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ABSTRACT 
 

The African Buffalo Optimization is a newly designed metaheuristic optimization 

algorithm inspired by the migration of African buffalos from place to place across the 

vast African forests, deserts and savannah in search of food. Being a new algorithm, 

several researchers from different parts of the research world have indicated huge 

interest in understanding the working of the novel algorithm. This paper presents a 

practical demonstration of the workings of the African Buffalo Optimization in solving 

the popular travelling salesman problem. It is our belief that this tutorial paper will be 

helpful in further introducing the new algorithm and making it user-friendly. 

 

Keywords: Tutorials, African Buffalo Optimization, African buffalos, Travelling 

Salesman Problem 

 

INTRODUCTION 

 

Optimization, generally, is concerned with the reduction of wasteful input, increased 

speed and the maximization of profitable output. It can be defined as the economics of 

science, engineering, technology and industrial concerns since it emphasizes the 

minimization of input values or resources and the maximization of quality output (Odili, 

Kahar, & Anwar, 2015). Because of the relevance of optimization in human 

development, several optimization algorithms have been developed to speed-up 

industrial, engineering and scientific procedures. Some of the very popular optimization 

algorithms are the Ant Colony Optimization (Liao, Stützle, de Oca, & Dorigo, 2014), 

Particle Swarm Optimization (Kennedy, 2011), Artificial Bee Colony Optimization 

(Akay & Karaboga, 2012) etc. In spite of the very laudable contributions of the existing 

algorithms, however, it has been observed that there are still need for improvement. 

Some of the areas that need further improvements include the need for more efficiency 

in the use of computer resources, effectiveness in obtaining results, simplicity to 

enhance user-friendliness (Khompatraporn, Pintér, & Zabinsky, 2005) etc. The African 

Buffalo Optimization (ABO) was developed to complement the existing algorithms in 

providing the needed improvements. 

          The ABO is a recently-developed optimization search algorithm designed with 

inspiration from the movement of African buffalos. African buffalos are large 

herbivores that live a migrant lifestyle in search of lush green grass to satisfy their 

appetites (Odili & Kahar, 2015). It takes a high level of intelligence to survive only on 

grass in Africa that has a number of arid desert landscapes (Paul, Roberts, & White, 

2014). Utilizing their innate communication abilities, intelligence, extensive memory 

capacity and very effective herd management structure, these animals have thrived in 

Africa for several centuries in spite of the harsh environment (Lorenzen, Heller, & 
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Siegismund, 2012). African buffalos are able to track the rainy season when they obtain 

the most nutrition in different regions of Africa: east, west, south and north (Smitz et al., 

2013). One of the most intriguing qualities of the African buffalos is their ability to 

harness the collective intelligence of the herd through ‘voting’. Studies have indicated 

that these animals make important routing decisions through communal decision- 

making (Conradt & Roper, 2003; Okello et al., 2015). 

          Utilizing the /waaa/ calls requesting the buffalos to move on to explore safer 

and/or more rewarding locations and the /maaa/ vocalizations that summons the 

buffalos to graze at a safe and lush location, the buffalos are able to migrate out of a 

starving location to a rewarding one (Odili, Kahar, Anwar, & Azrag, 2015). Since its 

development, the ABO has been quite successful solving the symmetric and asymmetric 

travelling salesman problem (Odili, Kahar, & Noraziah, 2016), numerical function 

optimization and tuning the PID Controller parameters of Automatic Voltage 

Regulators (Odili & Mohmad Kahar, 2016a), hence the need for a tutorial on the 

workings of the algorithm to make it more user-friendly. 

 

Travelling Salesman Problem 

 

The travelling salesman problem (TSP) is basically the problem of a particular 

salesman/woman who has customers in different locations and needs to visit each of 

them to possibly supply them some goods or services and return to his initial location. 

The main constraint in his trip is that he must visit each location only once and return to 

the starting location using the cheapest route. The travelling salesman problem could 

either be asymmetric in which case there exist a difference in costs between the forward 

or backward route or symmetric where the cost is same on both ways (Gülcü, Mahi, 

Baykan, & Kodaz, 2016; Odili, 2013) 

The rest of this paper is structured as follows: section two presents the African 

Buffalo Optimization Algorithm; section three discusses the working of the algorithm; 

section four highlights the practical demonstration of the basic flow of the algorithm to 

solving the travelling salesman’s problem and section five draws conclusion on the 

study. 

 

AFRICAN BUFFALO OPTIMIZATION 

 

The ABO algorithm is highlighted in Figure 1. In Figure 1, the wk represents the waaa 

calls (move on / explore) with particular reference to buffalo k. This call is a signal to 

the buffalos to move on to a safer or more rewarding location; mk denotes the maaa call 

(stay to exploit) that requests the buffalos; wk′   denotes a request for further exploration 

(Odili & Mohmad Kahar, 2016b). Similarly, mk′ represents a requests for further 

exploitation; lp1 and lp2 are the learning parameters and 𝜆 is a random number that 

takes a value of between 0 and 1.  

