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ABSTRACT 

 

This thesis presents the development of strain-based fatigue life calculation software for 

variable amplitude loading data. The main objective of this study is to develop 

calculation software for fatigue life prediction using MATLAB
®
. The software allows 

life predictions to quickly provide fatigue crack initiation using SAESUS data and road 

loading history on car lower suspension arm. In addition, the fatigue life was predicted 

using strain life approach subjected to variable amplitude loading. Coffin Manson are 

the method that provides in the software. Rainflow cycle counting method will be use to 

extract the cycle from time series data. Then the Palmgren-Rules equation was utilized 

to calculate cumulative damage.  As a result, the GUI will display the result from the 

method using. From the software development, it can contribute to all user for calculate 

life prediction especially for variable amplitude loading. Thus the software does not 

need higher cost and also user friendly. 
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ABSTRAK 

 

Tesis ini membentangkan satu pembangunan perisian pengiraan hayat lesu bagi data 

bebanan pelbagai amplitud. Objektif utama adalah untuk membangunkan satu perisian 

pengiraan untuk analisis hayat lesu menggunakan MATLAB
®
. Perisian ini 

membenarkan ramalan hayat untuk permukaan retak dengan menggunakan data 

SAESUS dan data lengan di bawah ampaian kereta semasa perjalanan. Dalam pada itu, 

hayat lesu diramal dengan menggunakan pendekatan hayat lesu yang dikenakan untuk 

pembebanan pelbagai amplitud. Model Coffin Manson merupakan kaedah yang 

disediakan dalam perisian ini. Kaedah pengiraan aliran hujan dapat digunakan dalam 

mengembangkan setiap kitaran dari data siri masa. Kemudian, jumlah kerosakan 

kumulatif dapat ditentukan dengan aturan Palmgren Miner. Keputusannya, satu paparan 

dapat dipaparkan hasil daripada menggunakan kaedah-kaedah yang disediakan. Perisian 

ini dapat menyumbang dalam memudahkan pengguna khususnya pelajar bagi mengira 

sesuatu jangka hayat lesu. Dalam pada itu, perisian ini tidak memerlukan kos yang 

tinggi dan ianya mesra pengguna. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 PROJECT BACKGROUND 

 

This is project about Software Development of Strain-Based Fatigue Life 

Calculation for Variable Amplitude Loading Data using MATLAB
®
 GUI. This project 

will use a method that need to be taken into consideration to successfully accomplish 

this project. The methods that are going to use is Coffin Manson. 

 

Fatigue is the most important failure mode to be considered in a mechanical 

design. Under the action of oscillatory tensile stresses of sufficient magnitude, a small 

crack will initiate at a point of the stress concentration. Once the crack is initiated, it 

will tend to grow in a direction orthogonal to the direction of the oscillatory tensile 

loads. There are several reasons for the dominance of this failure mode and the 

problems of designing to avoid it: the fatigue process is inherently unpredictable, as 

evidenced by the statistical scatter in laboratory data; it is often difficult to translate 

laboratory data of material behavior into field predictions; it is extremely difficult to 

accurately model the mechanical environments to which the system is exposed over its 

entire design lifetime; and environmental effects produce complex stress states at 

fatigue-sensitive hot spots in the system. It can be thought that fatigue can involve a 

very complicated interaction of several processes and/or influences (Stephens et al. 

2001) 
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A graphical user interface (GUI) is a pictorial interface to a program. A good 

GUI can make programs easier to use by providing them with a consistent appearance 

and with intuitive controls like pushbuttons, list boxes, sliders, menus, and so forth. The 

GUI should behave in an understandable and predictable manner, so that a user knows 

what to expect when he or she performs an action (Hunt et al. 2001).  

 

MATLAB
®
 is viewed by many users not only as a high-performance language 

for technical computing but also as a convenient environment for building graphical 

user interfaces (GUI). Data visualization and GUI design in MATLAB
®

 are based on 

the Handle Graphics System in which the objects organized in a Graphics Object 

Hierarchy can be manipulated by various high and low level commands. If using 

MATLAB
®
7 the GUI design more flexible and versatile, they also increase the 

complexity of the Handle Graphics System and require some effort to adapt to. 

 

1.2 PROBLEM STATEMENT 

 

The current software is able to calculate fatigue life for variable amplitude 

loading data but it‟s difficult to get the software because of the higher cost. In this 

development country, the software has been created to display the value that had been 

calculated. Same for this project, fatigue life calculation software has been developed 

and will able to display at the MATLAB
®
 program that is GUIDE. The advantages of 

this GUIDE is it will not only display the value but it will also able to explain the 

purpose of this program with interesting button and figure and also can guide the users 

to use this program. 

 

1.3 OBJECTIVES 

 

i. Design MATLAB
®
 GUI for Fatigue Life Calculation 

 

To create and design GUI using GUIDE in MATLAB
®
 Software 

package to make an easier for the user to use. The design in GUI must be 

user-friendly to make sure the user understand to use it. 
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ii. To Develop Algorithm for Calculating Fatigue Life  

 

Develop the Fatigue Life Prediction Algorithm using method Coffin 

Manson by implement iteration method to solve the equation. This 

method will display a fatigue life in MATLAB
®
 GUI. 

 

1.4 HYPOTHESIS 

 

Hypothesis of this project is when the software successfully develops, 

the data from SAESUS will be used to calculate fatigue life for variable 

amplitude loading data. This software calculates fatigue life using Coffin 

Manson method. This software also able to display time domain data and 

rainflow histogram based on material properties select and loading data used. 

 

1.5 SCOPE OF RESEARCH 

 

The first element need to be considered for scope of this project is 

development on Strain Life Fatigue Model. This model only focused on one 

method which is Coffin Manson. 

 

The second element is software that becomes the main part of this 

project. The software that use in this project is Graphical User Interface 

Development Environment (GUIDE) in MATLAB
®
 software package. This 

software is to design and create the GUI layout to make a user-friendly for user. 

For this GUIDE software is divide into two, first is GUI layout design with a 

consistent appearance and with intuitive controls like pushbuttons, list boxes, 

sliders, menus, and so forth. And second is for the program M-File, must design 

and use the right coding to make sure the design in GUI layout is work properly 

like what is needed.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 FATIGUE 

 

 Fatigue is the process of progressive localized permanent structural change 

occurring in a material subjected to conditions that produce fluctuating stresses and 

strains at some point or points and that may culminate in cracks or complete fracture 

after a sufficient number of fluctuations. If the maximum stress in the specimen does 

not exceed the elastic limit of the material, the specimen returns to its initial condition 

when the load is removed. A given loading may be repeated many times, provided that 

the stresses remain in the elastic range. Such a conclusion is correct for loadings 

repeated even a few hundred times. However, it is not correct when loadings are 

repeated thousands or millions of times. In such cases, rupture will occur at a stress 

much lower than static breaking strength. This phenomenon is known as fatigue 

(Stephens et al 2001). 

 

 To be effective in averting failure, the designer should have a good working 

knowledge of analytical and empirical techniques of predicting failure so that during the 

pre-described design, failure may be prevented. That is why; the failure analysis, 

prediction, and prevention are of critical importance to the designer to achieve a success 

(Stephens et al 2001). 

 

 Fatigue design is one of the observed modes of mechanical failure in practice. 

For this reason, fatigue becomes an obvious design consideration for many structures, 

such as aircraft, bridges, railroad cars, automotive suspensions and vehicle frames. For 

these structures, cyclic loads are identified that could cause fatigue failure if the design 
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is not adequate (Stephens et al. 2001). The basic elements of the fatigue design process 

are illustrated in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: The basic elements for the fatigue design process. 

 

Sources: Rise et. al (1988) 

 

 Service loads, noise and vibration: Firstly, a description of the service 

environment is obtained. The goal is to develop an accurate representation of the loads, 

deflections, strains, noise, vibration etc. that would likely be experienced during the 

total operating life of the component. Loading sequences are developed from load 

histories measured and recorded during specific operations. The most useful service 

load data is recording of the outputs of strain gages which are strategically positioned to 

directly reflect the input loads experienced by the component or structure. Noise and 

vibration has also effect on insight in the modes and mechanics of component and 

structural behaviour. An objective description of the vibration systems can be done in 

terms of frequency and amplitude information (Rise et. al 1988). 

. 
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 Stress analysis: The shape of a component or structure and boundary conditions 

dictates how it will respond to service loads in terms of stresses, strains and deflections. 

Analytical and experimental methods are available to quantify this behaviour. Finite 

element techniques can be employed to identify areas of both high stress, where there 

may be potential fatigue problems, and low stress where there may be potential for 

reducing weight. Experimental methods can be used in situations where components or 

structures actually exist. Strain gages strategically located can be used to quantify 

strains at such critical areas (Rise et. al 1988). 

 

 Material properties: A fundamental requirement for any durability assessment is 

knowledge of the relationship between stress and strain and fatigue life for a material 

under consideration. Fatigue is a highly localized phenomenon that depends very 

heavily on the stresses and strains experienced in critical regions of a component or 

structure. The relationship between uniaxial stress and strain for a given material is 

unique, consistent and, in most cases, largely independent of location. Therefore, a 

small specimen tested under simple axial conditions in the laboratory can often be used 

to adequately reflect the behaviour of an element of the same material at a critical area 

in a component or a structure. However, the most critical locations are at notches even 

when loading is uniaxial (Rise et. al 1988). 

