
1

DEVELOPMENT OF STRAIN-BASED FATIGUE LIFE

CALCULATION SOFTWARE FOR VARIABLE AMPLITUDE

LOADING DATA

MOHD RADZI BIN ABD RASHID

BACHELOR OF ENGINEERING

UNIVERSITI MALAYSIA PAHANG

2010

2

 UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS

 JUDUL: DEVELOPMENT OF STRAIN-BASED FATIGUE LIFE

 CALCULATION SOFTWARE FOR VARIABLE

 AMPLITUDE LOADING DATA

SESI PENGAJIAN: 2010/2011

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di

 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.

4. **Sila tandakan ()

 (Mengandungi maklumat yang berdarjah keselamatan

 SULIT atau kepentingan Malaysia seperti yang termaktub

 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan

 oleh organisasi/badan di mana penyelidikan dijalankan)

  TIDAK TERHAD

 Disahkan oleh:

 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap: Nama Penyelia:

4004-3 JLN MENGKUANG, CHE KU EDDY NIZWAN BIN

KG MAK CHILI, CHE KU HUSIN

24000 KEMAMAN,

TERENGGANU.

Tarikh: 06 DISEMBER 2010 Tarikh: 06 DISEMBER 2010

 CATATAN:* Potong yang tidak berkenaan.

 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak

 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu

 dikelaskan sebagai atau TERHAD.

 Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara

Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan

penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

MOHD RADZI BIN ABD RASHID (831114-01-5735)

3

DEVELOPMENT OF STRAIN-BASED FATIGUE LIFE CALCULATION

SOFTWARE FOR VARIABLE AMPLITUDE LOADING DATA

MOHD RADZI BIN ABD RASHID

Thesis submitted in partial fulfilment of the requirements

for the award of the degree of

Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI MALAYSIA PAHANG

DECEMBER 2010

4

UNIVERSITI MALAYSIA PAHANG

FACULTY OF MECHANICAL ENGINEERING

I certify that the thesis entitled “Development of strain-Based Fatigue Life Calculation

Software for Variable Amplitude Loading Data” is written by Mohd Radzi Bin Abd

Rashid. We have examined the final copy of this thesis and in our opinion; it is fully

adequate in terms of scope and quality for the award of the degree of Mechanical

Engineering. We herewith recommend that it be accepted in fulfilment of the

requirements for the degree of Mechanical Engineering.

Mr Abdul Rahim Bin Ismail Signature

Lecturer Faculty of Mechanical Engineering

Universiti Malaysia Pahang

ii

5

SUPERVISOR’S DECLARATION

I hereby declare that we have checked this project report and in our

opinion this project

is satisfactory in terms of scope and quality for the award of the degree of Bachelor of

Mechanical Engineering.

Signature:

Name of Supervisor: CHE KU EDDY NIZWAN BIN CHE KU HUSIN

Position: Lecturer Faculty of Mechanical Engineering

Date: 6 DECEMBER 2010

iii

6

STUDENT’S DECLARATION

I hereby declare that the work in this report is my own except for quotations and

summaries which have been duly acknowledged. The report has not been accepted for

any degree and is not concurrently submitted for award of other degree.

Signature:

Name: MOHD RADZI BIN ABD RASHID

ID Number: MA08017

Date: 6 DECEMBER 2010

iv

7

Special Dedication to my family members,

my friends, my fellow colleague

and all faculty members

For all your care, support and believe in me.

8

ACKNOWLEDGEMENT

First and foremost, I am very grateful to the Almighty ALLAH S.W.T for giving

me this opportunity to accomplish my Final Year Project.

 Firstly, I wish to express my deep gratitude to my Supervisor, Mr Che Ku Eddy

Nizwan Bin Che Ku Husin for all his valuable guidance, assistance and support all

through this work.

 Secondly, I wish to thank lecturers for their suggestions and support on this

project. Their comments on this project are greatly appreciated. My thanks are also to

all my friends who have involved and helped me in this project.

 Most importantly, I extent my gratitude to my parents who have encouraged me

throughout my education and I will always be grateful for their sacrifice, generosity and

love.

vi

9

ABSTRACT

This thesis presents the development of strain-based fatigue life calculation software for

variable amplitude loading data. The main objective of this study is to develop

calculation software for fatigue life prediction using MATLAB
®
. The software allows

life predictions to quickly provide fatigue crack initiation using SAESUS data and road

loading history on car lower suspension arm. In addition, the fatigue life was predicted

using strain life approach subjected to variable amplitude loading. Coffin Manson are

the method that provides in the software. Rainflow cycle counting method will be use to

extract the cycle from time series data. Then the Palmgren-Rules equation was utilized

to calculate cumulative damage. As a result, the GUI will display the result from the

method using. From the software development, it can contribute to all user for calculate

life prediction especially for variable amplitude loading. Thus the software does not

need higher cost and also user friendly.

vii

10

ABSTRAK

Tesis ini membentangkan satu pembangunan perisian pengiraan hayat lesu bagi data

bebanan pelbagai amplitud. Objektif utama adalah untuk membangunkan satu perisian

pengiraan untuk analisis hayat lesu menggunakan MATLAB
®
. Perisian ini

membenarkan ramalan hayat untuk permukaan retak dengan menggunakan data

SAESUS dan data lengan di bawah ampaian kereta semasa perjalanan. Dalam pada itu,

hayat lesu diramal dengan menggunakan pendekatan hayat lesu yang dikenakan untuk

pembebanan pelbagai amplitud. Model Coffin Manson merupakan kaedah yang

disediakan dalam perisian ini. Kaedah pengiraan aliran hujan dapat digunakan dalam

mengembangkan setiap kitaran dari data siri masa. Kemudian, jumlah kerosakan

kumulatif dapat ditentukan dengan aturan Palmgren Miner. Keputusannya, satu paparan

dapat dipaparkan hasil daripada menggunakan kaedah-kaedah yang disediakan. Perisian

ini dapat menyumbang dalam memudahkan pengguna khususnya pelajar bagi mengira

sesuatu jangka hayat lesu. Dalam pada itu, perisian ini tidak memerlukan kos yang

tinggi dan ianya mesra pengguna.

