BATS ECHOLOCATION-INSPIRED ALGORITHMS FOR
GLOBAL OPTIMISATION PROBLEMS

by

Nafriizuan Mat Yahya

A thesis submitted to the University of Sheffield for the degree of
Doctor of Philosophy

Department of Automatic Control & Systems Engineering
The University of Sheffield
Mappin Street
Sheffield S1 3JD
United Kingdom

February 2016
Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Figures viii

List of Tables xi

List of Algorithms xiv

1 Introduction 1
 1.1 Introduction .. 1
 1.2 Research background ... 1
 1.3 Research problem statement 4
 1.4 Research aim and objectives 5
 1.5 Research methodology .. 5
 1.6 Research contribution and publications 7
 1.7 Organisation of the thesis 8
 1.8 Summary .. 9

2 Optimisation problems in brief 10
 2.1 Introduction .. 10
 2.2 Optimisation problem .. 10
2.3 Single objective optimisation problem .. 11
 2.3.1 Background ... 11
 2.3.2 Approaches for single objective optimisation problems 12
2.4 Constrained optimisation problem .. 16
 2.4.1 Background ... 16
 2.4.2 Constraints handling technique for constrained optimisation problems: a penalty method 17
 2.4.3 Approaches to solving constrained optimisation problems by previous researchers 18
2.5 Multi objective optimisation problem 21
 2.5.1 Background ... 21
 2.5.2 Weighted sum approach ... 22
 2.5.3 Approaches for solving multi objective optimisation problems using particle swarm optimisation algorithm by previous researchers ... 23
2.6 Summary .. 25

3 Bats echolocation and existing algorithms inspired from bats echolocation 26
 3.1 Introduction .. 26
 3.2 The colony of bats in nature .. 26
 3.3 Real echolocation behaviour of bats 29
 3.4 Bat algorithm ... 31
 3.5 Variants of bat algorithm ... 33
 3.5.1 Improved version .. 33
 3.5.2 Hybrid version .. 34
 3.5.3 Direct application .. 35
 3.6 Bats sonar algorithm ... 35
 3.7 Problems associated with bats sonar algorithm 37
 3.8 Importance of bats sonar algorithm for this research 38
 3.9 Summary .. 39

4 Investigation of adaptive bats sonar algorithm 40
 4.1 Introduction .. 40
4.2 Adaptive bats sonar algorithm .. 40
4.3 Computer simulation and discussion .. 46
 4.3.1 Effects of number of bats and number of iterations on performance of ABSA ... 46
 4.3.2 Performance of adaptive bats sonar algorithm on black-box optimisation benchmarking 2013 functions .. 55
 4.3.3 Performance of adaptive bats sonar algorithm on established single objective optimisation benchmark test functions 61
4.4 Summary ... 74

5 Investigation of modified adaptive bats sonar algorithm 75
 5.1 Introduction ... 75
 5.2 Modified adaptive bats sonar algorithm ... 75
 5.3 Computer simulation and discussion ... 80
 5.3.1 Performance of modified adaptive bats sonar algorithm on constrained optimisation benchmark test functions .. 80
 5.3.2 Performance of modified adaptive bats sonar algorithm in engineering design optimisation problems .. 91
 5.3.3 Overall comparison of all considered algorithms 110
 5.4 Summary ... 111

6 Hybrid modified adaptive bats sonar algorithm and particle swarm optimisation algorithm 112
 6.1 Introduction ... 112
 6.2 A necessity to hybrid algorithm ... 112
 6.3 Particle swarm optimisation algorithm .. 113
 6.3.1 The PSO algorithm in brief ... 113
 6.3.2 The standard PSO algorithm .. 113
 6.4 A dual-particle swarm optimisation-modified adaptive bats sonar algorithm 115
 6.5 Computer simulation and discussion ... 119
 6.5.1 Introduction .. 119
 6.5.2 Performance of D-PSO-MABSA on established multi objective benchmark test functions 121
6.5.3 Performance of D-PSO-MABSA in engineering design problem 134

6.6 Summary 139

7 Application of bats echolocation-inspired algorithms in selected practical problems 140

7.1 Introduction 140

7.2 Application of adaptive bats sonar algorithm to solve single objective optimisation problems 140

7.3 Application of modified adaptive bats sonar algorithm to solve constrained optimisation problems 149

7.4 Application of dual-particle swarm optimisation-modified adaptive bats sonar algorithm to solve multi objective optimisation problems 155

7.5 Summary 160

8 Conclusion 161

8.1 Research summary and conclusion 161

8.2 Future direction of the research 163

References 165
List of Figures

1.1 Research methodology flowchart .. 6

3.1 Common and scientific names of bats (Arita and Fenton, 1997) 27

3.2 Portraits of selected Suborder Microchiptera. (a) Underwood’s mastiff bat. (b) Western pipistrelle. (c) Mexican long-eared bat. (d) Bennett’s spear-nosed bat. (e) Long-tongued bat. (f) Big-eyed bat (Arita and Fenton, 1997) .. 28