 

 Cumulative damage analysis: The fatigue life prediction process or cumulative 

damage analysis for a critical region in a component or structure consists of several 

closely interrelated steps as can be seen in Figure 2.2 separately. A combination of the 

load history (Service Loads), stress concentration factors (Stress Analysis) and cyclic 

stress-strain properties of the materials (Material Properties) can be used to simulate the 

local uniaxial stress-strain response in critical areas. Through this process it is possible 

to develop good estimates of local stress amplitudes, mean stresses and elastic and 

plastic strain components for each excursion in the load history. Rainflow counting can 

be used to identify local cyclic events in a manner consistent with the basic material 

behaviour. The damage contribution of these events is calculated by comparison with 

material fatigue data generated in laboratory tests on small specimens. The damage 

fractions are summed linearly to give an estimate of the total damage for a particular 

load.history (Rise et. al 1988). 
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Figure 2.2: The cumulative damage analysis process 

 

Sources: Ariduru (2004) 

 

 Component test: It must be carried out at some stage in a development of a 

product to gain confidence in its ultimate service performance. Component testing is 

particularly in today‟s highly competitive industries where the desire to reduce weight 

and production costs must be balanced with the necessity to avoid expensive service 

failures (Ariduru 2004). 

 

 Fatigue life estimates are often needed in engineering design, specifically in 

analyzing trial designs to ensure resistance to cracking. A similar need exists in the 

troubleshooting of cracking problems that appear in prototypes or service models of 

machines, vehicles, and structures. That is the reason that the predictive techniques are 

employed for applications ranging from initial sizing through prototype development 

and product verification. The functional diagram in Figure 2.3 shows the role of life 

prediction in both preliminary design and in subsequent evaluation-redesign cycles, then 

in component laboratory tests, and finally in field proving the tests of assemblies or 

composite vehicles and a conventional stress analysis might lead to a assumption of 

safety that does not exist (Ariduru 2004). 
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2.2 STRESS-LIFE BASED APPROACH (S-N METHOD) 

 

 For the fatigue design and components, several methods are available. All 

require similar types of information. These are the identification of candidate locations 

for fatigue failure, the load spectrum for the structure or component, the stresses or 

strains at the candidate locations resulting from the loads, the temperature, the corrosive 

environment, the material behaviour, and a methodology that combines all these effects 

to give a life prediction. Prediction procedures are provided for estimating life using 

stress life (Stress vs. Number of cycle‟s curves), hot-spot stresses, strain life, and 

fracture mechanics. With the exception of hot-spot stress method, Figure 2.3 shows all 

these procedures have been used for the design of aluminium structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Functional diagram of engineering design and analysis 

 

Sources: Rise et al. (1988) 
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 Since the well-known work of Wöhler in Germany starting in the 1850‟s, 

engineers have employed curves of stress versus cycles to fatigue failure, which are 

often called S-N curves (stress-number of cycles) or Wöhler‟s curve (Lalanne et 

al.1999). Since the well-known work of Wöhler in Germany starting in the 

1850‟s,engineers have employed curves of stress versus cycles to fatigue failure, which 

are often called S-N curves (stress-number of cycles) or Wöhler‟s curve. 

 

 The basis of the stress-life method is the Wöhler S-N curve, that is a plot of 

alternating stress, S, versus cycles to failure, N. The data which results from these tests 

can be plotted on a curve of stress versus number of cycles to failure. This curve shows 

the scatter of the data taken for this simplest of fatigue tests. A typical S-N material data 

can be seen in Figure 2.4. The arrows imply that the specimen had not failed in 10
7
 

cycles (Lalanne et al. 1999) 

. 

 

 

Figure 2.4: A typical S-N material data 

 

Sources: Ariduru (2004) 
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 The approach known as stress-based approach continues to serve as a 

widespread used tool for the design of the aluminium structures. Comparing the stress-

time history at the chosen critical point with the S-N curve allows a life estimate for the 

component to be made. 

 

 Stress-life approach assumes that all stresses in the component, even local ones, 

stay below the elastic limit at all times. It is suitable when the applied stress is 

nominally within the elastic range of the material and the number of cycles to failure is 

large. The nominal stress approach is therefore best suited to problems that fall into the 

category known as high-cycle fatigue. High cycle fatigue is one of the two regimes of 

fatigue phenomenon that is generally considered for metals and alloys. It involves 

nominally linear elastic behaviour and causes failure after more than about 10
4
 to 10

5
 

cycles. This regime associated with lower loads and long lives, or high number of cycles 

to produce fatigue failure. As the loading amplitude is decreased, the cycles-to-failure 

increase (Lalanne et al. 1999). 

 

2.3 STRAIN BASED LIFE FATIGUE 

 

 Also known as low cycle fatigue which mean is repeated cyclic loadings that 

cause significant plastic cracking after a relatively small number of cycles-hundreds or 

thousands. Low cycle fatigue typically occurs as a result of repeated localized yielding 

near stress raisers, such as holes, fillets and notches, despite the elastic deformation 

occurring over the bulk of the component. Uniaxial testing is performed on several 

smooth (unnotched) specimens under different cyclic deformation levels in typical low 

fatigue test. Each specimen follows a given constant stress amplitude, completely 

reversed, cyclic strain. That is, the mode of testing is strain control instead of stress 

control. Stress response is monitored during cyclic loading, and the number of cycles to 

failure is recorded for these tests. The result from several tests is necessary to determine 

the cyclic stress to curve and the strain life curve for the material (Yung-Li et al. 2005). 
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Figure 2.5: Concept of the local strain approach 

 

Sources: Yung-Li et al. (2005) 

 

2.3.1 Coffin-Manson Theory 

 

 The Coffin-Manson (Coffin 1954; Manson 1965) relation empirically relates the 

cycles to final failure, Nf, to the plastic strain amplitude, Δεp / 2. Expressed in the usual 

form 

 

∆ε

2
=

σ'f

E
 2Nf 

b
+ε'f 2Nf 

c
                                             (2.1) 

 

which E is modulus of elasticity, εa is the total strain amplitude, 2Nf is reversals to 

failure, σ`f is fatigue strength coefficient, b is fatigue strength exponent, ε`f  is fatigue 

ductility coefficient and c is fatigue ductility exponent. Figure 2.6 has been resolved 

into elastic and plastic strain component from the steady-state hysteresis loops 

(Stephens et al 2001). 
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Figure 2.6: Strain-life showing total, elastic, and plastic strain components 

 

Sources: Stephens et al. (2001) 

 

2.3.2 Mean Stress Effects 

 

 Strain-controlled deformation and fatigue behavior discussed in the previous 

sections were for completely reversed straining, R = εmin / εmax = -1. In many 

applications, however, a mean strain can be present. Strain-controlled cycling with a 

mean strain usually results in a mean stress which may relax fully or partially with 

continued cycling. This relaxation is due to the presence of plastic deformation, and 

therefore, the rate or amount of result, there is more mean stress relaxation at larger 

strain amplitude. A model for predicting the amount of mean stress relaxation as a 
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function of cycles was proposed. Stress relaxation is different from cyclic softening and 

can occur in a cyclically stable material. 

 

 In Morrow`s (1968) method, the elastic term in the strain-life equation is 

modified by the mean stress. The modification is consistent with observations that the 

mean stress effects are significant at low values of plastic strain, where elastic strain 

dominates. Unfortunately, it correctly predicts that the ratio of elastic to plastic strain is 

dependent on mean stress, which is not true. Figure 2.7 shows Morrow mean stress 

correction. 

 

 An alternative version of Morrow`s mean stress parameter were both the plastic 

and elastic terms are affected by the mean stress is given by 

 

∆ε

2
=εa=

σf`-σm

E
 2Nf 

b
+εf`  

σf`-σm

σf`

 

ε
b 

 2Nf 
c
                  (2.2) 

 

 

 

Figure 2.7: Morrow Mean Stress Correction for Strain Life Fatigue Analysis. 

 

Sources: Browell (2006) 
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 Smith, Watson and Topper (SWT) (1970) suggested a different equation to 

account for the presence of mean stresses. It has the limitation that it is undefined for 

negative maximum stresses. The physical interpretation of this is that no fatigue damage 

occurs unless tension is present at some point during the loading. 

 

 The equation is 

 

σmaxεaE= σf` 
2
 2Nf 

2b
+σf`εf`E 2Nf 

b+c
                                (2.3) 

 

where σmax is maximum stress and εa is alternating strain. This equation is based on 

assumption that for different combinations of strain amplitude, εa, and mean stress, σm, 

the product σmax εa remains constant for a given life. Figure 2.8 shows SWT mean stress 

correction. 

 

 

 

Figure 2.8: SWT Mean Stress Correction for Strain Life Fatigue Analysis. 

 

Sources: Browell (2006) 
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2.4 CYCLE COUNTING 

 

 Cycles can be counted using time histories of the loading parameter of interest, 

such as force, torque, stress, strain, acceleration, or deflection. In Figure 2.9, one 

complete stress cycle in a time domain is related to a closed hysteresis loop in the local 

stress-strain coordinate and consists of two reversals. The reversal can be described as 

the event of unloading or loading (Yung-Li et al 2005). 