viii

11

TABLE OF CONTENTS

Page

APPROVAL DOCUMENT ii

SUPERVISOR’S DECLARATION iii

STUDENT’S DECLARATION iv

ACKNOWLEDGEMENTS vi

ABSTRACT vii

ABSTRAK viii

TABLE OF CONTENTS ix

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF SYMBOL xv

LIST OF ABBREVIATIONS xvi

CHAPTER 1 INTRODUCTION

1.1 Project Background

1.2 Problem Statement

1.3 Objectives

1.4 Hypothesis

1.5 Scopes of Research

1

2

2

3

3

CHAPTER 2 LITERATURE REVIEW

2.1 Fatigue

2.2 Stress-Life Based Approach (S-N Method)

2.3 Strain Based Life Fatigue

 2.3.1 Coffin Manson Theory

 2.3.2 Mean Stress Effect

2.4 Cycle Counting

2.5 Linear Damage Rule (Miner‟s Rule)

2.6 Steady State Cyclic Stress-Strain

2.7 MATLAB
®

2.8 MATLAB
®
 Graphical User Interface

2.9 Existing Fatigue Software

4

8

10

11

12

15

23

25

26

29

31

ix

12

REFERENCES 55

APPENDICES 57

A1-A2 Time Loading History 57

B1-B4 Rainflow and Total Damage Histogram 59

C1-C3 M-files for the software 63

D1 Gantt Chart 83

CHAPTER 3 METHODOLOGY

3.1 Introduction

3.2 Flow Chart of Project

3.3 Development Algorithm for Fatigue Life Calculation

3.4 Development Algorithm for Fatigue Life Calculation

 For Variable Amplitude Data

3.5 Develop Interface Using Graphical User Interface

35

35

36

36

41

CHAPTER 4 RESULT AND DISCUSSIONS

4.1 Introduction

4.2 Main Menu of the GUI

4.3 Interface MATLAB
®
 GUI Software

 4.3.1 Display the Loading History

 4.3.2 Display the Rainflow Histogram

 4.3.3 Display the Total Damage Histogram

4.4 Discussions

 4.4.1 Comparison Result with MSC.Fatigue Software

43

43

45

45

47

47

49

51

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

5.2 Recommendations

53

54

x

13

LIST OF TABLES

Table No. Table Page

2.1 Tabulated cycle extracted from the level crossing counts 17

2.3 Tabulated cycles extracted from peak-valley counts 19

2.4 Tabulated range counts results from the range counting method 20

2.5 Tabulated cycle extracted from the range counts 21

2.6 Summary of cycle counting results 23

4.1 Mechanical properties of SAE1045 50

4.2 Total life result 51

xi

14

LIST OF FIGURES

Figure No. Figure Page

2.1 The basic elements for the fatigue design process 5

2.2 The cumulative damage analysis process 7

2.3 Functional diagram of engineering design and analysis 8

2.4 A typical S-N material data 9

2.5 Concept of the local strain approach 11

2.6 Strain-life showing total, elastic, and plastic strain components 12

2.7 Example of Morrow Mean Stress Correction for Strain Life

Fatigue Analysis
13

2.8 Example of Smith, Watson and Topper (SWT) Mean Stress

Correction for Strain Life Fatigue Analysis

14

2.9 Definition of cycles and reversals 15

2.10 Level crossing counting of a service load-time history 16

2.11 A process to generate cycles from level crossing counts 17

2.12 (a) Peak-valley counting of services load-time history

(b) A process to derive cycles from a peak-valley counting

18

2.13 Range counting of service load-time history 19

2.14 Sequence of the fatigue „rainflow‟ cycle counting method based

on standard ASTM E-1049

22

2.15 Stress spectrum 24

2.16 Hysteresis loop 25

2.17 Cyclic stress-strain curve 26

2.18 A MATLAB Desktop 27

2.19 The Layout Editor 28

xii

15

2.20 The Guide tool window 30

2.21 The Push Button with Callback 31

2.22 GlyphWorks Interface 32

2.23 Life Prediction Method 34

3.1 Flow Chart of Project 38

3.2 Flow chart for algorithm development using rainflow cycle

counting

39

3.3 Flow chart for development algorithm fatigue life calculation for

variable amplitude loading

40

3.4 Layout GUI (Main Window) 41

3.5 Layout GUI (Display Axes) 42

4.1 Main Interface 44

4.2 Credit Interface 44

4.3 Close Interface 45

4.4 Time Loading History 46

4.5 SAE Standard Suspension (SAESUS) Loading 46

4.6 Rainflow Histogram 47

4.7 Total Damage Histogram 48

4.8 Total Damage Value 48

4.9 Total Life Value 49

4.10 SAESUS three-dimensional surface 50

4.11 SAESUS three-dimensional for fatigue damage 51

4.12 (a) GUI Software (b) MSC.Fatigue 52

6.1 Time loading history for D1 57

6.2 Time loading history for D2 57

6.3 Time loading history for D3 58

xiii

16

6.4 Time loading history for D4 58

6.5 Rainflow histogram for D1 59

6.6 Total damage histogram for D1 59

6.7 Rainflow histogram for D2 60

6.8 Total damage histogram for D2 60

6.9 Rainflow histogram for D3 61

6.10 Total damage histogram for D3 61

6.11 Rainflow histogram for D4 62

6.12 Total damage histogram for D4 62

xiv

17

LIST OF SYMBOLS

a
 Strain amplitude

f
 True fracture ductility

f
  Fatigue ductility coefficient

 True stress, local stress

 Stress range

a
 Local stress amplitude

m
 Local mean stress

max
 Local maximum stress

f  Fatigue strength coefficient

E Modulus of elasticity

Nf Fatigue life

b Fatigue strength exponent

c Fatigue ductility exponent

2Nf Reversals to failure

Δε/2 Total strain amplitude

xv

18

LIST OF ABBREVIATIONS

ASTM American Society for Testing and Materials

GUI Graphical User Interface

SAE Society of Automotive Engineers

SWT Smith Watson Topper

xvi

1

CHAPTER 1

INTRODUCTION

1.1 PROJECT BACKGROUND

This is project about Software Development of Strain-Based Fatigue Life

Calculation for Variable Amplitude Loading Data using MATLAB
®
 GUI. This project

will use a method that need to be taken into consideration to successfully accomplish

this project. The methods that are going to use is Coffin Manson.

