ULTRASOUND AND ENZYMATIC MEDIATED EXTRACTION OF VITEXIN AND ISOVITEXIN COMPOUNDS FROM FICUS DELTOIDEA LEAVES

NUR AIMI SYAIRAH BINTI MOHD ABDUL ALIM

Master of Engineering (Chemical)

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Engineering in Chemical.

(Supervisor’s Signature)

Full Name: DR. AZILAH BINTI AJIT
Position: SENIOR LECTURER
Date:

(Co-supervisor’s Signature)

Full Name: ASSOC. PROF. IR. DR. AHMAD ZIAD BIN SULAIMAN
Position: ASSOCIATE PROFFESSOR
Date:
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citation which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : NUR AIMI SYAIRAH BINTI MOHD ABDUL ALIM
ID Number : MKC13020
Date :
ULTRASOUND AND ENZYMATIC MEDIATED EXTRACTION OF VITEXIN AND ISOVITEXIN COMPOUNDS FROM *FICUS DELTOIDEA* LEAVES

NUR AIMI SYAIRAH BINTI MOHD ABDUL ALIM

Thesis submitted in fulfilment of the requirements for the award of the degree of
Master of Engineering in Chemical

Faculty of Chemical and Natural Resources Engineering

UNIVERSITI MALAYSIA PAHANG

FEBRUARY 2017
Dedicated to my parents and siblings
for always standing by my side and nurturing me with love and support
ACKNOWLEDGEMENTS

I am so grateful and would first like to thank my supervisor, Dr Azilah Ajit and my co-supervisor Assoc. Prof. Ir. Dr. Ahmad Ziad Sulaiman for their germinal ideas, invaluable guidance, continuous encouragement and constant support in making this research possible. The doors to their offices were always open whenever I ran into a trouble spot or had a question about my research or writing. They consistently allowed this thesis to be my own work, but steered me in the right direction whenever they thought I needed it.

I would also like to thank the experts who were involved in this research project for their guidance, my research group members for excellent co-operation and supports, my lab mates and also members of technical and administration staff in Faculty of Chemical and Natural Resources Engineering (FKKSA), UMP who helped me a lot to go through all the difficulties and provided me priceless experiences during my study. Without their passionate participation and input, this research could not have been successfully conducted.

Finally, I must express my very profound gratitude to my father (Mohd Abdul Alim Bin Mohd Yusoff), my mother (Rosiah Binti Ali Othman) and siblings (Akak, Angah, Ayie, Adik) for providing me with unfailing support and continuous encouragement throughout the years of my study and through the process of researching and thesis writing. This accomplishment would not have been possible without them.
TABLE OF CONTENT

DECLARATION

TITLE PAGE i

DEDICATION ii

ACKNOWLEDGEMENTS iii

ABSTRAK v

ABSTRACT iv

TABLE OF CONTENT vi

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF SYMBOLS xv

LIST OF ABBREVIATIONS xvi

CHAPTER 1 INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 4

1.3 Objectives 5

1.4 Scope of Study 5

1.5 Thesis Overview 6

CHAPTER 2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 *Ficus deltoidea* 7

2.2.1 Physical Properties of *Ficus deltoidea* 11
2.2.2 Chemical Properties of Ficus Species 15
2.2.2.1 Chemical Composition of Ficus deltoidea 18
2.2.2.2 Vitexin andIsovitexin in Ficus deltoidea 19
2.2.3 Uses of Ficus deltoidea 20

2.3 Extraction System of Herbs 22
2.3.1 Extraction Parameters 23

2.4 Ultrasound-Assisted Extraction 25
2.4.1 Ultrasonic Probe 26

2.5 Enzymatic-Assisted Extraction 28
2.5.1 Cellulase Enzyme 28
2.5.1.1 Cellulase from Trichoderma reesei 32

2.6 Ultrasound-Assisted Enzymatic Extraction 33

2.7 Analytical Method 35
2.7.1 Concentration of Vitexin and Isovitexin from High Performance Liquid Chromatography (HPLC) 35
2.7.2 Mass Fragmentation by Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) 37
2.7.3 Field Emission Scanning Electron Microscopy (FE-SEM) 39