 

 

 

Figure 2.9: Definition of cycles and reversals 

 

Source: Yung-Li et al (2005) 

 

 Over the years, one-parameter cycle counting methods such as level crossing, 

peak-valley, and range counting have been commonly used for extracting the number of 

cycles in a complex history. These methods are unsatisfactory for the purpose of 

describing a loading cycle and fail to link the loading cycles to the local stress-strain 

hysteresis behaviour that is known to have a strong influence on fatigue damage 

analysis. Thus, these methods are considered inadequate for fatigue damage analysis. 

However, the following sections present descriptions of the one-parameter cycle 

counting methods as an illustration of the techniques used in cycle counting and for 

comparison to the more effective two-parameter cycle counting methods. 
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 For variable fatigue loading amplitude, cycle counting method is using for make 

analysis easier change to simple form or discrete. This method is widely used in life 

prediction strain model.  The usual method of cycle counting used were as level 

crossing, peak valley, range counting and „rainflow‟ (ASTM E1049,1985). 

 

 In this counting method, the magnitude of the loads in the load-time history has 

to be divided into a number of levels. This process is shown in Figure 2.10. One count 

at a specific level is defined when a portion of the load-time history with a negative 

slope passes through this level below a reference load. The reference load level is 

usually determined by the mean of the complete load-time history. A variation of this 

method is to count all of the levels crossing with the positive-sloped portion of the load-

time history. 

 

 

 

Figure 2.10: Level crossing counting of a service load-time history  

 

Source: Yung-Li et al (2005) 

 

 Figure 2.11 show the tabulated and plotted results using the level-crossing count 

from the load-time history in Figure 2.10. Once all the counts are determined, they are 

use to form cycles. The cycle extraction rule follows that the most damaging fatigue 

cycles can be derived by first constructing the largest possible cycle, followed by the 

second largest possible cycle, and so on. This process repeated until all available counts 

are used up. Table 2.1 summarizes the cycle counting results. 
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Figure 2.11: A process to generate cycles from level crossing counts. 

 

Source: Yung-Li et al (2005) 

 

Table 2.1: Tabulated cycle extracted from the level crossing counts 

 

Range Cycles 

22 1 

20 1 

12 2 

4 1 

 

Source: Yung-Li et al (2005) 

 

 This counting technique first identifies the counts of peaks and valleys in a load-

time history and subsequently constructs the possible cycles from the most to the least 

damaging events according to the extracted peak-valley counts. The peak is the 

transition point where a positive-sloped segment turns into a negative-sloped segment, 

and the valley is the point where a negative-sloped segment changes to a positive-slope 

one. Peaks above and valleys below a reference load level are counted. Table 2.2 shows 

tabulated results from the peak-valley counting in the load-time history in Figure 

2.12(a). The process to generate the cycles from the peak-valley counts is illustrated in 

Figure 2.12(b). Table 2.3 summarizes the final cycle counting results. 
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Figure 2.12(a): Peak-valley counting of services load-time history 

 

Source: Yung-Li et al (2005) 

 

 

 

Figure 2.12(b): A process to derive cycles from a peak-valley counting 

 

Source: Yung-Li et al (2005) 
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Table 2.3: Tabulated cycles extracted from peak-valley counts 

 

Range Cycles 

22 1 

20 1 

12 2 

6 1 

4 1 

 

Source: Yung-Li et al (2005) 

 

 For range counting method, this counting technique defines one count as a 

range, the height between a successive peak and valley. Positive ranges and negative 

ranges are defines on the positively sloped reversals and negatively sloped reversals, 

respectively. Each range represents on one-half cycle(reversal). Figure 2.13 illustrates 

the counts of positive and negative ranges. Table 2.4 lists the summary of the summary 

of the range counts and Table 2.5 shows the final cycles extracted from the range 

counts. 

 

 

 

Figure 2.13: Range counting of service load-time history 

 

Source: Yung-Li et al (2005) 
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 Two-parameter cycles counting methods, such as the rainflow cycle counting 

method, cam faithfully represent variable-amplitude cyclic loading. Dowling (1979) 

states that the rainflow counting method is generally regarded as the method leading to 

better predictions of fatigue life. It can identify events in a complex loading sequence 

that is compatible with constant-amplitude fatigue data. Matsuishi and Endo (1968) 

originally developed the rainfow cycle counting method based on the analogy of 

raindrops falling on a pagoda roof and running down the edges of the roof. A number of 

variations of this original scheme have been published for various applications. 

 

Table 2.4: Tabulated range counts results from the range counting method 

 

Range Counts 

+20 1 

+18 1 

+12 2 

+8 1 

+6 1 

-8 1 

-12 1 

-14 1 

-16 2 

 

Source: Yung-Li et al (2005) 

 

Table 2.5: Tabulated cycle extracted from the range counts 

 

Range Counts 

20 0.5 

18 0.5 

16 1 

14 0.5 

12 1.5 

8 1 

6 0.5 

  

Source: Yung-Li et al (2005) 
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 Figure 2.14 shows the rules that identify the two possible closed cycles in a time 

history where stress is the load parameter. The new time history shown in Figure 2.14(a) 

is generated by cutting all the points prior to and including the highest peak and by 

appending these data to the end of the original history. An additional highest peak is 

included n the new time history to close the largest loop for conservatism. The three 

consecutive stress points (S1, S2, S3) define the two consecutive ranges as ΔS1 = |S1-S2| 

and ΔS2 = |S2-S3|. If ΔS1 ≤ ΔS2 is extracted, and if ΔS1> ΔS2, no cycle is counted. The 

first cycle formed by two data points from -2 to 6 is extracted. A new load-time history 

is generated by connecting the point before -2 and the point after 6 to each other. This is 

illustrated in Figure 2.14(b). The same process is repeated until all the cycles are 

identified. This repetition is illustrated in Figure 3.7(c)-(g). The rainflow cycle counting 

results are tabulated in Table 2.6 
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(a)                                                               (b)  

 

(c)        (d) 

 

(e)      (f) 

 

(g)      (h) 

 

Figure 2.14: Sequence of the fatigue „rainflow‟ cycle counting method based on 

      standard ASTM E-1049 

 

Source: Yung-Li et al (2005) 
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Table 2.6: Summary of cycle counting results 

 

No. of Cycles From To Range Mean 

1 -2 6 8 2 

1 -10 2 12 -4 

1 -4 2 6 -1 

1 -6 6 12 0 

1 10 -6 16 2 

1 12 -10 22 1 

 

Source: Yung-Li et al (2005) 

 

2.5 LINEAR DAMAGE RULE (MINER’S RULE) 

 

 The Linear Damage Rule was first proposed by Palmgren (1924) and was further 

developed by Miner (1945). Today the method is commonly known as Miner's Rule.  It 

widely used and still regarded as important tools in determining fatigue life. 

 

 This Palmgren-Miner is a linear concept depends on assumptions that changes 

occur in cycle are not uniformly affect the fatigue life. (Zahavi,1996). Therefore, the 

damage of one cycle, Di, can be calculate using equation  

 

𝐷𝑖 =
1

𝑁𝑖
                                                                    (2.12) 

 

 Where Ni  is number cycles of failure at constant amplitude. To count 

accumulated damage for various amplitude cyclic loading, a cumulative fatigue damage 

model can be used known as Palmger-Miner rule. This rules has been developed based 

on the failure of the various stages of loading, and it can defined as 

 

𝐷 =  
𝑛𝑖
𝑁𝑖

=  𝑟𝑖                                                         (2.13) 

 

 Wheres ni is cycle counting at stress level σi and Ni is fatigue life at the same for 

constant amplitude (Memon et al 2002). Calculation of cumulative at the three levels of 
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amplitude, n1, n2 and n3 using Palmgren-Miner rule can be defined through eq 2.14 with 

related show in Figure 2.15. 

 

𝐷 =
𝑛1

𝑁1
+  

𝑛2

𝑁2
+ 

𝑛3

𝑁3
                                                      (2.14) 

 

 If the component have 100% damages and will result on crack, Palgrem-Miner 

equation is 

 

 
𝑛𝑖
𝑁1

= 1                                                                (2.15) 

 

 

 

Figure 2.15: Stress spectrum 

 

Source: engrasp (2010) 
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2.6 STEADY STATE CYCLIC STRESS-STRAIN 

 

 Fatigue life can be characterized by the steady-state behavior because for 

constant strain-amplitude controlled testing, the stress-strain relationship becomes stable 

after rapid hardening or softening in the initial cycles corresponding to the first several 

percent of the total fatigue life. The cyclic stable stress-strain response is the hysteresis 

loop and is identified in Figure 2.16. The hysteresis loop defined by the total strain 

range (Δε) and the total stress range (Δσ) represents the elastic plus elastic work on a 

material undergoing loading and unloading. Usually, the stabilized hysteresis loop is 

taken at half of the fatigue life (Yung-Li et al 2005). 