Fatigue is the most important failure mode to be considered in a mechanical

design. Under the action of oscillatory tensile stresses of sufficient magnitude, a small

crack will initiate at a point of the stress concentration. Once the crack is initiated, it

will tend to grow in a direction orthogonal to the direction of the oscillatory tensile

loads. There are several reasons for the dominance of this failure mode and the

problems of designing to avoid it: the fatigue process is inherently unpredictable, as

evidenced by the statistical scatter in laboratory data; it is often difficult to translate

laboratory data of material behavior into field predictions; it is extremely difficult to

accurately model the mechanical environments to which the system is exposed over its

entire design lifetime; and environmental effects produce complex stress states at

fatigue-sensitive hot spots in the system. It can be thought that fatigue can involve a

very complicated interaction of several processes and/or influences (Stephens et al.

2001)

2

A graphical user interface (GUI) is a pictorial interface to a program. A good

GUI can make programs easier to use by providing them with a consistent appearance

and with intuitive controls like pushbuttons, list boxes, sliders, menus, and so forth. The

GUI should behave in an understandable and predictable manner, so that a user knows

what to expect when he or she performs an action (Hunt et al. 2001).

MATLAB
®
 is viewed by many users not only as a high-performance language

for technical computing but also as a convenient environment for building graphical

user interfaces (GUI). Data visualization and GUI design in MATLAB
®

 are based on

the Handle Graphics System in which the objects organized in a Graphics Object

Hierarchy can be manipulated by various high and low level commands. If using

MATLAB
®
7 the GUI design more flexible and versatile, they also increase the

complexity of the Handle Graphics System and require some effort to adapt to.

1.2 PROBLEM STATEMENT

The current software is able to calculate fatigue life for variable amplitude

loading data but it‟s difficult to get the software because of the higher cost. In this

development country, the software has been created to display the value that had been

calculated. Same for this project, fatigue life calculation software has been developed

and will able to display at the MATLAB
®
 program that is GUIDE. The advantages of

this GUIDE is it will not only display the value but it will also able to explain the

purpose of this program with interesting button and figure and also can guide the users

to use this program.

1.3 OBJECTIVES

i. Design MATLAB
®
 GUI for Fatigue Life Calculation

To create and design GUI using GUIDE in MATLAB
®
 Software

package to make an easier for the user to use. The design in GUI must be

user-friendly to make sure the user understand to use it.

3

ii. To Develop Algorithm for Calculating Fatigue Life

Develop the Fatigue Life Prediction Algorithm using method Coffin

Manson by implement iteration method to solve the equation. This

method will display a fatigue life in MATLAB
®
 GUI.

1.4 HYPOTHESIS

Hypothesis of this project is when the software successfully develops,

the data from SAESUS will be used to calculate fatigue life for variable

amplitude loading data. This software calculates fatigue life using Coffin

Manson method. This software also able to display time domain data and

rainflow histogram based on material properties select and loading data used.

1.5 SCOPE OF RESEARCH

The first element need to be considered for scope of this project is

development on Strain Life Fatigue Model. This model only focused on one

method which is Coffin Manson.

The second element is software that becomes the main part of this

project. The software that use in this project is Graphical User Interface

Development Environment (GUIDE) in MATLAB
®
 software package. This

software is to design and create the GUI layout to make a user-friendly for user.

For this GUIDE software is divide into two, first is GUI layout design with a

consistent appearance and with intuitive controls like pushbuttons, list boxes,

sliders, menus, and so forth. And second is for the program M-File, must design

and use the right coding to make sure the design in GUI layout is work properly

like what is needed.

4

CHAPTER 2

LITERATURE REVIEW

2.1 FATIGUE

 Fatigue is the process of progressive localized permanent structural change

occurring in a material subjected to conditions that produce fluctuating stresses and

strains at some point or points and that may culminate in cracks or complete fracture

after a sufficient number of fluctuations. If the maximum stress in the specimen does

not exceed the elastic limit of the material, the specimen returns to its initial condition

when the load is removed. A given loading may be repeated many times, provided that

the stresses remain in the elastic range. Such a conclusion is correct for loadings

repeated even a few hundred times. However, it is not correct when loadings are

repeated thousands or millions of times. In such cases, rupture will occur at a stress

much lower than static breaking strength. This phenomenon is known as fatigue

(Stephens et al 2001).

 To be effective in averting failure, the designer should have a good working

knowledge of analytical and empirical techniques of predicting failure so that during the

pre-described design, failure may be prevented. That is why; the failure analysis,

prediction, and prevention are of critical importance to the designer to achieve a success

(Stephens et al 2001).

 Fatigue design is one of the observed modes of mechanical failure in practice.

For this reason, fatigue becomes an obvious design consideration for many structures,

such as aircraft, bridges, railroad cars, automotive suspensions and vehicle frames. For

these structures, cyclic loads are identified that could cause fatigue failure if the design

5

is not adequate (Stephens et al. 2001). The basic elements of the fatigue design process

are illustrated in Figure 2.1.

Figure 2.1: The basic elements for the fatigue design process.

