI (b) 2 SNOIs 

 
(c) 3 SNOIs (d) 4 SNOIs 

Fig. 7. 3D beampattern analysis for MVDR                                                                  

for L= 8 and d=λ/2 with a different number of SNOIs and AoAs. 

 

Table 4. Comparison of SINR values for                                                                                                      

L= 8 and d=λ/2 with a different number of SNOIs and AoAs. 

 L d 

[m] 

SOI 

[θ°,0°] 

SNOIs 

[θ°,0°] 

MLBw 

[30°] 

MSLL 

[dB] 

MDN 

[dB] 

SINR 

[dB] 

 

 

 8 

 

λ/2 

[0.057] 

40 0 40 -12.4 -62.6 63.6 

0 -40, 60 31 -11.2 -68.7 61.0 

-20 -60, 0, 50 36 -10.6 -60.2 56.6 

30 0, 15, 45, 60 30 -8.0 -73.3 54.2 

 

3.4. The fourth scenario 

In the last scenario, the effect of noise power, σn, and the number of 

snapshots, ns, on the MVDR performance are studied. The real user 

impinging from 30° and the unwanted sources from (±60°, 0º) and (0°, 0º) 

with eight sensors and the separation between sensors are λ/2. Figures 8(a)-(d) 

shows the output power pattern for four noise power labels ranging from -

50dB to 50dB. It can be seen that the radiation pattern is approximately 
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similar in term of mainlobe beampattern. Figures 9(a)-(d) show the 3D power 

pattern of MVDR beamformer against the σn. The maximum null-forming 

obtained by using MVDR algorithm is -105dB, -64dB, -39dB and -33dB for 

σn of -50dB, -10dB, 10dB and 50dB, respectively. The corresponding SINR 

are 95dB, 55dB, 34dB and 21dB, respectively. Furthermore, at higher values 

of σn the MVDR still can place null to the non-look direction and the null 

width in the elevation angle become wider. The output SINR increases as the 

σn decreases. Besides, the reduction (negative power) at lower values of σn is 

deeper and sharper as highlighted in Fig. 9(a) than at higher values of σn and 

hence, the MVDR performance is sensitive to σn increases as detailed in Table 

5. It is clearly shown in Fig. 9(a) for a null in the -60° azimuth with 1° 

elevation as compared to Fig. 9(b) for a null in the -60° azimuth with 8 

elevation degree as noise power increases from -50dB to -10dB. 

Additionally, in Figs. 10 and 11, the power pattern of MVDR algorithm in 

linear and polar shape is illustrated against the length of the data samples and 

evaluated by the output SINR and beampattern accuracy. As can be seen, by 

changing the ns the performance of the MVDR is affected due to the MVDR 

is statistical adaptive beamformer depending on the data samples. When 

increasing the number of ns is resulting in more accurate resolution also the 

computational time tend to increase. In term of required computational time, 

it is found that the required processing time for MVDR increases with the 

data samples increases as displayed in Table 6. 

 
(a) -50 dB (b) -10 dB 

  
(c) 10 dB (d) 50 dB 

Fig. 8. 3D beampattern analysis for MVDR for σn with L=8, d=λ/2. 
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(a) -50 dB (b) -10 dB 

  
(c) 10 dB (d) 50 dB 

Fig. 9. 3D beampattern analysis for MVDR for σn with L=8, d=λ/2. 

 

 

Fig. 10. Line plot - beampattern analysis of MVDR                                                 

varying ns = 10, 50, 250, and 500 with L=8, d=λ/2. 
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Fig. 11. Polar plot - beampattern analysis of MVDR                                                   

varying ns = 10, 50, 250, and 500 with L=8, d=λ/2. 

 

Table 5. MVDR performance analysis for SOI                                                                

at 30° and SNOIs at -60º, -30º, 0º and 60º with different σn. 

 L d [m] σn [dB] MLBw [30°] MSLL [dB] MDN [dB] SINR [dB] 

 

 8 

 

 

 

λ/2 

[0.057] 

-50 47° -15.2 -105.2 95.8 

-10 46° -15.3 -64.7 55.8 

10 44° -15.4 -39.1 34.4 

50 43° -15.4 -33.4 21.3 

 

Table 6. MVDR performance analysis for SOI                                                             

at 30° and SNOIs at -60º, -30º, 0º and 60º with different ns. 