 

 

 

Figure 2.16: Hysteresis loop 

 

Source: Yung-LI et al (2005) 

 

 When a family of stabilized hysteresis loops with various strain amplitude levels 

is plotted on the same axes as shown in Figure 2.17, a cyclic stress-strain curve is 

defined by the locus of the loop tips (Yung-Li et al 2005). 
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Figure 2.17: Cyclic stress-strain curve 

 

Source: Yung-Li et al (2005)  

 

2.7 MATLAB
®

 

 

 The MATLAB
®
 technical computing language and development environment is 

used in a variety fields, such as image and signal processing, control systems, financial 

modeling, and computational biology. MATLAB
®
 offers many specialized routines 

through domain specific add-ons, called “toolboxes”, and a simplified interface to high-

performance libraries such as BLAS, FFTW and LAPACK. These features appeal to 

domain experts who can quickly than with a low-level language such as C (Hunt, 2001). 

 

 MATLAB
®
 is an interactive, matrix-based system for scientific and engineering 

numeric computation and visualization. It can solve complex numerical problems in a 

fraction of the time with a programming language such as Fortran or C. The name 

MATLAB
®
 is derived from MATrix LABoratory (Hunt, 2001). 
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 The software has developed from early public domain versions of the late 1970s 

to a mature product in the 1990s. The numerical routines, the graphical output and the 

elements for the construction of graphical user interfaces from a unity that can easily be 

used for teaching and learning (Jia and Schaufelberger, 1995). Some of the early roots 

of MATLAB are still visible;  from a computer science point of view, the product is less 

developed then from the point of view of algorithms and graphics. The old concept on 

one file per function is still valid in version 4, and makes the package heavy and 

demanding on resources (Hunt, 2001). 

 

 MATLAB
®
 is common-driven, and the well-structured help facilities is needed 

for operation because of the many names of the functions that have to be known or 

found for using the system appropriately. Figure 2.18 contains an example of a newly 

launched MATLAB
®
 Desktop (Hunt, 2001). 

 

 

 

Figure 2.18: A MATLAB Desktop 

 

Source: mathworks (2010) 

 

http://www.mathworks.com/
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 MATLAB
®
 also provides an interactive tool called GUIDE (this stands for 

Graphical User Interface Development Environment) that greatly simplifies the task of 

building a GUI. The Layout Editor looks like Figure 2.19. 

 

A graphical user interface (GUI) is a pictorial interface to a program. A good 

GUI can make programs easier to use by providing them with a consistent appearance 

and with intuitive controls like pushbuttons, list boxes, sliders, menus, and so forth (R. 

Hunt, 2001). The GUI should behave in an understandable and predictable manner, so 

that a user knows what to expect when he or she performs an action. For example, when 

a mouse click occurs on pushbutton, the GUI should initiate the action described on the 

label of the button. This chapter introduces the basic elements of the MATLAB
®
 GUIs. 

The chapter does not contain a complete description of components or GUI features, but 

it does provide the basics required to create functional GUIs for your programs (Hunt, 

2001). 

 

 

 

Figure 2.19: The Layout Editor 

 

Source: mathworks (2010) 
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Applications that provide GUIs are generally easier to learn and use since the 

person using the application does not need to know what commands are available or 

how they work. The action that results from a particular user action can be made clear 

by the design of the interface (Hunt, 2001). 

 

2.8 MATLAB
®

 GRAPHICAL USER INTERFACE (GUI) 

 

 A graphical user interface provides the user with a familiar environment in 

which to work. This environment contains pushbuttons, toggle buttons, lists, menus, text 

boxes, and so forth. All of which are already familiar to the user, so that he or she can 

concentrate on using the application rather than on the mechanics involved in doing 

things. However, GUIs are harder for the programmer because a GUI-based program 

must be prepared for mouse clicks (or possibly keyboard input) for any GUI element at 

any time. Such inputs are known as events, and a program that responds to events is said 

to be event driven. The three principal elements required to create a MATLAB
®

 

Graphical User Interfaces are (Hunt, 2001):- 

 

i. Components. Each item on a MATLAB
®
 GUI (pushbuttons, labels, edit boxes, 

etc.) is a graphical component. The types of components include graphical 

controls (pushbuttons, edit boxes, lists, sliders, ect.), static elements (frames and 

text strings), menus, and axes. Graphical controls and static elements are created 

by the function uicontrol, and menus are created by the functions uimenu and 

uicontextmenu. Axes, which are used to display graphical data, are created by 

the function axes. Figure 2.20 shows an example of GUIDE tool window 
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Figure 2.20: The Guide tool window 

 

ii. Figures. The components of a GUI must be arranged within a figure, which is a 

window on the computer screen. In the past, figures have been created 

automatically whenever we have plotted data. However, empty figures can be 

created with a function figure and can be used to hold any combination of 

components. 

 

iii. Callbacks. Finally, there must be some way to perform an action if a user clicks 

a mouse on a button or types information on a keyboard. A mouse click or a key 

press in an event, and the MATLAB
®
 program must be respond to each event if 

the program is to perform its function. For example, if a user clicks on a button, 

that event must cause the MATLAB
®
 code that implements the function of the 

button to be executed. The code executed in response to an event is known as a 

call back. There must be a call back to implement the function of each graphical 

component on the GUI. Figure 2.21 shows the pushbutton with Callback. 
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Align 

Objects 
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Figure 2.21: The Push Button with Callback 

 

2.9 EXISTING FATIGUE SOFTWARE 

 

2.9.1 Glyphworks 

 

 Gylphworks is a powerful data processing system for engineering test data 

analysis with specific application to durability and fatigue analysis. Designed to handle 

huge amounts of data, GlyphWorks providers a graphical, process-oriented 

environment. It can simply create an analysis workflow by „drag‟ and „drooping‟ 

analysis building blocks. The example of GlyphWorks is shown in Figure 2.20. 

 

 In addition to general signal processing, GlyphWorks provides leading fatigue 

analysis capabilities for measured data. Unique capabilities include the ability to help 

specify accelerated durability tests, saving both time and money in environment 

qualification and product validation. 
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Figure 2.22: GlyphWorks Interface 

 

Source: ncode (2010) 

 

 GlyphWorks Fundamental provides visualization and basic manipulation, 

frequency spectrum analysis and filtering capability. Report layout can be interactively 

designed and these reports automatically generated by including as part of the analysis 

process. Fundamentals are a pre-requisite for all other product options (nCode 2001). 

 

 The Fundamentals is package includes support for a wide range of data formats 

and types of displays. The Super glyph capability enables multiple analysis functions to 

be encapsulated as a single glyph that can be saved re-used. 

 

 GlyphWorks provides the industry-leading fatigue analysis technology that 

needs to calculate fatigue life from measured data. It can correct for mean stress and 

surface finish effects, even back calculate from each data channel to determine a scale 

or fatigue concentration factor required to achieve a target life. Then it can review 

damage histograms to determine which load cycles were most damaging, and even 

output damage time histories to show exactly when the damage occurred. A database 

with commonly used fatigue data is also provided (nCode 2001). 
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i. Stress-Life method uses a nominal stress approach for high-cycle condition or 

non-metallic applications. A wide range of methods are provided for defining 

the SN curves including the ability to interpolate multiple material data curves 

for mean stress effects. For ultimate flexibility, Python scripting enables the 

definition of custom fatigue methods and material models 

 

ii. Strain-Life method is more appropriate for more severe loading conditions 

(low-cycle fatigue) – where local elastic-plastic strain controls the fatigue life. 

Supported methods include the Coffin-Manson-Basquin formula with additional 

mean stress corrections such as Morrow and Smith-Watson-Topper. 

 

iii. Crack Growth provides linear elastic fracture mechanics in the GlyphWorks 

environment. It provides a complete fracture mechanics capability using industry 

standard methodologies, an open environment for users to embed their own 

algorithm – and the advanced reporting and quality assurance capabilities of 

GlyphWorks. Built-in growth laws includes NASGRO3, Form an, Paris, Walker 

and more. Predicting how a crack will propagate after initiation is now easy. 

 

 

2.9.2 MSC Fatigue Software 

 

 MSC.Fatigue uses three life prediction methods. These are total life, crack 

initiation, and crack propagation. Total life is apply named in that only the total life of 

the component is of concern and not when a crack will initiate or how quickly it will 

grow. 

 

 The three methods are related to each other by the fact that the total number of 

cycles to failure, Nf, equals the number of cycles to initiate a crack, Ni, plus the number 

of cycles to propagate that crack, Np. The three methods have grown out of different 

needs over the decades using different techniques and having different degrees of 

accuracy as shown in Figure 2.23. So in theory this equation is true, but in practice 

when applying the three methods to the same problem, rarely, if ever does it ad up. 
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Figure 2.23: Life Prediction Methods 

 

Source: MSC.Fatigue QuickStart Guide 

 

 In reality however, rarely are all three methods used on the same problem, 

mainly because different industries adopt different analysis methods depending on the 

driving design philosophy. 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

3.1 INTRODUCTION 

 

  In this chapter, the methodology can be divide into two; which is develop 

algorithm for analysis fatigue data using Coffin Manson, Morrow and Smith Watson 

Topper. Another method is develop interface using MATLAB
®
 GUI for display some 

parameter related to this project.  