3.3 A colony of bats roosting where the picture is taken from below with the bats hanging upside down (Airas, 2003) .. 28

3.4 Sonar signal of a bat (Suga, 1990) .. 29

4.1 Single batch of beams transmitted by a bat (Tawfeeq, 2012) 43

4.2 Functions used to evaluate the effects of Bats and MaxIter on the performances of BSA and ABSA .. 47

4.3 McCormick functions: comparison of performance of the original BSA and the ABSA 51

4.4 Rastrigin functions: comparison of performance of the original BSA and the ABSA 54

4.5 Comparison of convergence performances toward optimum function value between ABSA and PSO .. 60

4.6 Locations of 1000 bats using ABSA for 2 dimensional De Jong function 64

4.7 Convergence to global best fitness function achieved by ABSA and BSA for selected test functions 72

4.8 Comparison of average number of iterations to achieve global optimum solution 74

5.1 Bats movement in MABSA approach .. 79

5.2 Convergence graphs of the best solution of MABSA for four constrained benchmark problems 83

5.3 Comparison of NFEs used by considered algorithms for all constrained benchmark problems 84
5.4 Bar plot of statistical results obtained using different algorithms for constrained test function 1
5.5 Bar plot of statistical results obtained using different algorithms for constrained test function 2
5.6 Bar plot of statistical results obtained using different algorithms for constrained test function 3
5.7 Bar plot of statistical results obtained using different algorithms for constrained test function 4
5.8 Comparison of NFEs used by considered algorithms for all engineering design optimisation problems
5.9 Convergence graph of the best solution of MABSA for pressure vessel design optimisation problem
5.10 Bar plot of statistical results obtained using different algorithms for pressure vessel design optimisation problem
5.11 Convergence graph of the best solution of MABSA for three-truss bar design optimisation problems
5.12 Bar plot of statistical results obtained using different algorithms for three-truss bar design optimisation problem
5.13 Convergence graph of the best solution of MABSA for gear train design optimisation problem
5.14 Bar plot of statistical results obtained using different algorithms for gear train design optimisation problem
5.15 Convergence graph of the best solution of MABSA for speed reducer design optimisation problem
5.16 Bar plot of statistical results obtained using different algorithms for speed reducer design optimisation problem
5.17 Convergence graph of the best solution of MABSA for welded beam design optimisation problem
5.18 Bar plot of statistical results obtained using different algorithms for welded beam design optimisation problem
5.19 Convergence graph of the best solution of MABSA for tension/compression design optimisation problem
5.20 Bar plot of statistical results obtained using different algorithms for tension/compression design optimisation problem
6.1 Pareto front for ZDT 1 function
6.2 Pareto front for Schaffer function 1
6.3 Plot of separated F_1 and F_2 of Schaffer function 1
6.4 Pareto optimum solutions for Binh and Korn function with different values of α and β 126
6.5 Pareto optimum solutions for Chankong and Haimes function with different values of α and β 128
6.6 Pareto optimum solutions for Kursawe function with different values of α and β 129
6.7 Pareto optimum solutions for Osyczka and Kundu function with different values of α and β 131
6.8 Pareto optimum solutions for Constr-Ex function with different values of α and β 132
6.9 Pareto optimum solutions for CTP1 function with different values of α and β 133
6.10 A four bar plane truss (Coello, 2001) 135
6.11 The true (or global) Pareto front of a four bar plane truss problem (Coello, 2001) 135
6.12 A four bar plane truss problem with 40 Pareto optimum solutions 136
6.13 A four bar plane truss problem with 100 Pareto optimum solutions 137
6.14 A four bar plane truss problem with 500 Pareto optimum solutions 137
6.15 A four bar plane truss problem with 1000 Pareto optimum solutions 138
6.16 A four bar plane truss problem with 4000 Pareto optimum solutions 138

7.1 Convergence performances toward optimum fitness function of optimising the cost of shipping refined oil problem ... 144
7.2 Tanker size and refinery capacity obtained in 30 independent runs of the ABSA to optimise the cost of shipping refined oil problem .. 144
7.3 Convergence performances toward optimum fitness function of optimising the profit of selling television sets problem ... 147
7.4 Number of function evaluations and time to finish recorded in 30 independent runs of the ABSA to optimise the profit of selling television sets problem 148
7.5 A finite element method (FEM) model of car side impact (Zhang et al., 2015) 149
7.6 Optimum fitness function of car side impact design problem obtained by 30 independent runs 152
7.7 Optimum fitness function of brushless wheel DC motor problem obtained by 30 independent runs 154
7.8 Pareto front of the metal cutting process problem ... 156
7.9 The IEEE 30-bus 6-generator electrical network configuration (Ghasemi, 2013) 158
7.10 Pareto optimum solutions with Pareto front of the IEEE 30-bus 6-generator unit electrical network problem ... 159
List of Tables