 

The Working of the ABO 

The ABO starts by randomly initializing the buffalos to notes/locations to in the search 

space. Then, it evaluates the exploitation and exploitation fitness respectively of each 

buffalo to determine the herd’s best animal (𝑏𝑔) as well as individual buffalo personal 
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best locations (𝑏𝑝. k ) vis-à-vis the target solution. This is done using the first and 

second equations respectively.  

𝑚𝑘′ = 𝑚𝑘  +  𝑙𝑝1(𝑏𝑔  – 𝑤𝑘)  +  𝑙𝑝2(𝑏𝑝. 𝑘  −  𝑤𝑘 )                               (1) 

                                      𝑤𝑘′ =
(𝑤𝑘+ 𝑚𝑘)

 𝜆
                                                     (2) 

Step1. Initialize the place buffalos randomly to nodes at the search space 

Step2. Update the buffalos’ exploitation using 

𝑚𝑘′ = 𝑚𝑘  +  𝑙𝑝1(𝑏𝑔  – 𝑤𝑘)  +  𝑙𝑝2(𝑏𝑝. 𝑘  −  𝑤𝑘 ) 

      where 𝑤𝑘 and 𝑚𝑘 represents the respective exploration and exploitation 

fitness of   buffalo k (k=1,2,3...N) ;  𝑙𝑝1 and 𝑙𝑝2 are learning parameters        

 𝑏𝑔  denotes the location of the best buffalo in the herd, while 𝑏𝑝 , denotes 

the best location of each buffalo 

Step3. Update the location of buffalos using 

𝑤𝑘′ =
(𝑤𝑘+ 𝑚𝑘)

 𝜆
   𝜆 is a random number 

Step4. Is 𝑏𝑔𝑚𝑎𝑥 updating? Yes, go to 6. If No, go to 1  

Step5. Validate stopping criteria. Reached, go to 6, otherwise return to Step 2 

Step6. Output best solution 

Figure 1. ABO algorithm 

 

Please note that in each iteration, the algorithm keeps a record of each buffalo’s 

coordinates. If the buffalos present exploration fitness is superior to the previous 

individual’s best fitness (𝑏𝑝. k), the algorithm saves the location coordinates for that 

particular buffalo as its new personal best. Similarly, if the present fitness is superior to 

the herd’s overall best, the algorithm saves it as the herd’s best (𝑏𝑔). (Odili et al., 2016). 

After this, it confirms the improvement or otherwise of the leading buffalo (𝑏𝑔). If there 

is no improvement in the status of the best buffalo (𝑏𝑔) in a number of iteration, then 

the algorithm re-initializes the entire herd. If the best buffalo is improving its positions, 

then the algorithm checks to see if the stopping criteria is reached. If the best buffalo 

fitness (𝑏𝑔) meets our exit criteria, the algorithm terminates and provides the location 

vector as the solution to the given problem. The stopping criteria could be a specified 

number of iterations, a specified number of iterations without improvement of the best 

buffalo etc. The Algorithm flowchart is presented in Figure 2. 

                  

ABO for Solving the Travelling Salesman Problem 

The ABO solves complex optimization problems using very simple solution steps. The 

solution steps used for solving the Travelling Salesman Problems are: 

(a.) Determine, per some criterion, an initial city for each of the buffalos and place them 

randomly in those cities.   
(b.) Update the fitness of the buffalos using the democratic equation 1 and the decision 

equation 2, respectively). 

(c.) Identify the 𝑏𝑝. k  and  𝑏𝑔 

(d.) Using the Equation 3 coupled with heuristic values, construct probabilistically a 

buffalo tour by adding yet-to-be visited cities. 
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𝑃𝑎𝑏 =   ∑
𝑤𝑙𝑝1𝑎𝑏 𝑚𝑙𝑝2 𝑎𝑏

𝑤𝑙𝑝1𝑎𝑏 𝑚𝑙𝑝2 𝑎𝑏

𝑛

𝑎𝑏=1

 (3) 

 

 

Initialize buffalos

Update fitness

Output best solution

<10

Validate stopping criteria

Bg updating?

Start

End

Yes

Yes

No No

 
Figure 2. ABO flowchart 

   

(e.) Confirm if the 𝑏𝑔    is updating? If yes, go to (f.). If not updating in 10 iterations, go 

to (a.) 

(f.) Validate stopping criteria? Reached, go to (g.). No, return to (b.)  
(g.) Output the best solution. 