 

3.2 FLOW CHART OF PROJECT 

 

 From the Figure 3.1, after get the topic of the project its goes to case 

study to find more related information and to deep knowledge about the project. Find 

the information whether on internet, journal, books or anything else that related to the 

topic.  

 

For this project the software that has to use is MATLAB
®
 GUI. First, study 

about the algorithm development using rainflow and also using fatigue calculation for 

variable amplitude loading method. And second study about the software programming 

and understand how to use it. For this software has divide by two parts, first is GUI 

layout design with a consistent appearance and with intuitive controls like pushbuttons, 

list boxes, sliders, menus, and so forth. Secondly is for the program M-File, must design 

and use the right coding to make sure the design in GUI layout is work properly like 

what is needed.  

 

 



36 

 

When the two parts have done, test it to make sure the software that has been 

design is work properly. If not, identify the problem and overcome it again. After 

software part have work properly, simulate and testing it whether is okay or not. And 

troubleshoot this part if not okay until get the satisfied result. If the testing is work 

properly and correctly, finally these projects have done and can be submit the about this 

project. 

 

3.3 DEVELOPMENT ALGORITHM FOR FATIGUE LIFE CALCULATION  

 

 The calculation of fatigue life data for variable amplitude, the first thing to do is 

to find effective cycles in the fatigue data. In this research an algorithm computer has 

been developed for the cycle by using three point cycle “rainflow” counting (ASTM 

1049, 1985). A flow chart for develop algorithm cycle “rainflow” counting shown in 

Figure 3.2. 

 

3.4 DEVELOPMENT ALGORITHM OF FATIGUE LIFE CALCULATION 

FOR VARIABLE AMPLITUDE LOADING 

 

  To determine fatigue damage in a signal fatigue, a computer algorithm was 

developed. The developed algorithm is based on strain life as Coffin Manson (Coffin 

1954; Manson 1965). Theory information for the model can be referred to the section 

2.3. Flow chart for the development of fatigue life calculation algorithm is shown in 

Figure 3.3. Algorithm development process of fatigue damage calculation is as follows: 

 

i. Various amplitude fatigue data should be input to the algorithm that has been 

developed. 

 

ii. Range, maximum strain, minimum strain and average strain for each fatigue 

cycle been determine using cycle „rainflow‟ counting method. 

 

iii. The largest range of cycles was determined from available cycle to obtain the 

maximum strain(εmax)and minimum strain(εmin). 
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iv. Choose the model Coffin Manson (Coffin 1954; Manson 1965). Because of this 

model has two unknown of reversal to failure (2Nf) at both side, the iteration 

method can be used to obtain the value of reversal to failure (2Nf). M and M1 

represents the value of reversal to failure on the strain, e. The initial value of M1 

is set as 10 and will be repeated by taking the value of M to obtain value M=M1. 

Constant value of E is 204GPa, b = -0.092 and c = -0.445. 

 

v. Then input the value of reversal to failure, 2Nf for each cycle „rainflow‟. Fatigue 

damage for each cycle is then calculated by using the rules of Palmgren-Miner. 

The total amount of fatigue damage was determined by taking the cumulative 

value of fatigue damage for each cycle. 
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Figure 3.1: Flow Chart of Project 
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Figure 3.2: Flow chart for algorithm development using rainflow cycle counting 
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Figure 3.3: Flow chart for development algorithm fatigue life calculation for 

           variable amplitude loading 
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3.5 DEVELOP INTERFACE USING GRAPHICAL USER INTERFACE 

 

 This is the main part of this project. GUIDE, the MATLAB
®
 graphical user 

interfaces (GUIs). This tool allows a programmer a layout the GUI, selecting and 

aligning the GUI components to be placed in it. Once the components are in place, the 

programmer can edit their properties: name, color, size, font, text to display, and so 

forth.  

 

When guide saves the GUI, it creates working program including skeleton 

functions that the programmer can modify to implement the behavior of the GUI. Figure 

3.4 show the layout GUI after done with the designation with a few basic components 

that had been used like push button. 

 

 

 

Figure 3.4: Layout GUI (Main Window) 

 

 All the material properties need to be filling before calculate the fatigue life. The 

user can choose a data set to prompt a loading history by clicking time domain data 

pushbutton. This software only calculates fatigue life using Coffin-Manson.  

 

 

PushButton 
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For example, if the user wants to display rainflow histogram, first click 

pushbutton “rainflow histogram” at the interface. This is the way to callback function 

rainflow before one dataset of cycle range display. The 3D histogram will visual at axes 

as shown in Figure 3.5. 

 

 

 

Figure 3.5: Layout GUI (Display Axes) 

 

  

Axes 

Edittext 

 

Popupmenu 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSIONS 

 

 

4.1 INTRODUCTION 

 

 This chapter consists of the discussions on the result from the MATLAB
®
 GUI 

layout that has been developed using Graphical User Interface (GUI). The GUI in this 

project has performed the task from the data loading. This chapter also will explain the 

main menu of GUI. 

 

4.2 MAIN MENU OF THE GUI 

 

The menu of GUI in this project contains a few buttons that has been named as 

shown in Figure 4.1. The fatigue life prediction panel contain two pushbutton will 

explain in the next sub chapter. The user needs to fill all the material properties before 

calculating the fatigue life. This software also provide the user to display time loading 

history, rainflow histogram and total damage histogram. All this will display in the axes 

box. The other pushbutton is credit which is containing the detail about GUI developer 

and also the supervisor as shown in Figure 4.2. The user can use the help to get help 

when using this software. 
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Figure 4.1: Main Interface 

 

 

 

Figure 4.2: Credit Interface 
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Figure 4.3: Close Interface 

 

 When the user click Close button on the GUI, the close appears as shown in 

Figure 4.3 which is by clicking the YES button closes both the close programme and the 

GUI calls it. But when the user clicking the NO button closes just the programme. 

 

4.3 INTERFACE MATLAB
®
 GUI SOFTWARE 

 

4.3.1 Display the loading history 

 

 The material properties need to be filling under the material properties panel. 

The users need to choose the loading data and the method for calculating the fatigue 

life. By clicking the time domain data pushbutton, the loading history will appear at the 

axes as shown in Figure 4.4. 
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Figure 4.4: Time loading history 

 

Loading is another major input to the fatigue analysis. Loading information can 

be obtained using a number of different methods. Several types of variable amplitude 

loading history from SAE standard. For this software, the load history has a 

predominantly compressive (negative) mean that is referred as suspension history. The 

variable amplitude load-time histories are shown in Figure 4.5. The term SAESUS 

represent the load-time history for the suspension respectively. The considered load-

time histories are based on the SAE‟s profile. The abscissa is the time, in seconds. 

 

 

 

Figure 4.5: SAE standard suspension (SAESUS) loading 
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4.3.2 Display the rainflow histogram 

 

 The rainflow histogram can be display by clicking the rainflow histogram 

pushbutton. The cycle from the time loading data extracted by peak to peak using 

rainflow cycle counting method. This cycle counting method can be referred in 

literature review. The M-files of rainflow cycle shown in Appendix. The Figure 4.6 has 

shown the interface after clicking the pushbutton. 

 

 

 

Figure 4.6: Rainflow histogram 

 

4.3.3 Display the total damage histogram 

 

 The total damage can be display by clicking pushbutton total damage histogram. 

Figure 4.7 shown the interface. The detail of total damage histogram will be discussed 

in next sub chapter. Total life and total damage value can be calculated by clicking the 

pushbutton. The interface as shown in Figure 4.8 and Figure 4.9. 
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Figure 4.7: Total damage histogram 

 

 

 

Figure 4.8: Total damage value 
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Figure 4.9: Total life value 

 

4.4 DISCUSSION 

 

 For fatigue life prediction, strain-life approach is used using Coffin-Manson 

model. A steel material used for the purpose of stimulation is SAE1045 steel. This 

material selected because it is a material that commonly used in the automotive 

industry. In addition, these materials are also chosen because it is widely used in the 

investigation of the fatigue life parameter determination „Society of Automotive 

Engineers Fatigue Design and Evaluation‟, SAEFDE (Pals & Stephen 2004). 

Mechanical properties of SAE1045 are shown in the Table 4.1. 

 

For the simulation using software that has been developed, the fatigue data had 

been input will converted to the cycle of fatigue by using the rainflow. The data that be 

used is SAESUS data. Each cycle fatigue is displayed in a three-dimensional surface 

shown in Figure 4.10. In Figure 4.10, x-axis represents the range of strains, the y-axis 

represents the strain mean and z-axis represents the number of fatigue cycles in the 



50 

 

same range and mean. The results obtained in the majority of the signal cycle fatigue 

have a range of small amplitude. 

 

Table 4.1: Mechanical properties of SAE1045 

 

Mechanical Properties SAE1045 Steel 

Modulus of Elasticity, E (Gpa) 204 

Fatigue Strength Coefficient, 𝜎𝑓` (Mpa) 948 

Fatigue Strength Exponent, b -0.092 

Fatigue Ductility Exponent, c -0.445 

Fatigue Ductility Coefficient, 𝜀𝑓` 0.26 

 

Sources: nSoft 2001 

 

 

 

Figure 4.10: SAESUS cycle distribution in three-dimensional surface 

  

Fatigue damage for each cycle is calculated using model Coffin-Manson (Eq. 