CHAPTER 3 MATERIALS AND METHODS 41

3.1 Introduction 41
3.2 Sample Preparation 41
3.3 Extraction of Vitexin and Isovitexin from Ficus deltoidea Leaves 42
3.3.1 Preliminary Study of Aqueous Extraction 42
3.3.2 Aqueous Extraction (AE) 44
3.3.3 Ultrasound-Assisted Extraction (UAE) 45
3.3.4 Enzymatic-Assisted Extraction (EnAE) 48
3.3.4.1 Reducing Sugar Determination 51

3.3.5 Combination of Ultrasound-Assisted and Enzymatic Extraction (UAEnE) 52

3.4 Method of Analysis 53

3.4.1 Analysis by High Performance Liquid Chromatography (HPLC) 53

3.4.1.1 Calibration Curves of Vitexin and Isovitexin Standards 54

3.4.2 Analysis by Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) 56

3.4.3 Morphological Analysis by Field Emission Scanning Electron Microscopy (FE-SEM) 56

CHAPTER 4 RESULTS AND DISCUSSION 57

4.1 Introduction 57

4.2 Yield of Vitexin and Isovitexin from AE 57

4.2.1 Yield of Vitexin and Isovitexin from Preliminary Study of AE 57

4.2.2 Yield of Vitexin and Isovitexin from AE (Baseline determination) 62

4.3 Yield of Vitexin and Isovitexin from UAE 68

4.3.1 Yield of Vitexin from UAE 69

4.3.2 Yield of Isovitexin from UAE 79

4.4 Yield of Vitexin and Isovitexin from EnAE 87

4.4.1 Yield of Vitexin from EnAE 87

4.4.2 Yield of Isovitexin from EnAE 91

4.5 Yield of Vitexin and Isovitexin from UAEnE 95

4.5.1 Yield of Vitexin from UAEnE 99

4.5.2 Yield of Isovitexin from UAEnE 97

4.6 Reducing Sugar Determination 101

4.6.1 Glucose Concentration in EnAE 101

4.6.2 Glucose Concentration in UAEnE 105
4.7 Mass Spectrometry 106
6.8 Morphological Study by FE-SEM 113

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 116

5.1 Conclusion 116
5.2 Recommendation for Future Work 118

REFERENCES 119

LIST OF PUBLICATIONS AND CONFERENCES 139

LIST OF GRANTS 140

APPENDICES 141

A HPLC Chromatograms of Standards and Compounds in *Ficus deltoidea* Leaves Extracts (Section 3.4.1) 141

B Yield of Vitexin and Isovitexin from Preliminary Study of Aqueous Extraction (Section 4.2.1) 143

C Yield of Vitexin and Isovitexin from Ultrasound-Assisted Extraction (UAE) (Section 4.3) 144

D Yield of Vitexin and Isovitexin from Enzymatic-Assisted Extraction (EnAE) (Section 4.4) 153

E Yield of Vitexin and Isovitexin from Unified Ultrasound-Assisted Enzymatic Extraction (UAEnE) (Section 4.5) 158

F Reducing Sugar Determination from Enzymatic-Assisted Extraction (EnAE) and Unified Ultrasound-Assisted Enzymatic Extraction (UAEnE) (Section 4.6) 162

G Counts vs. Acquisition Time Overlay Spectrum of HPLC-MS-QTOF Negative Mode Analysis of *Ficus deltoidea* Leaves Extracts from Aqueous, Enzymatic-mediated and Ultrasound-assisted Extraction (Section 4.7) 164

