

Contents lists available at ScienceDirect

International Communications in Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ichmt

An experimental study on the thermal conductivity and dynamic viscosity of TiO₂-SiO₂ nanofluids in water: Ethylene glycol mixture

M.F. Nabil^a, W.H. Azmi^{a,b,*}, K. Abdul Hamid^a, Rizalman Mamat^{a,b}, Ftwi Y. Hagos^{a,b}

^a Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia

^b Automotive Engineering Centre, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia

ARTICLE INFO

Keywords: Thermal conductivity Dynamic viscosity TiO₂-SiO₂ nanofluids Water-ethylene glycol mixture Newtonian fluid

ABSTRACT

The hybrid nanofluid has been thriving among researchers due to its potential to improve heat transfer performance. Therefore, various studies on heat transfer properties need to be carried out to provide a better understanding on hybrid nanofluid performance. In this paper, the experimental work is focused on the thermal conductivity and dynamic viscosity of TiO_2 -SiO₂ nanofluids in a mixture of water and ethylene glycol (EG) with volume ratio of 60:40. The stable suspension of TiO_2 -SiO₂ prepared at volume concentrations of 0.5 to 3.0%. The measurements of thermal conductivity and dynamic viscosity were performed at a temperature range of 30 to 80 °C by using KD2 Pro Thermal Properties Analyser and Brookfield LVDV III Ultra Rheometer, respectively. The thermal conductivity of TiO_2 -SiO₂ nanofluids was improved by increasing the volume concentration and temperature with 22.8% maximum enhancement. Besides, the viscosity of TiO_2 -SiO₂ nanofluids behaved as a Newtonian fluid for volume concentration up to 3.0%. The properties enhancement ratio suggested that TiO_2 -SiO₂ nanofluids will aid in heat transfer for concentrations of more than 1.5% and within the range of the temperature studied. A new correlation for thermal conductivity and dynamic viscosity of TiO_2 -SiO₂ nanofluids were developed and found to be precise.