Sources: Rise et. al (1988)

 Service loads, noise and vibration: Firstly, a description of the service

environment is obtained. The goal is to develop an accurate representation of the loads,

deflections, strains, noise, vibration etc. that would likely be experienced during the

total operating life of the component. Loading sequences are developed from load

histories measured and recorded during specific operations. The most useful service

load data is recording of the outputs of strain gages which are strategically positioned to

directly reflect the input loads experienced by the component or structure. Noise and

vibration has also effect on insight in the modes and mechanics of component and

structural behaviour. An objective description of the vibration systems can be done in

terms of frequency and amplitude information (Rise et. al 1988).

.

Noise and

Vibration

Stress

Analysis

Material

Properties

Service

Loads

Component

Life

Cumulative

Damage

Analysis

LIFE

6

 Stress analysis: The shape of a component or structure and boundary conditions

dictates how it will respond to service loads in terms of stresses, strains and deflections.

Analytical and experimental methods are available to quantify this behaviour. Finite

element techniques can be employed to identify areas of both high stress, where there

may be potential fatigue problems, and low stress where there may be potential for

reducing weight. Experimental methods can be used in situations where components or

structures actually exist. Strain gages strategically located can be used to quantify

strains at such critical areas (Rise et. al 1988).

 Material properties: A fundamental requirement for any durability assessment is

knowledge of the relationship between stress and strain and fatigue life for a material

under consideration. Fatigue is a highly localized phenomenon that depends very

heavily on the stresses and strains experienced in critical regions of a component or

structure. The relationship between uniaxial stress and strain for a given material is

unique, consistent and, in most cases, largely independent of location. Therefore, a

small specimen tested under simple axial conditions in the laboratory can often be used

to adequately reflect the behaviour of an element of the same material at a critical area

in a component or a structure. However, the most critical locations are at notches even

when loading is uniaxial (Rise et. al 1988).

 Cumulative damage analysis: The fatigue life prediction process or cumulative

damage analysis for a critical region in a component or structure consists of several

closely interrelated steps as can be seen in Figure 2.2 separately. A combination of the

load history (Service Loads), stress concentration factors (Stress Analysis) and cyclic

stress-strain properties of the materials (Material Properties) can be used to simulate the

local uniaxial stress-strain response in critical areas. Through this process it is possible

to develop good estimates of local stress amplitudes, mean stresses and elastic and

plastic strain components for each excursion in the load history. Rainflow counting can

be used to identify local cyclic events in a manner consistent with the basic material

behaviour. The damage contribution of these events is calculated by comparison with

material fatigue data generated in laboratory tests on small specimens. The damage

fractions are summed linearly to give an estimate of the total damage for a particular

load.history (Rise et. al 1988).

7

Figure 2.2: The cumulative damage analysis process

Sources: Ariduru (2004)

 Component test: It must be carried out at some stage in a development of a

product to gain confidence in its ultimate service performance. Component testing is

particularly in today‟s highly competitive industries where the desire to reduce weight

and production costs must be balanced with the necessity to avoid expensive service

failures (Ariduru 2004).

 Fatigue life estimates are often needed in engineering design, specifically in

analyzing trial designs to ensure resistance to cracking. A similar need exists in the

troubleshooting of cracking problems that appear in prototypes or service models of

machines, vehicles, and structures. That is the reason that the predictive techniques are

employed for applications ranging from initial sizing through prototype development

and product verification. The functional diagram in Figure 2.3 shows the role of life

prediction in both preliminary design and in subsequent evaluation-redesign cycles, then

in component laboratory tests, and finally in field proving the tests of assemblies or

composite vehicles and a conventional stress analysis might lead to a assumption of

safety that does not exist (Ariduru 2004).

Service Loads

Stress Analysis
Cumulative Damage

Analysis

Material Properties

Component Life

8

2.2 STRESS-LIFE BASED APPROACH (S-N METHOD)

 For the fatigue design and components, several methods are available. All

require similar types of information. These are the identification of candidate locations

for fatigue failure, the load spectrum for the structure or component, the stresses or

strains at the candidate locations resulting from the loads, the temperature, the corrosive

environment, the material behaviour, and a methodology that combines all these effects

to give a life prediction. Prediction procedures are provided for estimating life using

stress life (Stress vs. Number of cycle‟s curves), hot-spot stresses, strain life, and

fracture mechanics. With the exception of hot-spot stress method, Figure 2.3 shows all

these procedures have been used for the design of aluminium structures.

Figure 2.3: Functional diagram of engineering design and analysis

Sources: Rise et al. (1988)

Design Specification Specify Function

and Service Requirements

Concept of

Prototype

Evaluation

Life

Prediction

Test

Response

Analysis

Engineering

Design

Analytical

Design

Procedures

Coupon,

Component, or

System Testing

Test

Preparation

Analysis

Loads

Analysis/

Monitoring

Characterize

Service

Environment

Test

Control

Conditions

Interactive
Product

Development
Cycle

Evaluation and Acceptance

Testing

(LabProving Ground)

Data

Analysis

Testing Data

Monitoring
Data Editing/

Modification

Data Acquisition-

Classification

9

 Since the well-known work of Wöhler in Germany starting in the 1850‟s,

engineers have employed curves of stress versus cycles to fatigue failure, which are

often called S-N curves (stress-number of cycles) or Wöhler‟s curve (Lalanne et

al.1999). Since the well-known work of Wöhler in Germany starting in the

1850‟s,engineers have employed curves of stress versus cycles to fatigue failure, which

are often called S-N curves (stress-number of cycles) or Wöhler‟s curve.

 The basis of the stress-life method is the Wöhler S-N curve, that is a plot of

alternating stress, S, versus cycles to failure, N. The data which results from these tests

can be plotted on a curve of stress versus number of cycles to failure. This curve shows

the scatter of the data taken for this simplest of fatigue tests. A typical S-N material data

can be seen in Figure 2.4. The arrows imply that the specimen had not failed in 10
7

cycles (Lalanne et al. 1999)

.

Figure 2.4: A typical S-N material data

Sources: Ariduru (2004)

10

 The approach known as stress-based approach continues to serve as a

widespread used tool for the design of the aluminium structures. Comparing the stress-

time history at the chosen critical point with the S-N curve allows a life estimate for the

component to be made.