H Attachments of Conference Paper and Abstract 165
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>The extraction methods and activity determination of seven Ficus deltoidea varieties in Malaysia.</td>
<td>9</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Summary analysis of female and male accessions of Ficus deltoidea leaves from previous study.</td>
<td>13</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Comparison in the experimental values of total phenolic content, radical-scavenging and total flavonoid content between leaves and figs (fruits) of Ficus deltoidea from aqueous extracts (previous studies).</td>
<td>14</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Five main functional groups present in varieties of Ficus species and their specific assays.</td>
<td>16</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Conventional extraction methods of various types of plants.</td>
<td>22</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Effects on extracted compounds/yield from various sources of cellulosic plant materials by cellulase-assisted extraction.</td>
<td>29</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>HPLC methods from previous studies for the determination of vitexin and isovitexin compounds from Ficus deltoidea leaf extracts.</td>
<td>36</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>LC-MS detection and separation of vitexin and isovitexin compounds from various sources of raw materials.</td>
<td>38</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Parameters studied in preliminary experimental work.</td>
<td>43</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Extraction evaluation prior to preliminary study of vitexin and isovitexin compounds from Ficus deltoidea leaves extracts.</td>
<td>43</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Summary analysis condition for UPLC-MS analysis.</td>
<td>56</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Yield of vitexin compound in AE at different sample-to-water ratios and temperatures in 8 hours of extraction.</td>
<td>64</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Yield of isovitexin compound in AE at different sample-to-water ratios and temperatures in 8 hours of extraction.</td>
<td>65</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>ANOVA’s table for the yield of a) vitexin and b) isovitexin compounds from conventional aqueous extraction samples.</td>
<td>66</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Sonication regimens used at fixed ultrasound intensity of 8.66 W/cm².</td>
<td>68</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Summary for best conditions of AE and UAE.</td>
<td>86</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Summary for best conditions of EnAE.</td>
<td>95</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Summary for the reference values and optimum experimental values of vitexin and isovitexin compounds from AE, UAE, EnAE and UAEEnE.</td>
<td>99</td>
</tr>
</tbody>
</table>
Table 4.8 ANOVA’s table for the experiment of ultrasound-assisted enzymatic extraction (UAEnE) unified system.

Table 4.9 List of potential compounds and derivatives present in an extract of *Ficus deltoidea* leaves analysed using LC-MS QTOF.

Table 4.10 Comparison of different methods studied on the FE-SEM observation of dried surface structure of *Ficus deltoidea* leaves at x300 and x1,000 magnifications.
LIST OF FIGURES

Figure 2.1 Classification and taxonomy of *Ficus deltoidea*. 8

Figure 2.2 (a) *Ficus deltoidea* shrubs and (b) *Ficus deltoidea* figs of female leaves. 11

Figure 2.3 (a) Spoon-shaped and (b) elongated leaves of *Ficus deltoidea*. 12

Figure 2.4 The chemical structures of (a) vitexin and (b) isovitexin. Glu: glucose. 19

Figure 2.5 Commercialized products derived from *Ficus deltoidea* extracts (a) *F. deltoidea* capsules (b) various types of *F. deltoidea* herbal drinking and (c) *F. deltoidea*-based serum and ointments. 21

Figure 2.6 Cavitation bubbles collapse and plant material releasing. 26

Figure 2.7 Ultrasonic-assisted extraction experimental setup (without enzyme). 27

Figure 2.8 Cellulose breakdown by synergic action of cellulase enzyme complex. 31

Figure 2.9 Schematic picture of cellulase action for hydrolysis of cellulose in the extract of dried *Ficus deltoidea* leaves sample. 32

Figure 2.10 The experimental setup of ultrasound-assisted enzymatic extraction of *Ficus deltoidea* leaves (a) the overall setup (b) the position of ultrasound probe, overhead stirrer and thermometer in the sample solution (inside the water bath) and (c) boiling of sample taken every hour to denature the cellulase enzyme for further analysis. 34