2.1). Figure 4.11 shows the three-dimensional surface plot of fatigue damage in the 

fatigue data that been analyse. In Figure 4.11, the x-axis represents the range of strain 

for the cycle that obtained by using the „rainflow‟, y-axis represents the strain mean and 

z-axis represents the fatigue damage to the cycle that has the same range and mean. The 

value of fatigue damage is displayed on the surface get from the fatigue damage in a 

cycle time‟s total of the cycle in a fatigue signal. The number of cycles is shown in the 

surface distribution of the cycle. From the surface of fatigue damage, the high fatigue 

damage was found in the cycle there is a high cycle range. While the cycle in the range 
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of small strain gives the fatigue damage low even has a lot of cycles. Palmgren-Miner 

rules are used to determine the overall of fatigue life for variable loading. Overall 

damage value is the total of cumulative fatigue damage for each cycle fatigue. Then, the 

fatigue life obtained by calculating the reciprocal value of the overall fatigue damage. 

 

 

 

Figure 4.11: SAESUS fatigue damage distribution three-dimensional surface for fatigue 

          damage 

 

4.4.1 Comparison result with MSC Fatigue Software 

 

 The comparison between the software that has been developed and the 

MSC.Fatigue software show the result of total life in Table 4.2. 

 

Table 4.2: Total life result  

 

GUI Software MSC Fatigue 

1.485e5 (in sec) 1.644e5 (in sec) 

 

 From the result above, it show two different value of the total life between using 

GUI software and MSC.Fatigue. The different between two value because of 

MSC.Fatigue use the complex and more accurate algorithm compare to the GUI 

software. The iteration method that used in GUI software give less decimal places 

compare to  MSC.Fatigue software. 
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 The distribution of rainflow cycle that display either from GUI software or 

MSC.Fatigue is most the same. For the GUI software, the raiflow histogram plot with 

cycle range and mean is 64 bin. The Figure 4.12(a) and 4.12(b) shows the rainflow 

histogram for each software. 

 

 

(a) (b) 

 

Figure 4.12: Cycle distribution in three dimension histogram; (a) GUI Software 

    (b) MSC.Fatigue 
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CHAPTER 5 

 

 

CONCLUSION AND RECOMMENDATION 

 

 

5.1 CONCLUSION 

 

 This project is successfully developed. Graphical User Interface (GUI) for 

calculating fatigue life using variable amplitude loading data has been presented. There 

are many function in using MATLAB
®
, with the function in MATLAB

®
, it can create 

GUIDE and design the layout of the GUI. From the GUI, it can show many thing based 

on its application. For this project, the GUI is creating to display the total life and total 

damage based on variable amplitude loading data which is only focus on the Low Cycle 

Fatigue by using Coffin-Manson method. The knowledge about this has been studied 

from the literature review. 

 

The first objective for this thesis is to create and design GUI using GUIDE in 

MATLAB
®
 Software package to make an easier for the user to use. The design in GUI 

must be user-friendly to make sure the use understand to use it. The next objective is 

Develop the Fatigue Life Prediction Algorithm using methods Coffin Manson by 

implement iteration method to solve the equation. The data from SAESUS will be used 

to calculate fatigue life for variable amplitude loading data. This method will display a 

fatigue life in MATLAB
®
 GUI. The result can achieve after this software running 

smoothly using the model fatigue. 

 

 The objective of this project is to interface the MATLAB
®
 GUI that is achieved. 

The main contribution of this project is to interfacing the GUI. 
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5.2 RECOMMENDATION 

 

 The recommendations for future development of this software are: 

 

i. This software only uses Coffin-Manson method for calculating fatigue 

life. So for the future this software can be developed further by adding 

another method such as Morrow, Smith, Watson and Topper (SWT) and 

DuQuesnay. 

 

ii. The other algorithm development methods can be used for enhancement 

this software. There is many other iterations method where it is faster and 

more converge to the fixed point. 
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APPENDICES A1 

 

 

 

Figure 6.1: Time loading history for D1 

 

 

 

Figure 6.2: Time loading history for D2 
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APPENDICES A2 

 

 

 

Figure 6.3: Time loading history for D3 

 

 

 

Figure 6.4: Time loading history for D4 
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APPENDICES B1 

 

 

Figure 6.5: Rainflow histogram for D1 

 

 

 

 

Figure 6.6: Total damage histogram for D1 
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APPENDICES B2 

 

 

 

Figure 6.7: Rainflow histogram for D2 

 

 

 

Figure 6.8: Total damage histogram for D2 
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APPENDICES B3 

 

 

 

Figure 6.9: Rainflow histogram for D3 

 

 

 

Figure 6.10: Total damage histogram for D3 
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APPENDICES B4 

 

 

 

Figure 6.11: Rainflow histogram for D4 

 

 

 

Figure 6.12: Total damage histogram for D4 
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APPENDICES C1 

 

function varargout = main(varargin) 

% MAIN M-file for main.fig 

%      MAIN, by itself, creates a new MAIN or raises the existing 

%      singleton*. 

% 

%      H = MAIN returns the handle to a new MAIN or the handle to 

%      the existing singleton*. 

% 

%      MAIN('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in MAIN.M with the given input arguments. 

% 

%      MAIN('Property','Value',...) creates a new MAIN or raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before main_OpeningFunction gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to main_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

 

% Copyright 2002-2003 The MathWorks, Inc. 

 

% Edit the above text to modify the response to help main 

 

% Last Modified by GUIDE v2.5 24-Oct-2010 01:24:07 

 

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @main_OpeningFcn, ... 

                   'gui_OutputFcn',  @main_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

 

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 
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% --- Executes just before main is made visible. 

function main_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to main (see VARARGIN) 

 

% Choose default command line output for main 

handles.output = hObject; 

 

% Update handles structure 

guidata(hObject, handles); 

 

% UIWAIT makes main wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

 

 

% --- Outputs from this function are returned to the command line. 

function varargout = main_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Get default command line output from handles structure 

varargout{1} = handles.output; 

 

 

 

function edit1_Callback(hObject, eventdata, handles) 

% hObject    handle to edit1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of edit1 as text 

%        str2double(get(hObject,'String')) returns contents of edit1 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function edit1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 
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else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

function edit8_Callback(hObject, eventdata, handles) 

% hObject    handle to edit8 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of edit8 as text 

%        str2double(get(hObject,'String')) returns contents of edit8 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function edit8_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit8 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

function edit9_Callback(hObject, eventdata, handles) 

% hObject    handle to edit9 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of edit9 as text 

%        str2double(get(hObject,'String')) returns contents of edit9 as a double 

 

% --- Executes during object creation, after setting all properties. 

function edit9_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit9 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 
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function edit10_Callback(hObject, eventdata, handles) 

% hObject    handle to edit10 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of edit10 as text 

%        str2double(get(hObject,'String')) returns contents of edit10 as a double 

 

% --- Executes during object creation, after setting all properties. 

function edit10_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit10 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

function edit11_Callback(hObject, eventdata, handles) 

% hObject    handle to edit11 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of edit11 as text 

%        str2double(get(hObject,'String')) returns contents of edit11 as a double 

 

% --- Executes during object creation, after setting all properties. 

function edit11_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit11 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

% --- Executes on selection change in popupmenu1. 

function popupmenu1_Callback(hObject, eventdata, handles) 

% hObject    handle to popupmenu1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 
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% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array 

%        contents{get(hObject,'Value')} returns selected item from popupmenu1 

 

% --- Executes during object creation, after setting all properties. 

function popupmenu1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to popupmenu1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: popupmenu controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

% --- Executes on selection change in popupmenu2. 

function popupmenu2_Callback(hObject, eventdata, handles) 

% hObject    handle to popupmenu2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

val = get(hObject,'Value'); 

str = get(hObject, 'String'); 

switch str{val}; 

case 'saesus' % User selects saesus 

handles.current_data = handles.saesus; 

case 'D1' % User selects D1 

handles.current_data = handles.D1; 

case 'D2' % User selects D2 

handles.current_data = handles.D2; 

case 'D3' % User selects D3 

handles.current_data = handles.D3; 

case 'D4' % User selects D4 

handles.current_data = handles.D4; 

end 

guidata(hObject,handles) 

 

% Hints: contents = get(hObject,'String') returns popupmenu2 contents as cell array 

%        contents{get(hObject,'Value')} returns selected item from popupmenu2 

 

% --- Executes during object creation, after setting all properties. 

function popupmenu2_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to popupmenu2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: popupmenu controls usually have a white background on Windows. 
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%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

% --- Executes on button press in pushbutton1. 

function pushbutton1_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

load saesus.txt; 

assignin('base','saesus',saesus); 

z=saesus.*10e-6; 

assignin('base','z',z); 

[cyclerange, Emin, Emax, meancycle,maxcycle]=RFCFunct(z); 

assignin('base','cyclerange',cyclerange); 

assignin('base','Emin',Emin); 

assignin('base','Emax',Emax); 

assignin('base','meancycle',meancycle); 

assignin('base','maxcycle',maxcycle); 

cyclerange=cyclerange.*0.5; 

assignin('base','cyclerange',cyclerange); 