 Stress-life approach assumes that all stresses in the component, even local ones,

stay below the elastic limit at all times. It is suitable when the applied stress is

nominally within the elastic range of the material and the number of cycles to failure is

large. The nominal stress approach is therefore best suited to problems that fall into the

category known as high-cycle fatigue. High cycle fatigue is one of the two regimes of

fatigue phenomenon that is generally considered for metals and alloys. It involves

nominally linear elastic behaviour and causes failure after more than about 10
4
 to 10

5

cycles. This regime associated with lower loads and long lives, or high number of cycles

to produce fatigue failure. As the loading amplitude is decreased, the cycles-to-failure

increase (Lalanne et al. 1999).

2.3 STRAIN BASED LIFE FATIGUE

 Also known as low cycle fatigue which mean is repeated cyclic loadings that

cause significant plastic cracking after a relatively small number of cycles-hundreds or

thousands. Low cycle fatigue typically occurs as a result of repeated localized yielding

near stress raisers, such as holes, fillets and notches, despite the elastic deformation

occurring over the bulk of the component. Uniaxial testing is performed on several

smooth (unnotched) specimens under different cyclic deformation levels in typical low

fatigue test. Each specimen follows a given constant stress amplitude, completely

reversed, cyclic strain. That is, the mode of testing is strain control instead of stress

control. Stress response is monitored during cyclic loading, and the number of cycles to

failure is recorded for these tests. The result from several tests is necessary to determine

the cyclic stress to curve and the strain life curve for the material (Yung-Li et al. 2005).

11

Figure 2.5: Concept of the local strain approach

Sources: Yung-Li et al. (2005)

2.3.1 Coffin-Manson Theory

 The Coffin-Manson (Coffin 1954; Manson 1965) relation empirically relates the

cycles to final failure, Nf, to the plastic strain amplitude, Δεp / 2. Expressed in the usual

form

∆ε

2
=

σ'f

E
 2Nf

b
+ε'f 2Nf

c
 (2.1)

which E is modulus of elasticity, εa is the total strain amplitude, 2Nf is reversals to

failure, σ`f is fatigue strength coefficient, b is fatigue strength exponent, ε`f is fatigue

ductility coefficient and c is fatigue ductility exponent. Figure 2.6 has been resolved

into elastic and plastic strain component from the steady-state hysteresis loops

(Stephens et al 2001).

12

Figure 2.6: Strain-life showing total, elastic, and plastic strain components

Sources: Stephens et al. (2001)

2.3.2 Mean Stress Effects

 Strain-controlled deformation and fatigue behavior discussed in the previous

sections were for completely reversed straining, R = εmin / εmax = -1. In many

applications, however, a mean strain can be present. Strain-controlled cycling with a

mean strain usually results in a mean stress which may relax fully or partially with

continued cycling. This relaxation is due to the presence of plastic deformation, and

therefore, the rate or amount of result, there is more mean stress relaxation at larger

strain amplitude. A model for predicting the amount of mean stress relaxation as a

13

function of cycles was proposed. Stress relaxation is different from cyclic softening and

can occur in a cyclically stable material.

 In Morrow`s (1968) method, the elastic term in the strain-life equation is

modified by the mean stress. The modification is consistent with observations that the

mean stress effects are significant at low values of plastic strain, where elastic strain

dominates. Unfortunately, it correctly predicts that the ratio of elastic to plastic strain is

dependent on mean stress, which is not true. Figure 2.7 shows Morrow mean stress

correction.

 An alternative version of Morrow`s mean stress parameter were both the plastic

and elastic terms are affected by the mean stress is given by

∆ε

2
=εa=

σf`-σm

E
 2Nf

b
+εf`

σf`-σm

σf`

ε
b

 2Nf
c
 (2.2)

Figure 2.7: Morrow Mean Stress Correction for Strain Life Fatigue Analysis.

Sources: Browell (2006)

14

 Smith, Watson and Topper (SWT) (1970) suggested a different equation to

account for the presence of mean stresses. It has the limitation that it is undefined for

negative maximum stresses. The physical interpretation of this is that no fatigue damage

occurs unless tension is present at some point during the loading.

 The equation is

σmaxεaE= σf`
2
 2Nf

2b
+σf`εf`E 2Nf

b+c
 (2.3)

where σmax is maximum stress and εa is alternating strain. This equation is based on

assumption that for different combinations of strain amplitude, εa, and mean stress, σm,

the product σmax εa remains constant for a given life. Figure 2.8 shows SWT mean stress

correction.

Figure 2.8: SWT Mean Stress Correction for Strain Life Fatigue Analysis.

Sources: Browell (2006)

15

2.4 CYCLE COUNTING

 Cycles can be counted using time histories of the loading parameter of interest,

such as force, torque, stress, strain, acceleration, or deflection. In Figure 2.9, one

complete stress cycle in a time domain is related to a closed hysteresis loop in the local

stress-strain coordinate and consists of two reversals. The reversal can be described as

the event of unloading or loading (Yung-Li et al 2005).

Figure 2.9: Definition of cycles and reversals

Source: Yung-Li et al (2005)

 Over the years, one-parameter cycle counting methods such as level crossing,

peak-valley, and range counting have been commonly used for extracting the number of

cycles in a complex history. These methods are unsatisfactory for the purpose of

describing a loading cycle and fail to link the loading cycles to the local stress-strain

hysteresis behaviour that is known to have a strong influence on fatigue damage

analysis. Thus, these methods are considered inadequate for fatigue damage analysis.

However, the following sections present descriptions of the one-parameter cycle

counting methods as an illustration of the techniques used in cycle counting and for

comparison to the more effective two-parameter cycle counting methods.

16

 For variable fatigue loading amplitude, cycle counting method is using for make

analysis easier change to simple form or discrete. This method is widely used in life

prediction strain model. The usual method of cycle counting used were as level

crossing, peak valley, range counting and „rainflow‟ (ASTM E1049,1985).