4.1 Best global optimum value achieved by BSA and ABSA for McCormick function with different Bats over different MaxIter ... 47
4.2 Best global optimum value achieved by BSA and ABSA for Rastrigin function with different Bats over different MaxIter ... 48
4.3 Five test functions selected from BBOB 2013 functions .. 56
4.4 Simulation results of considered algorithms on BBOB2013 functions 57
4.5 Benchmark functions used to validate the performance of ABSA .. 62
4.6 Statistical results obtained for ABSA with 10 test functions of different dimensions over 30 independent runs of 100 iterations each ... 65
4.7 The best solution obtained by BA, BSA and ABSA with 10 test functions of different dimensions over 30 independent runs of 100 iterations each ... 66
4.8 The worst solution obtained by BA, BSA and ABSA with 10 test functions of different dimensions over 30 independent runs of 100 iterations each ... 67
4.9 The mean solution obtained by BA, BSA and ABSA with 10 test functions of different dimensions over 30 independent runs of 100 iterations each ... 68
4.10 The standard deviation obtained by BA, BSA and ABSA with 10 test functions of different dimensions over 30 independent runs of 100 iterations each ... 69
4.11 Performance comparison using one-way analysis of variance (ANOVA) between BA, BSA and ABSA with 10 test functions of different dimensions over 30 independent runs of 100 iterations each ... 70
4.12 Performance comparison in terms of faster convergence to global optimum in 100 iterations using one-way analysis of variance (ANOVA) between BA, BSA and ABSA with 10 test functions of different dimensions over 30 independent runs ... 73
5.1 Results of the best solution obtained from MABSA for constrained benchmark test functions ... 81
5.2 Comparison of statistical results obtained using different algorithms for constrained test function 1. ("n/a" means not available) .. 85
5.3 Comparison of statistical results obtained using different algorithms for constrained test function 2. ("n/a" means not available) .. 87
5.4 Comparison of statistical results obtained using different algorithms for constrained test function 3. ("n/a" means not available) .. 89
5.5 Comparison of statistical results obtained using different algorithms for constrained test function 4. ("n/a" means not available) .. 90
5.6 Results of the best solution obtained from MABSA for pressure vessel optimisation design problem .. 93
5.7 Comparison of statistical results obtained using different algorithms for pressure vessel design optimisation problem. ("n/a" means not available) .. 95
5.8 Results of the best solution obtained from MABSA for three-truss bar design optimisation problem .. 96
5.9 Comparison of statistical results obtained using different algorithms for three-truss bar design optimisation problem. ("n/a" means not available) .. 96
5.10 Results of the best solution obtained from MABSA for gear train design optimisation problem .. 98
5.11 Comparison of statistical results obtained using different algorithms for gear train design optimisation problem. ("n/a" means not available) .. 99
5.12 Results of the best solution obtained from MABSA for speed reducer design optimisation problem 102
5.13 Comparison of statistical results obtained using different algorithms for speed reducer design optimisation problem. ("n/a" means not available) .. 103
5.14 Results of the best solution obtained from MABSA for welded beam design optimisation problem 105
5.15 Comparison of statistical results obtained using different algorithms for welded beam design optimisation problem. ("n/a" means not available) .. 106
5.16 Results of the best solution obtained from MABSA for tension/compression spring design optimisation problem .. 107
5.17 Comparison of statistical results obtained using different algorithms for tension/compression spring design optimisation problem. ("n/a" means not available) .. 109
5.18 Rank of algorithms for constrained optimisation benchmark test functions 110
5.19 Rank of algorithms for engineering design optimisation problems 111

6.1 ZDT 1 function test results ... 122
6.2 Schaffer function 1 function test results .. 124

7.1 Result for 30 runs of ABSA to optimise the cost of shipping refined oil problem 142
7.2 Result for 30 runs of ABSA to optimise the profit of selling television sets problem 146
7.3 Performance results of MABSA to optimise the weight of the car side impact design 151
7.4 Performance results of MABSA to optimise the efficiency of brushless wheel DC motor 154
7.5 Results of D-PSO-MABSA to optimise the metal cutting process problem 157
7.6 Generator cost and emission coefficients of the IEEE 30-bus 6-generator unit electrical network 159
7.7 Best simulation result of the IEEE 30-bus 6-generator unit electrical network 160
List of Algorithms

1. Bat algorithm ... 31
2. Bats sonar algorithm ... 36
3. Adaptive bats sonar algorithm ... 45
4. Modified adaptive bats sonar algorithm 78
5. Particle swarm optimisation algorithm 116
6. Dual-particle swarm optimisation-modified adaptive bats sonar algorithm ... 117
6. Dual-particle swarm optimisation-modified adaptive bats sonar algorithm - cont. 118