Figure 3.1 Flow diagram of the whole experiment. 42

Figure 3.2 Experimental setup for aqueous extraction of *Ficus deltoidea* leaves. 44

Figure 3.3 Flow chart of the aqueous extraction samples of *Ficus deltoidea* leaves during 8 hours of extraction. 45

Figure 3.4 Experimental flow of the ultrasound-assisted extraction samples of *Ficus deltoidea* leaves at 8 hours of extraction (8.66 W/cm²). 47

Figure 3.5 Experimental setup for enzymatic-assisted extraction of *Ficus deltoidea* leaves using water bath (pH 4.8, 50 °C). 48

Figure 3.6 Experimental flow chart of the enzymatic-assisted extraction samples of *Ficus deltoidea* leaves at 8 hours of extraction (pH 4.8, 50 °C). 50

Figure 3.7 Calibration curve for glucose concentration. 51
Figure 3.8 Flow chart of the unified method of ultrasound-assisted enzymatic extraction samples of *Ficus deltoidea* leaves (8.66 W/cm², pH 4.8, 50 °C).

Figure 3.9 High Performance Liquid Chromatography (Agilent, Model: 1100).

Figure 3.10 Calibration curves for (a) vitexin and (b) isovitexin standards.

Figure 4.1 Effect of sample-to-water ratio on the average yield of vitexin and isovitexin from *Ficus deltoidea* leaves extract (4h; 100 °C; n=6).

Figure 4.2 Effect of temperature on the average yield of vitexin and isovitexin from *Ficus deltoidea* leaves extract (4h; 1:30 g/mL; n=6).

Figure 4.3 Effect of extraction time on the average yield of vitexin and isovitexin from *Ficus deltoidea* leaves extract (50 °C; 1:30 g/mL; n=6).

Figure 4.4 Yield of vitexin compound from *Ficus deltoidea* leaves extract for control (non-sonicated) and sonicated samples (8.66 W/cm²) at (a) 50, (b) 70 and (c) 100 °C with the sonication duty cycles of 10, 20 and 40% (1:10 g/mL; 8 h; n=6).

Figure 4.5 Yield of vitexin compound from *Ficus deltoidea* leaves extract for control (non-sonicated) and sonicated samples (8.66 W/cm²) at (a) 50, (b) 70 and (c) 100 °C with the sonication duty cycles of 10, 20 and 40% (1:20 g/mL; 8 h; n=6).

Figure 4.6 Yield of vitexin compound from *Ficus deltoidea* leaves extract for control (non-sonicated) and sonicated samples (8.66 W/cm²) at (a) 50, (b) 70 and (c) 100 °C with the sonication duty cycles of 10, 20 and 40% (1:30 g/mL; 8 h; n=6).

Figure 4.7 The microscopic transverse section of apical stem of mint (Mentha piperita) shows the mechanism of actions during ultrasonic extraction from cells (magnification 2000x).

Figure 4.8 Yield of isovitexin compound from *Ficus deltoidea* leaves extract for control (non-sonicated) and sonicated samples (8.66 W/cm²) at (a) 50, (b) 70 and (c) 100 °C with the sonication duty cycles of 10, 20 and 40% (1:10 g/mL; 8 h; n=6).

Figure 4.9 Yield of isovitexin compound from *Ficus deltoidea* leaves extract for control (non-sonicated) and sonicated samples (8.66 W/cm²) at (a) 50, (b) 70 and (c) 100 °C with the sonication duty cycles of 10, 20 and 40% (1:20 g/mL; 8 h; n=6).

Figure 4.10 Yield of isovitexin compound from *Ficus deltoidea* leaves extract for control (non-sonicated) and sonicated samples (8.66 W/cm²) at (a) 50, (b) 70 and (c) 100 °C with the sonication duty cycles of 10, 20 and 40% (1:30 g/mL; 8 h; n=6).
Figure 4.11 Comparison in the yield of vitexin from *Ficus deltoidea* leaves extract between different cellulase concentration of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6% (1:10 g/mL; 50 °C; pH 4.8; 8 h; n=6).