 In this counting method, the magnitude of the loads in the load-time history has

to be divided into a number of levels. This process is shown in Figure 2.10. One count

at a specific level is defined when a portion of the load-time history with a negative

slope passes through this level below a reference load. The reference load level is

usually determined by the mean of the complete load-time history. A variation of this

method is to count all of the levels crossing with the positive-sloped portion of the load-

time history.

Figure 2.10: Level crossing counting of a service load-time history

Source: Yung-Li et al (2005)

 Figure 2.11 show the tabulated and plotted results using the level-crossing count

from the load-time history in Figure 2.10. Once all the counts are determined, they are

use to form cycles. The cycle extraction rule follows that the most damaging fatigue

cycles can be derived by first constructing the largest possible cycle, followed by the

second largest possible cycle, and so on. This process repeated until all available counts

are used up. Table 2.1 summarizes the cycle counting results.

17

Figure 2.11: A process to generate cycles from level crossing counts.

Source: Yung-Li et al (2005)

Table 2.1: Tabulated cycle extracted from the level crossing counts

Range Cycles

22 1

20 1

12 2

4 1

Source: Yung-Li et al (2005)

 This counting technique first identifies the counts of peaks and valleys in a load-

time history and subsequently constructs the possible cycles from the most to the least

damaging events according to the extracted peak-valley counts. The peak is the

transition point where a positive-sloped segment turns into a negative-sloped segment,

and the valley is the point where a negative-sloped segment changes to a positive-slope

one. Peaks above and valleys below a reference load level are counted. Table 2.2 shows

tabulated results from the peak-valley counting in the load-time history in Figure

2.12(a). The process to generate the cycles from the peak-valley counts is illustrated in

Figure 2.12(b). Table 2.3 summarizes the final cycle counting results.

18

Figure 2.12(a): Peak-valley counting of services load-time history

Source: Yung-Li et al (2005)

Figure 2.12(b): A process to derive cycles from a peak-valley counting

Source: Yung-Li et al (2005)

19

Table 2.3: Tabulated cycles extracted from peak-valley counts

Range Cycles

22 1

20 1

12 2

6 1

4 1

Source: Yung-Li et al (2005)

 For range counting method, this counting technique defines one count as a

range, the height between a successive peak and valley. Positive ranges and negative

ranges are defines on the positively sloped reversals and negatively sloped reversals,

respectively. Each range represents on one-half cycle(reversal). Figure 2.13 illustrates

the counts of positive and negative ranges. Table 2.4 lists the summary of the summary

of the range counts and Table 2.5 shows the final cycles extracted from the range

counts.

Figure 2.13: Range counting of service load-time history

Source: Yung-Li et al (2005)

20

 Two-parameter cycles counting methods, such as the rainflow cycle counting

method, cam faithfully represent variable-amplitude cyclic loading. Dowling (1979)

states that the rainflow counting method is generally regarded as the method leading to

better predictions of fatigue life. It can identify events in a complex loading sequence

that is compatible with constant-amplitude fatigue data. Matsuishi and Endo (1968)

originally developed the rainfow cycle counting method based on the analogy of

raindrops falling on a pagoda roof and running down the edges of the roof. A number of

variations of this original scheme have been published for various applications.

Table 2.4: Tabulated range counts results from the range counting method

Range Counts

+20 1

+18 1

+12 2

+8 1

+6 1

-8 1

-12 1

-14 1

-16 2

Source: Yung-Li et al (2005)

Table 2.5: Tabulated cycle extracted from the range counts

Range Counts

20 0.5

18 0.5

16 1

14 0.5

12 1.5

8 1

6 0.5

Source: Yung-Li et al (2005)

21

 Figure 2.14 shows the rules that identify the two possible closed cycles in a time

history where stress is the load parameter. The new time history shown in Figure 2.14(a)

is generated by cutting all the points prior to and including the highest peak and by

appending these data to the end of the original history. An additional highest peak is

included n the new time history to close the largest loop for conservatism. The three

consecutive stress points (S1, S2, S3) define the two consecutive ranges as ΔS1 = |S1-S2|

and ΔS2 = |S2-S3|. If ΔS1 ≤ ΔS2 is extracted, and if ΔS1> ΔS2, no cycle is counted. The

first cycle formed by two data points from -2 to 6 is extracted. A new load-time history

is generated by connecting the point before -2 and the point after 6 to each other. This is

illustrated in Figure 2.14(b). The same process is repeated until all the cycles are

identified. This repetition is illustrated in Figure 3.7(c)-(g). The rainflow cycle counting

results are tabulated in Table 2.6

22

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.14: Sequence of the fatigue „rainflow‟ cycle counting method based on

 standard ASTM E-1049

Source: Yung-Li et al (2005)

23

Table 2.6: Summary of cycle counting results

No. of Cycles From To Range Mean

1 -2 6 8 2

1 -10 2 12 -4

1 -4 2 6 -1

1 -6 6 12 0

1 10 -6 16 2

1 12 -10 22 1

Source: Yung-Li et al (2005)

2.5 LINEAR DAMAGE RULE (MINER’S RULE)

 The Linear Damage Rule was first proposed by Palmgren (1924) and was further

developed by Miner (1945). Today the method is commonly known as Miner's Rule. It

widely used and still regarded as important tools in determining fatigue life.

 This Palmgren-Miner is a linear concept depends on assumptions that changes

occur in cycle are not uniformly affect the fatigue life. (Zahavi,1996). Therefore, the

damage of one cycle, Di, can be calculate using equation

𝐷𝑖 =
1

𝑁𝑖
 (2.12)

 Where Ni is number cycles of failure at constant amplitude. To count

accumulated damage for various amplitude cyclic loading, a cumulative fatigue damage

model can be used known as Palmger-Miner rule. This rules has been developed based

on the failure of the various stages of loading, and it can defined as

𝐷 =
𝑛𝑖
𝑁𝑖

= 𝑟𝑖 (2.13)

 Wheres ni is cycle counting at stress level σi and Ni is fatigue life at the same for

constant amplitude (Memon et al 2002). Calculation of cumulative at the three levels of

24

amplitude, n1, n2 and n3 using Palmgren-Miner rule can be defined through eq 2.14 with

related show in Figure 2.15.