Emin=Emin.*0.5; 

assignin('base','Emin',Emin); 

Emax=Emax.*0.5; 

assignin('base','Emax',Emax); 

meancycle=meancycle.*0.5; 

assignin('base','meancycle',meancycle); 

maxcycle=maxcycle.*0.5; 

assignin('base','maxcycle',maxcycle); 

range=maxcycle/64:maxcycle/64:maxcycle; 

assignin('base','range',range); 

[damage]=DamageFunct(range) 

assignin('base','damage',damage); 

 

X=[cyclerange',meancycle']; 

assignin('base','X',X); 

 

        Z=hist3(X,[64 64]); 

        assignin('base','Z',Z); 

for a=1:64 

    assignin('base','a',a); 

    D(a,:)=Z(a,:).*damage(a); 

    assignin('base','D',D); 

end 

totaldamage0=sum(D) 
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assignin('base','totaldamage0',totaldamage0); 

totaldamage=sum(totaldamage0) 

assignin('base','totaldamage',totaldamage); 

set(handles.edit12,'string',totaldamage); 

 

% --- Executes on button press in pushbutton2. 

function pushbutton2_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

load saesus.txt; 

assignin('base','saesus',saesus); 

z=saesus.*10e-6; 

assignin('base','z',z); 

[cyclerange, Emin, Emax, meancycle,maxcycle]=RFCFunct(z); 

assignin('base','cyclerange',cyclerange); 

assignin('base','Emin',Emin); 

assignin('base','Emax',Emax); 

assignin('base','meancycle',meancycle); 

assignin('base','maxcycle',maxcycle); 

cyclerange=cyclerange.*0.5; 

assignin('base','cyclerange',cyclerange); 

Emin=Emin.*0.5; 

assignin('base','Emin',Emin); 

Emax=Emax.*0.5; 

assignin('base','Emax',Emax); 

meancycle=meancycle.*0.5; 

assignin('base','meancycle',meancycle); 

maxcycle=maxcycle.*0.5; 

assignin('base','maxcycle',maxcycle); 

range=maxcycle/64:maxcycle/64:maxcycle; 

assignin('base','range',range); 

[damage]=DamageFunct(range) 

assignin('base','damage',damage); 

 

X=[cyclerange',meancycle']; 

assignin('base','X',X); 

 

        Z=hist3(X,[64 64]); 

        assignin('base','Z',Z); 

for a=1:64 

    assignin('base','a',a); 

    D(a,:)=Z(a,:).*damage(a); 

    assignin('base','D',D); 

end 

totaldamage0=sum(D) 

assignin('base','totaldamage0',totaldamage0); 

totaldamage=sum(totaldamage0) 
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assignin('base','totaldamage',totaldamage); 

NF=1/totaldamage 

assignin('base','NF',NF); 

set(handles.edit13,'string',NF); 

 

function edit12_Callback(hObject, eventdata, handles) 

% hObject    handle to edit12 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of edit12 as text 

%        str2double(get(hObject,'String')) returns contents of edit12 as a double 

 

% --- Executes during object creation, after setting all properties. 

function edit12_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit12 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

 

function edit13_Callback(hObject, eventdata, handles) 

% hObject    handle to edit13 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of edit13 as text 

%        str2double(get(hObject,'String')) returns contents of edit13 as a double 

 

% --- Executes during object creation, after setting all properties. 

function edit13_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit13 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

% --- Executes on button press in pushbutton3. 
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function pushbutton3_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

axes(handles.axes1); 

cla; 

 

popup_sel_index=get(handles.popupmenu2,'value'); 

switch popup_sel_index 

    case 1 

        load saesus.txt; 

        assignin('base','saesus',saesus); 

        data=saesus; 

        assignin('base','data',data); 

        T=1; 

        assignin('base','T',T); 

        t=[T:T:T*length(data)]; 

        assignin('base','t',t); 

        plot(t,data,'color','k'); 

    case 2 

        load D1.txt; 

        assignin('base','D1',D1); 

        data=D1; 

        assignin('base','data',data); 

        T=1; 

        assignin('base','T',T); 

        t=[T:T:T*length(data)]; 

        assignin('base','t',t); 

        plot(t,data,'color','k'); 

    case 3 

        load D2.txt; 

        assignin('base','D2',D2); 

        data=D2; 

        assignin('base','data',data); 

        T=1; 

        assignin('base','T',T); 

        t=[T:T:T*length(data)]; 

        assignin('base','t',t); 

        plot(t,data,'color','k'); 

    case 4 

        load D3.txt; 

        assignin('base','D3',D3); 

        data=D3; 

        assignin('base','data',data); 

        T=1; 

        assignin('base','T',T); 

        t=[T:T:T*length(data)]; 

        assignin('base','t',t); 

        plot(t,data,'color','k'); 
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    case 5 

        load D4.txt; 

        assignin('base','D4',D4); 

        data=D4; 

        assignin('base','data',data); 

        T=1; 

        assignin('base','T',T); 

        t=[T:T:T*length(data)]; 

        assignin('base','t',t); 

        plot(t,data,'color','k'); 

end 

         

% --- Executes on button press in pushbutton4. 

function pushbutton4_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

axes(handles.axes1); 

cla; 

 

popup_sel_index=get(handles.popupmenu2,'value'); 

switch popup_sel_index 

    case 1 

        load saesus.txt; 

        assignin('base','saesus',saesus); 

        z=saesus; 

        assignin('base','z',z); 

        [cyclerange, Emin, Emax, meancycle]=RFCFunct(z); 

        assignin('base','cyclerange',cyclerange); 

        assignin('base','Emin',Emin); 

        assignin('base','Emax',Emax); 

        assignin('base','meancycle',meancycle); 

 

                X=[cyclerange',meancycle']; 

                assignin('base','X',X); 

                Z=hist3(X,[64 64]); 

                assignin('base','Z',z); 

                h = bar3(Z); 

                assignin('base','h',h); 

                for i=1:length(h) 

                    zdata = ones(6*length(h),4); 

                    assignin('base','zdata',zdata); 

                    k=1; 

                    assignin('base','k',k); 

                    for j=0:6:(6*length(h)-6); 

                        assignin('base','j',j); 

                        k=k+1; 

                        assignin('base','k',k); 

                    end 
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                    set(h(i),'Cdata',zdata); 

                end 

                colormap jet 

                colorbar 

                xlabel('Mean');ylabel('cycle range');zlabel('cycles'); 

          

    case 2 

        load D1.txt; 

        assignin('base','D1',D1); 

        z=D1; 

        assignin('base','z',z); 

        [cyclerange, Emin, Emax, meancycle]=RFCFunct(z); 

        assignin('base','cyclerange',cyclerange); 

        assignin('base','Emin',Emin); 

        assignin('base','Emax',Emax); 

        assignin('base','meancycle',meancycle); 

 

                X=[cyclerange',meancycle']; 

                assignin('base','X',X); 

                Z=hist3(X,[64 64]); 

                assignin('base','Z',z); 

                h = bar3(Z); 

                assignin('base','h',h); 

                for i=1:length(h) 

                    zdata = ones(6*length(h),4); 

                    assignin('base','zdata',zdata); 

                    k=1; 

                    assignin('base','k',k); 

                    for j=0:6:(6*length(h)-6); 

                        assignin('base','j',j); 

                        k=k+1; 

                        assignin('base','k',k); 

                    end 

                    set(h(i),'Cdata',zdata); 

                end 

                colormap jet 

                colorbar 

                xlabel('Mean');ylabel('cycle range');zlabel('cycles'); 

 

    case 3 

        load D2.txt; 

        assignin('base','D2',D2); 

        z=D2; 

        assignin('base','z',z); 

        [cyclerange, Emin, Emax, meancycle]=RFCFunct(z); 

        assignin('base','cyclerange',cyclerange); 

        assignin('base','Emin',Emin); 

        assignin('base','Emax',Emax); 

        assignin('base','meancycle',meancycle); 
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                X=[cyclerange',meancycle']; 

                assignin('base','X',X); 

                Z=hist3(X,[64 64]); 

                assignin('base','Z',z); 

                h = bar3(Z); 

                assignin('base','h',h); 

                for i=1:length(h) 

                    zdata = ones(6*length(h),4); 

                    assignin('base','zdata',zdata); 

                    k=1; 

                    assignin('base','k',k); 

                    for j=0:6:(6*length(h)-6); 

                        assignin('base','j',j); 

                        k=k+1; 

                        assignin('base','k',k); 

                    end 

                    set(h(i),'Cdata',zdata); 

                end 

                colormap jet 

                colorbar 

                xlabel('Mean');ylabel('cycle range');zlabel('cycles'); 

 

    case 4 

        load D3.txt; 

        assignin('base','D3',D3); 

        z=D3; 

        assignin('base','z',z); 

        [cyclerange, Emin, Emax, meancycle]=RFCFunct(z); 

        assignin('base','cyclerange',cyclerange); 

        assignin('base','Emin',Emin); 

        assignin('base','Emax',Emax); 

        assignin('base','meancycle',meancycle); 

 

                X=[cyclerange',meancycle']; 

                assignin('base','X',X); 

