Optimization of Ferulic Acid Production from Banana Stem Waste Using Central Composite Design

Nurul Shareena Aqmar Mohd Sharif, Ee Su Thor, Norazwina Zainol, and Mohd Faizan Jamaluddin
Faculty of Chemical Engineering and Natural Resources, University Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang,

ABSTRACT
Abandoning banana stem waste (BSW) seems a loss since it is a good source of lignocelluloses to produce ferulic acid (FA). This study was conducted to optimize the production of FA via feruloyl polysaccharide hydrolysis from BSW by fermentation with a soil mixed culture. The optimization used response surface methodology (RSM) based on a five level-two factor central composite design (CCD). Parameters studied were the ratio of water to BSW (v/v) and incubation time (hours). Range values for each factor were 0.5:1 to 1.5:1 ratio and 12–36 h, respectively. Interaction between these factors revealed that effect of time was greater than ratio of water to BSW, since a sufficient time is important for the mixed culture to fully use BSW during inoculation. The optimum condition was determined as 1:1 water to BSW ratio and 27 h incubation time. Under this optimized condition, the maximum FA produced was 1.17 mg FA/g BSW, which was in close agreement with predicted values (30%). This indicates that the suitability of the models was successfully developed by RSM-CCD in optimizing the hydrolysis conditions for maximum FA production. That being said, BSW is proven useful and highly feasible for producing quality goods naturally.

KEYWORDS:
ferulic acid, central composite design, banana stem waste, soil mixed culture

DOI: 10.1002/ep.12560