Figure 4.12 Comparison in the yield of vitexin from *Ficus deltoidea* leaves extract between different cellulase concentration of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6% (1:20 g/mL; 50 °C; pH 4.8; 8 h; n=6).

Figure 4.13 Comparison in the yield of vitexin from *Ficus deltoidea* leaves extract between different cellulase concentrations of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6% (1:30 g/mL; 50 °C; pH 4.8; 8 h; n=6).

Figure 4.14 Comparison in the yield of isovitexin from *Ficus deltoidea* leaves extract between different cellulase concentrations of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6% (1:10 g/mL; 50 °C; pH 4.8; 8 h; n=6).

Figure 4.15 Comparison in the yield of isovitexin from *Ficus deltoidea* leaves extract between different cellulase concentrations of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6% (1:20 g/mL; 50 °C; pH 4.8; 8 h; n=6).

Figure 4.16 Comparison in the yield of isovitexin from *Ficus deltoidea* leaves extract between different cellulase concentrations of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6% (1:30 g/mL; 50 °C; pH 4.8; 8 h; n=6).

Figure 4.17 Comparison in the yield of vitexin from *Ficus deltoidea* leaves extract between two cellulase concentrations of 0.4 and 0.5% with sonication duty cycles of 10, 20 and 40% (1:10 g/mL; 50 °C; pH 4.8; 8 h; n=6).

Figure 4.18 Comparison in the yield of isovitexin from *Ficus deltoidea* leaves extract between two cellulase concentrations of 0.4 and 0.5% with sonication duty cycles of 10, 20 and 40% (1:10 g/mL; 50 °C; pH 4.8; 8 h; n=6).

Figure 4.19 Glucose concentration determined in *Ficus deltoidea* leaves extract with different cellulase concentrations of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6% (50 °C; pH 4.8; 8h; n=6).

Figure 4.20 ‘Inversion’ and ‘retention’ mechanisms of the general enzyme catalysed hydrolysis of cellulose into glucose.

Figure 4.21 Glucose concentration determined in *Ficus deltoidea* leaves extract with two cellulase concentrations of 0.4 and 0.5% with sonication duty cycles of 10, 20 and 40% (50 °C; pH 4.8; 8h; n=6).

Figure 4.22 Exact mass spectrum obtained for vitexin compound.

Figure 4.23 Mass fragmentation of vitexin compound.
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µ</td>
<td>micro</td>
</tr>
<tr>
<td>A</td>
<td>Ampere</td>
</tr>
<tr>
<td>eV</td>
<td>Electron volts</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass-to-charge ratio</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>s</td>
<td>seconds</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>AE</td>
<td>Aqueous extraction</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>BEH</td>
<td>Ethylene Bridged Hybrid</td>
</tr>
<tr>
<td>DAD</td>
<td>Diode Array Detector</td>
</tr>
<tr>
<td>EC</td>
<td>Enzyme Commission</td>
</tr>
<tr>
<td>EnAE</td>
<td>Enzymatic-assisted extraction</td>
</tr>
<tr>
<td>FE-SEM</td>
<td>Field Emission-Scanning Electron Microscopy</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>i.d.</td>
<td>Inner diameter</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>RPC</td>
<td>Reversed-phase column</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>sp.</td>
<td>species</td>
</tr>
<tr>
<td>UAE</td>
<td>Ultrasound-assisted extraction</td>
</tr>
<tr>
<td>UAEnE</td>
<td>Ultrasound-assisted enzymatic extraction</td>
</tr>
<tr>
<td>UPLC</td>
<td>Ultra-Performance Liquid Chromatography</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet-visible</td>
</tr>
<tr>
<td>var.</td>
<td>variety</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>