 L d [m] ns MLBw[30°] MSLL[dB] MDN[dB] SINR[dB] Time[Sec] 

 

 8 

 

 

 

λ/2 

[0.057] 

10 45° -13.0 -51.3 38.0 1.07 

50 48° -13.8 -58.6 49.2 1.2 

250 47° -14.3 -70.3 54.4 1.6 

500 46° -13.5 -68.5 59.6 2.2 

 

As seen in Table 5, the mainlobe beamwidth (MLBw) decreases and the 

maximum side lobe level (MSLL) slightly changes as σn increases while the null-

forming level and SINR are strongly affected by σn increases. Approximately, the 

SINR value decreases by 1dB as the noise level increases by 1dB. In addition, 

Table 6 shows the SINR increases as ns increases owing to the increasing 

probability of finding a better solution. In other words, sharper and deeper nulls 

would be produced and hence improve the SINR by increasing ns. Table 7 

compares the number of elements, MSLL, MDN, and SINR between the proposed 

approach and some of the recent studies on MVDR and other beamforming 

techniques. It can be noted that the MVDR based ULA give higher SINR with 

lower SLL with a small number of array elements. Finally, the summary of the 

impact of L, d, σn, and ns on the MVDR performance for a tradeoff analysis is 

presented in Table 8. 
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Table 7. A comparison between beamforming methods. 

Method L d 

 [m] 

ns MSLL 

[dB] 

MDN 

[dB] 

Iteration SINR 

[dB] 

MVDRRobust [19] 10 0.5λ High -13.8 -49.2 1 29.9 

CGM [18] 8 0.5λ Low -8.3 -46.8 5 38.2 

MVDRULA-center 

[8] 

9 0.5λ Medium -4.0 -50.0 1 44.4 

MVDRRAA [20] 16 0.5λ Medium -12.9 -81.9 1 54.9 

MVDRULA 8 0.5λ Medium -15.3 -64.7 1 56.5 

 

Table 8. MVDR trade-off analysis. 

 Pros Cons Performance Impact 

L - Lower SLLs 

- More and 

deeper nulls 

- Narrower 

beam 

- More degree 

of freedom 

- Higher SINR 

- More SLLs 

- Larger size 

- More costly 

- Physical 

limitations on 

Installation 

- Complexity 

- Better interference cancellation 

capabilities 

- Improved performance because of 

higher SINR and narrower beams 

d - Narrower 

beam 

- Lower SLLs 

- Higher SINR 

- Cost-efficient 

- Grating lobes 

- Mutual couplin-

g effects 

- Grating lobes and mutual 

coupling have negative impact on 

MVDR beamformer 

- Wasted power in unnecessary 

direction 

σn - Higher SINR 

- Deeper null 

- Lower SINR 

- Reduce null 

level 

- Improved performance because of 

higher SINR 

ns - More accurate 

resolution 

- Deeper null 

Higher SINR 

- Time 

consuming  

 

 

- Improved performance because of 

s higher SINR 

 

4.  Conclusions 

MVDR algorithm has gained significance in the wireless cellular 

communication system due to its capability to diminish co-channel and 

adjacent channel interference and raised SINR helps to improve system 

capacity. The MVDR with LAA is tested with different numbers of antenna 

elements, varying the separation between elements, a different number of 

interference sources with varying angular separations between SOI and the 

interference sources, different labels of noise power, and different length of 

data samples. Beam-steering and null-forming for MVDR beamformer is 

compared analytically and numerically with the rectangular geometry. It is 

observed that the MVDR based linear antenna structure is a suitable 

implementation technique for commercial wireless communication 

applications, due to its low complexity, low cost, higher SINR and possible 

integration with existing cellular base stations. The null-forming examples 
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nulls deeper than -64dB are recorded using 8-LAA with SINR of 56.5dB 

compared to SINR 54.9dB by using 16-RAA [20]. The null-forming for 

MVDR is sensitive as σn varying. MVDR can provide accurate beampattern 

even in the multiple signal environments. An increased number of data 

samples result in higher SINR and accurate beampattern. An ongoing research 

extends the results of this paper to enhance MVDR algorithm based on arbitra

ry antenna array geometry. 

Acknowledgments 

This research is sponsored by the research grant number (RDU 160351) funded by 

University Malaysia Pahang. 

 

References 

1. Cisco Visual Networking Index (2014). Global mobile data traffic forecast 

update, 2013-2018, white paper, Cisco Systems Inc. San Jose, CA, USA. 

2. Ericsson Mobility Report (2015). On the pulse of the networked society. 

Ericsson: Kista, Sweden. 

3. Liberti, J.C.; and Rappaport T.S. (1999). Smart antennas for wireless 

communications: IS-95 and third generation CDMA applications. Prentice 

Hall PTR. 

4. Halim, M.A. (2001). Adaptive array measurements in communications (1
st
 

ed.). Norwood, MA, USA: Artech House Publichers. 

5. Okkonen, J. (2013). Uniform linear adaptive antenna array beamforming 

implementation with a wireless open-access research platform. Master thesis, 

Department of Computer Science and Engineering, University of Oulu, Finland. 

6. Pan, C.; Chen J.; and Benesty J. (2014). Performance study of the MVDR 

beamformer as a function of the source incidence angle. IEEE/ACM 

Transactions on Audio, Speech, and Language Processing, 22(1), 67-79. 