𝐷 =
𝑛1

𝑁1
+

𝑛2

𝑁2
+

𝑛3

𝑁3
 (2.14)

 If the component have 100% damages and will result on crack, Palgrem-Miner

equation is

𝑛𝑖
𝑁1

= 1 (2.15)

Figure 2.15: Stress spectrum

Source: engrasp (2010)

25

2.6 STEADY STATE CYCLIC STRESS-STRAIN

 Fatigue life can be characterized by the steady-state behavior because for

constant strain-amplitude controlled testing, the stress-strain relationship becomes stable

after rapid hardening or softening in the initial cycles corresponding to the first several

percent of the total fatigue life. The cyclic stable stress-strain response is the hysteresis

loop and is identified in Figure 2.16. The hysteresis loop defined by the total strain

range (Δε) and the total stress range (Δσ) represents the elastic plus elastic work on a

material undergoing loading and unloading. Usually, the stabilized hysteresis loop is

taken at half of the fatigue life (Yung-Li et al 2005).

Figure 2.16: Hysteresis loop

Source: Yung-LI et al (2005)

 When a family of stabilized hysteresis loops with various strain amplitude levels

is plotted on the same axes as shown in Figure 2.17, a cyclic stress-strain curve is

defined by the locus of the loop tips (Yung-Li et al 2005).

26

Figure 2.17: Cyclic stress-strain curve

Source: Yung-Li et al (2005)

2.7 MATLAB
®

 The MATLAB
®
 technical computing language and development environment is

used in a variety fields, such as image and signal processing, control systems, financial

modeling, and computational biology. MATLAB
®
 offers many specialized routines

through domain specific add-ons, called “toolboxes”, and a simplified interface to high-

performance libraries such as BLAS, FFTW and LAPACK. These features appeal to

domain experts who can quickly than with a low-level language such as C (Hunt, 2001).

 MATLAB
®
 is an interactive, matrix-based system for scientific and engineering

numeric computation and visualization. It can solve complex numerical problems in a

fraction of the time with a programming language such as Fortran or C. The name

MATLAB
®
 is derived from MATrix LABoratory (Hunt, 2001).

27

 The software has developed from early public domain versions of the late 1970s

to a mature product in the 1990s. The numerical routines, the graphical output and the

elements for the construction of graphical user interfaces from a unity that can easily be

used for teaching and learning (Jia and Schaufelberger, 1995). Some of the early roots

of MATLAB are still visible; from a computer science point of view, the product is less

developed then from the point of view of algorithms and graphics. The old concept on

one file per function is still valid in version 4, and makes the package heavy and

demanding on resources (Hunt, 2001).

 MATLAB
®
 is common-driven, and the well-structured help facilities is needed

for operation because of the many names of the functions that have to be known or

found for using the system appropriately. Figure 2.18 contains an example of a newly

launched MATLAB
®
 Desktop (Hunt, 2001).

Figure 2.18: A MATLAB Desktop

Source: mathworks (2010)

http://www.mathworks.com/

28

 MATLAB
®
 also provides an interactive tool called GUIDE (this stands for

Graphical User Interface Development Environment) that greatly simplifies the task of

building a GUI. The Layout Editor looks like Figure 2.19.

A graphical user interface (GUI) is a pictorial interface to a program. A good

GUI can make programs easier to use by providing them with a consistent appearance

and with intuitive controls like pushbuttons, list boxes, sliders, menus, and so forth (R.

Hunt, 2001). The GUI should behave in an understandable and predictable manner, so

that a user knows what to expect when he or she performs an action. For example, when

a mouse click occurs on pushbutton, the GUI should initiate the action described on the

label of the button. This chapter introduces the basic elements of the MATLAB
®
 GUIs.

The chapter does not contain a complete description of components or GUI features, but

it does provide the basics required to create functional GUIs for your programs (Hunt,

2001).

Figure 2.19: The Layout Editor

Source: mathworks (2010)

29

Applications that provide GUIs are generally easier to learn and use since the

person using the application does not need to know what commands are available or

how they work. The action that results from a particular user action can be made clear

by the design of the interface (Hunt, 2001).

2.8 MATLAB
®

 GRAPHICAL USER INTERFACE (GUI)

 A graphical user interface provides the user with a familiar environment in

which to work. This environment contains pushbuttons, toggle buttons, lists, menus, text

boxes, and so forth. All of which are already familiar to the user, so that he or she can

concentrate on using the application rather than on the mechanics involved in doing

things. However, GUIs are harder for the programmer because a GUI-based program

must be prepared for mouse clicks (or possibly keyboard input) for any GUI element at

any time. Such inputs are known as events, and a program that responds to events is said

to be event driven. The three principal elements required to create a MATLAB
®

Graphical User Interfaces are (Hunt, 2001):-

i. Components. Each item on a MATLAB
®
 GUI (pushbuttons, labels, edit boxes,

etc.) is a graphical component. The types of components include graphical

controls (pushbuttons, edit boxes, lists, sliders, ect.), static elements (frames and

text strings), menus, and axes. Graphical controls and static elements are created

by the function uicontrol, and menus are created by the functions uimenu and

uicontextmenu. Axes, which are used to display graphical data, are created by

the function axes. Figure 2.20 shows an example of GUIDE tool window

30

Figure 2.20: The Guide tool window

ii. Figures. The components of a GUI must be arranged within a figure, which is a

window on the computer screen. In the past, figures have been created

automatically whenever we have plotted data. However, empty figures can be

created with a function figure and can be used to hold any combination of

components.

iii. Callbacks. Finally, there must be some way to perform an action if a user clicks

a mouse on a button or types information on a keyboard. A mouse click or a key

press in an event, and the MATLAB
®
 program must be respond to each event if

the program is to perform its function. For example, if a user clicks on a button,

that event must cause the MATLAB
®
 code that implements the function of the

button to be executed. The code executed in response to an event is known as a

call back. There must be a call back to implement the function of each graphical

component on the GUI. Figure 2.21 shows the pushbutton with Callback.