In Equation 3, lp1 and lp2 are learning parameters whose values are greater than 0, 

m represents the /maaa/ vocalization asking the buffalos to exploit arc ab, w represents 

the ‘waaa’ call mandating the buffalos to move on to explore arc ab.  The probability of 

buffalo k going from vertex ‘a’ to vertex ‘b’ is dependent on two main considerations: 

the attractiveness of the move, as calculated by some heuristic and the overall benefit of 

the move to the entire herd, showing how beneficial that particular move has been in the 

past. The values are the denominator represent the post indication of the usefulness of 

the particular move. The paths are updated when all the animals have completed their 

solution.  
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Practical Demonstration of ABO for TSP 

To further illustrate the working of the ABO, let us demonstrate ABO strategy for 

solving a five-node TSP using seven buffalos. The costs of the edges are indicated 

against each edge (see Figure 3).                                                                                         

9

5.5 5

10

3,1

11

7

12

2,3

68

2,2

4,5

A
                               B

D
C

      E

 

Figure 3. A five-node TSP instance 

 

          Assuming the buffalos began the search at node D, it means that they will also 

terminate the search at the same node. The second assumption is that they took different 

routes. Let us use the ABO to simulate the movements of the buffalos in solving this 

problem (See Figures 4-7). The parameters for this tutorials are: lp1=0.6, lp2=0.5, 

𝜆=0.5-0.9. For the first iteration, the algorithm picks location E values as the 𝑏𝑔. This 

decision is randomly made. Please note that in iteration 1, the 𝑏𝑝. k  (best location found 

by each buffalo) is the starting locations of the buffalos  

 

mk′ = mk  +  lp1(𝑏𝑔 – wk)  
+  lp2(𝑏𝑝. k  −  wk)  

mk′(𝑥) = 2+0.6(3-2) + 0.5(2-2) 

             = 2 + 0.6 +0 

             = 2.6 

mk′(𝑦) = 3 + 0.6 (1-2) + 0.5 (3.3) 

             = 3-0.6 

             = 2.4 

mk′       = (2.6, 2.4). So new mk = (2.6, 

2.4) 

Applying exploration Equation 2 

wk′ =
(wk + mk)

𝜆
 

wk
′ (𝑥) =  

(2 + 2.6)

0.9
 

Applying TSP movement Equation 3 

𝑃𝑎𝑏 =   ∑
𝑤𝑙𝑝1𝑎𝑏 𝑚𝑙𝑝2 𝑎𝑏

𝑤𝑙𝑝1𝑎𝑏 𝑚𝑙𝑝2 𝑎𝑏

𝑛

𝑎𝑏=1

 

     =
5.10.6 𝑥 1 𝑥 2.60.5 𝑥 1

 60.6 𝑥 1 𝑥 2.40.5 𝑥 1 
 

 

The value of ab=1 in the first iteration 2 

in the second, 3 in the third etc. 

                 =
2.658

2.811
 

                 = 0.94 

Now multiply by the heuristic values on 

the graph 

= 0.95 x 12 
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           =    5.1 

wl
′(𝑦) =  

(3+2.4)

0.9
 

            = 6 

wk′      = = (5.1, 6) 

 

= 11.33 

The closest value on the TSP graph to 

11.33 is 12, so buffalo 𝑘 follows route 

DE. 

 

Figure 4. Buffalo k’s movement 

Plotting the experimental values obtained using Equation 3 to represent buffalo 𝑗, since 

they are all at the same starting location, we have: 

𝑃𝑎𝑏 =   ∑
𝑤𝑙𝑝1𝑎𝑏 𝑚𝑙𝑝2 𝑎𝑏

𝑤𝑙𝑝1𝑎𝑏 𝑚𝑙𝑝2 𝑎𝑏

𝑛

𝑎𝑏=1

 

 

5.10.6 𝑥 1 𝑥 2.60.5 𝑥 1 

60.6 𝑥 1 𝑥 2.40.5 𝑥 1 

= 0.94 

 

Now multiply by the heuristic values on 

the graph 

= 0.94 x 6 = 5.64              

So buffalo 𝑗 follows route DB. 

