A conductive crosslinked graphene/cytochrome c networks for the electrochemical and biosensing study

A. K. M. Kafi¹ · M. M. Yusoff¹ · Mohammad Choucair² · Maxwell J. Crossley²

Received: 21 December 2016 / Revised: 21 March 2017 / Accepted: 9 April 2017 © Springer-Verlag Berlin Heidelberg 2017

Abstract The direct electrochemistry of catalytically active cytochrome C (Cyt c) adsorbed together with a 3dimensional network of chemically synthesized graphene on glassy carbon electrode has been readily obtained in aqueous phosphate buffer. Direct electrical communication between the redox center of Cyt c and the modified graphene-based electrode was established. The modified electrode was employed as a high-performance hydrogen peroxide (H₂O₂) biosensor. The Cyt c present in modified electrode exhibited a pair of quasi-reversible redox peaks with a midpoint potential of -0.380 and -0.2 V, cathodic and anodic, respectively. Investigations into the electrocatalytic activity of the modified electrode upon hydrogen peroxide exposure revealed a rapid amperometric response (5 s). Under optimized conditions, the linear range of response to H₂O₂ concentration ranged from 5×10^{-7} to 2×10^{-4} M with a detection limit of 2×10^{-7} M at a signal-to-noise ratio of 3. The stability, reproducibility, and selectivity of the proposed biosensor are discussed in relation to the morphology and composition of the modified electrode.

Keywords Graphene electrode \cdot Crosslinked networks \cdot Cytochrome C \cdot Direct electrochemistry \cdot Biosensor