

Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

Synthesis and Lithium Storage Properties of Zn, Co and Mg doped SnO₂ Nano Materials

P. Nithyadharseni^{a,b}, K.P. Abhilash^a, Shaikshavali Petnikota^a, M.R. Anilkumar^c, Rajan Jose^d, K.I. Ozoemena^e, R. Vijayaraghavan^f, Pranav Kulkarni^g, Geetha Balakrishna^g, B.V.R. Chowdari^a, Stefan Adams^h, M.V. Reddy^{a,h,*}

- ^a Department of Physics, National University of Singapore, 117542, Singapore
- ^b Energy Materials, Materials Science & Manufacturing, Council for Scientific & Industrial Research (CSIR), Pretoria 0001, South Africa
- ^c East West Institute of Technology, Bangalore, 560091, India
- d Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia
- ^e Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
- f School of Advanced Sciences. Department of Chemistry, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
- g Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura, Bangalore Rural, 562112, India
- ^{In} Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore

ARTICLE INFO

Article history:
Received 24 April 2017
Received in revised form 27 June 2017
Accepted 28 June 2017
Available online 30 June 2017

Keywords: Energy Storage Materials Electrodes Electrochemical Properties Strain Engineering

ABSTRACT

In this paper, we show that magnesium and cobalt doped SnO₂ (Mg-SnO₂ and Co-SnO₂) nanostructures have profound influence on the discharge capacity and coulombic efficiency of lithium ion batteries (LIBs) employing pure SnO₂ and zinc doped SnO₂ (Zn-SnO₂) as benchmark materials. The materials were synthesized via sol-gel technique. The structural, chemical and morphological characterization indicates that the Zn, Mg and Co dopants were effectively implanted into the SnO₂ lattice and that Co doping significantly reduced the grain growth. The electrochemical performances of the nanoparticles were investigated using galvanostatic cycling, cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The Co-SnO₂ electrode delivered a reversible capacity of around 575 mAh g^{-1} at the 50th cycle with capacity retention of \sim 83% at 60 mA g⁻¹ current rate. A capacity of \sim 415 mAh g⁻¹ when cycling at $10^3 \,\mathrm{mAg^{-1}}$ and >60% improvement in coulombic efficiency compared to the pure compound clearly demonstrate the superiority of Co-SnO₂ electrodes. The improved electrochemical properties are attributed to the reduction in particle size of the material up to a few nanometers, which efficiently reduced the distance of lithium diffusion pathway and reduction in the volume change by alleviating the structural strain caused during the Li⁺ intake/outtake process. The EIS analyses of the electrodes corroborated the difference in electrochemical performances of the electrodes: the Co-SnO₂ electrode showed the lowest resistance at different voltages during cycling among other electrodes.

© 2017 Elsevier Ltd. All rights reserved.