7. Khaldoon, A.O.; Rahman, M.M.; Ahmad, R.B.; and Hassnawi, L.A. (2014). 

Enhanced uniform linear array performance using modified minimum 

variance distortionless response beamformer algorithm. Proceedings of the 

Second International Conference on Electronic Design (ICED). Penang, 

Malaysia, 198-203. 

8. Lin, J.R.; Peng, Q.C.; and Shao, H.Z. (2007). On diagonal loading for robust 

adaptive beamforming based on worst-case performance optimization. ETRI 

journal, 29(1), 50-58. 

9. Manolakis, D.G.; Ingle, V.K.; and Kogon, S.M. (2005). Statistical and 

adaptive signal processing: spectral estimation, signal modeling, adaptive 

filtering, and array processing. Norwood, MA, USA: Artech House, Inc. 

10. Das, K.J.; and Sarma, K.K. (2012). Adaptive beamforming for efficient 

interference suppression using minimum variance distortionless response. 

Proceedings of the International Conference on Advancement in Engineering 

Studies & Technology. Puducherry, India, 82-86. 

11. Choi, R.L.U.; Murch, R.D.; and Letaief, K. (2003). MIMO CDMA antenna 

system for SINR enhancement. IEEE Transactions on Wireless 

Communications, 2(2), 240-249. 



MVDR Algorithm Based Linear Antenna Array Performance . . . . 1385 

 
 
Journal of Engineering Science and Technology                 May 2017, Vol. 12(5) 

 

12. Serbetli, S.; and Yener A. (2004). Transceiver optimization for multiuser 

MIMO systems. IEEE Transactions on Signal Processing, 52(1), 214-226. 

13. Kum, D.; Kang, D.; and Choi, S. (2014). Novel SINR-based user selection 

for an MU-MIMO system with limited feedback. ETRI Journal, 36(1), 62-68. 

14. Rao, A.P.; and Sarma N. (2014). Performance analysis of differential 

evolution algorithm based beamforming for smart antenna systems. 

International Journal of Wireless and Microwave Technologies, 4(1), 1-9. 

15. Ku, B. J.; Ahn, D. S.; Lee, S.P.; Shishlov, A.; Reutov, A.; Ganin, S.; and 

Shubov, A. (2002). Radiation pattern of multibeam array antenna with digital 

beamforming for stratospheric communication system: statistical simulation. 

ETRI journal, 24(3), 197-204. 

16. Habets, E.; Benesty, J.; Cohen, I.; Gannot, S.; and Dmochowski, J. (2010). 

New insights into the MVDR beamformer in room acoustics. IEEE 

Transactions on Audio, Speech, and Language Processing, 18(1), 158-170. 

17. Saxena, P.; and Kothari, A. (2014). Performance analysis of adaptive 

beamforming algorithms for smart antennas. IERI Procedia, Elsevier, 10, 

131-137. 

18. Mu, P.; Li, D.; Yin, Q.; and Guo, W. (2013). Robust MVDR beamforming 

based on covariance matrix reconstruction. Science China Information 

Sciences, 56, 1-12. 

19. Shahab, S.N.; Zainun, A.R.; Noordin, N.H.; and Mohamad, A.J. (2015). 

Performance analysis of smart antenna based on MVDR beamformer using 

rectangular antenna array. ARPN Journal of Engineering and Applied 

Sciences, 10(22), 17132-17138. 

20. Lee, M.-S. (2009). Wideband Capon beamforming for a planar phased radar 

array with antenna switching. ETRI journal, 31(3), 321-323. 

21. Godara, L.C. (2004). Smart antennas. Boca Raton: CRC press. 

22. Souden, M.; Benesty J.; and Affes, S. (2010). A study of the LCMV and 

MVDR noise reduction filters. IEEE Transactions on Signal Processing, 

58(9), 4925-4935. 

23. Godara, L.C. (1997). Application of antenna arrays to mobile 

communications. II. Beam-forming and direction-of-arrival considerations. 

Proceedings of the IEEE, 85(8), 1195-1245. 

24. Renzhou, G. (2007). Suppressing radio frequency interferences with adaptive 

beamformer based on weight iterative algorithm. Proceedings of the 

Conference on Wireless, Mobile and Sensor Networks (CCWMSN07). 

Shanghai, China, 648-651. 

25. Haykin, S. (2013) Adaptive filter theory (4
th

 ed.). Prentice Hall. 

26. Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. 

Proceedings of the IEEE, 57(8), 1408-1418. 

27. Malaysian Communications and Multimedia Commission (2011). SKMM-

MCMC Annual Report.; Retrieved February 25, 2013, from: http://www. 

skmm.gov.my/skmmgovmy/media/General/pdf/. 