                Z=hist3(X,[64 64]); 

                assignin('base','Z',z); 

                h = bar3(Z); 

                assignin('base','h',h); 

                for i=1:length(h) 

                    zdata = ones(6*length(h),4); 

                    assignin('base','zdata',zdata); 

                    k=1; 

                    assignin('base','k',k); 

                    for j=0:6:(6*length(h)-6); 

                        assignin('base','j',j); 

                        k=k+1; 

                        assignin('base','k',k); 

                    end 
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                    set(h(i),'Cdata',zdata); 

                end 

                colormap jet 

                colorbar 

                xlabel('Mean');ylabel('cycle range');zlabel('cycles'); 

 

    case 5 

        load D4.txt; 

        assignin('base','D4',D4); 

        z=D4; 

        assignin('base','z',z); 

        [cyclerange, Emin, Emax, meancycle]=RFCFunct(z); 

        assignin('base','cyclerange',cyclerange); 

        assignin('base','Emin',Emin); 

        assignin('base','Emax',Emax); 

        assignin('base','meancycle',meancycle); 

 

                X=[cyclerange',meancycle']; 

                assignin('base','X',X); 

                Z=hist3(X,[64 64]); 

                assignin('base','Z',z); 

                h = bar3(Z); 

                assignin('base','h',h); 

                for i=1:length(h) 

                    zdata = ones(6*length(h),4); 

                    assignin('base','zdata',zdata); 

                    k=1; 

                    assignin('base','k',k); 

                    for j=0:6:(6*length(h)-6); 

                        assignin('base','j',j); 

                        k=k+1; 

                        assignin('base','k',k); 

                    end 

                    set(h(i),'Cdata',zdata); 

                end 

                colormap jet 

                colorbar 

                xlabel('Mean');ylabel('cycle range');zlabel('cycles'); 

end 

 

% --- Executes on button press in pushbutton5. 

function pushbutton5_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

 

load saesus.txt; 

assignin('base','saesus',saesus); 
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z=saesus.*10e-6; 

assignin('base','z',z); 

[cyclerange, Emin, Emax, meancycle,maxcycle]=RFCFunct(z); 

cyclerange=cyclerange.*0.5; 

assignin('base','cyclerange',cyclerange); 

Emin=Emin.*0.5; 

assignin('base','Emin',Emin); 

Emax=Emax.*0.5; 

assignin('base','Emax',Emax); 

meancycle=meancycle.*0.5; 

assignin('base','meancycle',meancycle); 

maxcycle=maxcycle.*0.5; 

assignin('base','maxcycle',maxcycle); 

range=maxcycle/64:maxcycle/64:maxcycle; 

assignin('base','range',range); 

[damage]=DamageFunct(range) 

 

X=[cyclerange',meancycle']; 

assignin('base','X',X); 

 

        Z=hist3(X,[64 64]); 

        assignin('base','Z',Z); 

         

for a=1:64 

    D(a,:)=Z(a,:).*damage(a); 

    assignin('base','D',D); 

end 

totaldamage0=sum(D) 

totaldamage=sum(totaldamage0) 

NF=1/totaldamage 

 

        h = bar3(D); 

        for i=1:length(h) 

            zdata = ones(6*length(h),4); 

            assignin('base','zdata',zdata); 

            k=1; 

            assignin('base','k',k); 

            for j=0:6:(6*length(h)-6); 

                assignin('base','j',j); 

                k=k+1; 

                assignin('base','k',k); 

            end 

            set(h(i),'Cdata',zdata); 

        end 

        colormap jet 

        colorbar 

        xlabel('Mean');ylabel('cycle range');zlabel('cycles' 

% --- Executes on button press in pushbutton6. 

function pushbutton6_Callback(hObject, eventdata, handles) 
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% hObject    handle to pushbutton6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% --- Executes on button press in pushbutton7. 

function pushbutton7_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton7 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% --- Executes on button press in pushbutton8. 

function pushbutton8_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton8 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

delete(handles.figure1) 
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APPENDICES C2 

 

function [cyclerange, Emin, Emax, meancycle,maxcycle]=RFCFunct(z) 

N=length(z); 

fs=200; 

T=1/fs; 

ts=N/fs; 

t=[ts/N:ts/N:ts]; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%define peak or valley for the 1st point 

if (z(1)>z(2)), 

    peak(1)=z(1); 

    i=2; 

    j=1; 

    k=1; 

    m=2; 

else 

    valley(1)=z(1); 

    i=1; 

    j=2; 

    k=2; 

    m=1; 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

b=1; 

for a=1:(length(z)-1) 

    if z(a)==z(a+1), 

    else 

        c(b)=z(a); 

        b=b+1; 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%pick peak n valley 

for n=1:(length(c)-2), 

    if (c(n+1)>max(c(n),c(n+2))), 

        peak(i)=c(n+1); 

        tpeak(i)=(n+1)*T; 

        i=i+1; 

    elseif (c(n+1)<min(c(n),c(n+2))), 

        valley(j)=c(n+1); 
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        tvalley(j)=(n+1)*T; 

        j=j+1; 

    else 

    end  

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%create new data(peak n valley data) 

for l=1:length(peak), 

    newData(k)=peak(l); 

    tnewData(k)=tpeak(l); 

    k=k+2; 

end 

 

for p=1:length(valley), 

    newData(m)=valley(p); 

    tnewData(m)=tvalley(p); 

    m=m+2; 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%peak to peak 

 

x=max(newData)%max peak 

 

for q=1:length(newData) 

    if (newData(q)==x), 

    r=q;%point max peak; 

    break 

    else 

    end 

end 

 

if newData(length(newData))<newData(length(newData)-1), 

    if newData(1)<newData(2), 

        if newData(length(newData))>newData(1), 

            s=1:r; 

            u=r:length(newData)-1; 

        else 

            s=1:r; 

            u=r:length(newData); 

        end 

    elseif newData(1)>newData(2), 

        if newData(length(newData))>newData(1) 

            s=2:r; 

            u=r:length(newData)-1; 
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        else 

            s=1:r; 

            u=r:length(newData)-1; 

        end 

    else 

    end 

else 

    if newData(1)<newData(2), 

        if newData(length(newData))>newData(1), 

            s=1:r; 

            u=r:length(newData); 

        else 

            s=2:r; 

            u=r:length(newData)-1; 

        end 

    elseif newData(1)>newData(2), 

        if newData(length(newData))>newData(1), 

            s=2:r; 

            u=r:length(newData); 

        else 

            s=1:r; 

            u=r:length(newData)-1; 

        end 

    else 

    end 

end     

 

PeakToPeak=[newData(u) newData(s)] ; 

% subplot(2,2,2) 

% plot(PeakToPeak); 

% title('Time Histories(peak & valley-peak to peak)'); 

% ylabel('Amplitude [microstrain]') 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%rainflow cycle counting 

PTP=PeakToPeak; 

Npoint=1; 

Ncycle=1; 

L=length(PTP); 

 

while L>3 

    range1=abs(PTP(Npoint)-PTP(Npoint+1)); 

    mean1=min([PTP(Npoint) PTP(Npoint+1)])+range1/2; 

    range2=abs(PTP(Npoint+1)-PTP(Npoint+2)); 

     

     if range1<=range2, 

        cyclerange(Ncycle)=range1; 
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        meancycle(Ncycle)=mean1; 

        Emin(Ncycle)=min([PTP(Npoint) PTP(Npoint+1)]); 

        Emax(Ncycle)=max([PTP(Npoint) PTP(Npoint+1)]); 

        

        Ncycle=Ncycle+1; 

        if Npoint==2 

            PTP=[PTP(1) PTP(Npoint+2:length(PTP))]; 

        else 

            PTP=[PTP(1:Npoint-1) PTP(Npoint+2:length(PTP))]; 

        end 

 

        L=length(PTP); 

        Npoint=1; 

    else 

        Npoint=Npoint+1; 

    end 

end 

 

cyclerange(Ncycle)=abs(PTP(Npoint)-PTP(Npoint+1)); 

Emin(Ncycle)=min([PTP(Npoint) PTP(Npoint+1)]); 

Emax(Ncycle)=max([PTP(Npoint) PTP(Npoint+1)]); 

meancycle(Ncycle)=min([PTP(Npoint) PTP(Npoint+1)])+(abs(PTP(Npoint)-

PTP(Npoint+1))/2); 

maxcycle=max(cyclerange); 
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APPENDICES C3 

 

function [damage]=DamageFunct(cyclerange) 

% cyclerange=[50000 60000 70000].*1e-6; 

 

b=-0.092; 

c=-0.445; 

E=204e9; 

Ef=0.26; 

Sf=948e6; 

dataNf=[1:1:99 100:10:990 1000:100:9900 10000:10000:2e8]; 

for j=1:length(dataNf) 

    dataEa(j)=Sf/E*((dataNf(j))^b)+Ef*((dataNf(j))^c); 

end 

for i=1:length(cyclerange)  

    if cyclerange(i)<dataEa(length(dataEa)) 

        damage(i)=0; 

    else 

        for k=1:length(dataNf) 

            error=abs(cyclerange(i)-dataEa(k))/cyclerange(i)*100; 

            if error<5 

                NF=dataNf(k); 

                damage(i)=1/NF; 

                break 

            else 

            end 

        end 

    end 

end 
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