 

Figure 5. Buffalo j’s movement 

 

2nd Iteration: 𝑩𝒖𝒇𝒇𝒂𝒍𝒐 𝒌 

 

mk′′ = mk  +  lp1(𝑏𝑔 – wk)  
+  lp2(𝑏𝑝. k  −  wk)  

mk′′(𝑥) = 2.6+0.6(5-3) + 0.5(3-3) 

             = 2.6 + 0.6(2) +0 

             = 2.6 + 1.2 

             = 3.8 

mk′(𝑦) = 2.4 + 0.6 (5-1) + 0.5 (1-1) 

 = 2.4 +2.4 

 = 4.8 

mk′′     = (3.8, 4.8). So new mk = (3.8, 

4.8) 

 

 Applying exploration Equation 2 

Applying TSP movement Equation 3 

𝑃𝑎𝑏 =   ∑
𝑤𝑙𝑝1𝑎𝑏 𝑚𝑙𝑝2 𝑎𝑏

𝑤𝑙𝑝1𝑎𝑏 𝑚𝑙𝑝2 𝑎𝑏

𝑛

𝑎𝑏=1

 

         =
9.70.6 𝑥 2 𝑥 3.80.5 𝑥 2

 8.30.6 𝑥 2 𝑥 4.80.5 𝑥 2 
 

  

         =
4.06

4.15
 

          

        = 0.98 

 

 

Now, multiply by the heuristic value  

0.98 x 10 = 9.8 
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wk′′ =
(wk + mk)

𝜆
 

wk
′′(𝑥) =  

(3+3.8)

0.7
=    9.7 

wk
′′(𝑦) =  

(1+4.8)

0.7
 

            = 8.3 

wk′′      = (9.7, 8.3) 

So buffalo 𝑘 heads to route EA. 

 

Figure 6. Buffalo k’s movement (2nd iteration) 

      𝑩𝒖𝒇𝒇𝒂𝒍𝒐 𝒋 

 

mj′′ = mj  +  lp1(𝑏𝑔 – wj)  +  lp2(𝑏𝑝. j  

−  wj)  

mj′′(𝑥) = 2.6+0.6(5-4) + 0.5(4-4) 

             = 2.6 + 0.6(1) +0 

             = 2.6 + 0.6 

             = 3.2 

mj′′(𝑦) = 2.4 + 0.6 (5-5) + 0.5 (5-5) 

             = 2.4 + 0 + 0 

             = 2.4 

mj′′      = (3.2, 2.4). So new mk = (3.2, 

2.4) 

Applying exploration Equation 2 

wj
′′       =   

(wj + mj)

𝜆
 

wj
′′(𝑥) =  

(4 + 3.2)

0.5
 

            =    14.4 

wj
′′(𝑦) =  

(5+2.4)

0.5
 

            = 14.8 

wj′′      = (3.6, 3.7) 

 

 

 

Applying TSP movement Equation 3 

𝑃𝑎𝑏 =   ∑
𝑤𝑙𝑝1𝑎𝑏 𝑚𝑙𝑝2 𝑎𝑏

𝑤𝑙𝑝1𝑎𝑏 𝑚𝑙𝑝2 𝑎𝑏

𝑛

𝑎𝑏=1

 

 

         =
14.40.6 𝑥 2 𝑥 3.20.5 𝑥 2

 14.80.6 𝑥 2 𝑥 2.40.5 𝑥 2 
 

 

        =1.136 

Now, multiply by the heuristic value  

1.136 x 5 

= 5.68 

So buffalo 𝑘 heads to route BA. 

Now, multiply by the heuristic value  

1.136 x 5 

= 5.68                                   

So buffalo 𝑘 heads to route BA. 

Figure 7. Buffalo j’s movement (2nd iteration) 

 

At the end of the tour, the data in Table 1 represents the routes of each buffalo. 
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Table 1. Demonstration of symmetric TSP 

 
Buffalo k Buffalo j Buffalo l Buffalo m Buffalo n Buffalo p Buffalo q 

DE = 12 DB = 6 DC = 7 DC = 7 DC = 7 DB = 6 DB = 6 

EA = 10 BA = 5 CA = 8 CE = 9 CA = 8 BE = 11 BE =11 

AB = 5 AC = 8 AB = 5 EA = 10 AE = 10 EC = 9 EA = 10 

BE =11 CE = 9 BE = 11 AB = 5 EB = 11 CA = 8 AC = 8 

CE = 9 ED = 12 ED = 12 BD = 6 BD = 6 AE = 10 CD = 7 

CD = 7 - - - - ED=12 - 

TOTAL = 54 40 43 37 42 56 42 

From this investigation, it is obvious that the cheapest route is that taken by Buffalo m 

that has a total cost of 37. So the algorithm outputs that particular route as the best 

solution.  

CONCLUSION 

 

This paper is a tutorial for the newly-designed African Buffalo Optimization algorithm. 

The paper aims to practically explain the working of the algorithm such that none 

professionals can appreciate its working and possibly implement it to solve optimization 

problems. Simplifying algorithms to a level that none experts can use is a necessary 

requirement in modern optimization design. At the end of this tutorial paper, we believe 

that our aim has been achieved. Nevertheless, we recommend that the working of the 

ABO tutorials on other optimization problems such as job-shop scheduling, vehicle 

routing and global optimization benchmark functions. 
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