Design

Area

GUI

Components

Property

Inspector

Drag to Resize

Design Area

Menu

Editor

Align

Objects

31

Figure 2.21: The Push Button with Callback

2.9 EXISTING FATIGUE SOFTWARE

2.9.1 Glyphworks

 Gylphworks is a powerful data processing system for engineering test data

analysis with specific application to durability and fatigue analysis. Designed to handle

huge amounts of data, GlyphWorks providers a graphical, process-oriented

environment. It can simply create an analysis workflow by „drag‟ and „drooping‟

analysis building blocks. The example of GlyphWorks is shown in Figure 2.20.

 In addition to general signal processing, GlyphWorks provides leading fatigue

analysis capabilities for measured data. Unique capabilities include the ability to help

specify accelerated durability tests, saving both time and money in environment

qualification and product validation.

32

Figure 2.22: GlyphWorks Interface

Source: ncode (2010)

 GlyphWorks Fundamental provides visualization and basic manipulation,

frequency spectrum analysis and filtering capability. Report layout can be interactively

designed and these reports automatically generated by including as part of the analysis

process. Fundamentals are a pre-requisite for all other product options (nCode 2001).

 The Fundamentals is package includes support for a wide range of data formats

and types of displays. The Super glyph capability enables multiple analysis functions to

be encapsulated as a single glyph that can be saved re-used.

 GlyphWorks provides the industry-leading fatigue analysis technology that

needs to calculate fatigue life from measured data. It can correct for mean stress and

surface finish effects, even back calculate from each data channel to determine a scale

or fatigue concentration factor required to achieve a target life. Then it can review

damage histograms to determine which load cycles were most damaging, and even

output damage time histories to show exactly when the damage occurred. A database

with commonly used fatigue data is also provided (nCode 2001).

33

i. Stress-Life method uses a nominal stress approach for high-cycle condition or

non-metallic applications. A wide range of methods are provided for defining

the SN curves including the ability to interpolate multiple material data curves

for mean stress effects. For ultimate flexibility, Python scripting enables the

definition of custom fatigue methods and material models

ii. Strain-Life method is more appropriate for more severe loading conditions

(low-cycle fatigue) – where local elastic-plastic strain controls the fatigue life.

Supported methods include the Coffin-Manson-Basquin formula with additional

mean stress corrections such as Morrow and Smith-Watson-Topper.

iii. Crack Growth provides linear elastic fracture mechanics in the GlyphWorks

environment. It provides a complete fracture mechanics capability using industry

standard methodologies, an open environment for users to embed their own

algorithm – and the advanced reporting and quality assurance capabilities of

GlyphWorks. Built-in growth laws includes NASGRO3, Form an, Paris, Walker

and more. Predicting how a crack will propagate after initiation is now easy.

2.9.2 MSC Fatigue Software

 MSC.Fatigue uses three life prediction methods. These are total life, crack

initiation, and crack propagation. Total life is apply named in that only the total life of

the component is of concern and not when a crack will initiate or how quickly it will

grow.

 The three methods are related to each other by the fact that the total number of

cycles to failure, Nf, equals the number of cycles to initiate a crack, Ni, plus the number

of cycles to propagate that crack, Np. The three methods have grown out of different

needs over the decades using different techniques and having different degrees of

accuracy as shown in Figure 2.23. So in theory this equation is true, but in practice

when applying the three methods to the same problem, rarely, if ever does it ad up.

34

Figure 2.23: Life Prediction Methods

Source: MSC.Fatigue QuickStart Guide

 In reality however, rarely are all three methods used on the same problem,

mainly because different industries adopt different analysis methods depending on the

driving design philosophy.

35

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

 In this chapter, the methodology can be divide into two; which is develop

algorithm for analysis fatigue data using Coffin Manson, Morrow and Smith Watson

Topper. Another method is develop interface using MATLAB
®
 GUI for display some

parameter related to this project.

3.2 FLOW CHART OF PROJECT

 From the Figure 3.1, after get the topic of the project its goes to case

study to find more related information and to deep knowledge about the project. Find

the information whether on internet, journal, books or anything else that related to the

topic.

For this project the software that has to use is MATLAB
®
 GUI. First, study

about the algorithm development using rainflow and also using fatigue calculation for

variable amplitude loading method. And second study about the software programming

and understand how to use it. For this software has divide by two parts, first is GUI

layout design with a consistent appearance and with intuitive controls like pushbuttons,

list boxes, sliders, menus, and so forth. Secondly is for the program M-File, must design

and use the right coding to make sure the design in GUI layout is work properly like

what is needed.

36

When the two parts have done, test it to make sure the software that has been

design is work properly. If not, identify the problem and overcome it again. After

software part have work properly, simulate and testing it whether is okay or not. And

troubleshoot this part if not okay until get the satisfied result. If the testing is work

properly and correctly, finally these projects have done and can be submit the about this

project.

3.3 DEVELOPMENT ALGORITHM FOR FATIGUE LIFE CALCULATION

 The calculation of fatigue life data for variable amplitude, the first thing to do is

to find effective cycles in the fatigue data. In this research an algorithm computer has

been developed for the cycle by using three point cycle “rainflow” counting (ASTM

1049, 1985). A flow chart for develop algorithm cycle “rainflow” counting shown in

Figure 3.2.

3.4 DEVELOPMENT ALGORITHM OF FATIGUE LIFE CALCULATION

FOR VARIABLE AMPLITUDE LOADING

 To determine fatigue damage in a signal fatigue, a computer algorithm was

developed. The developed algorithm is based on strain life as Coffin Manson (Coffin

1954; Manson 1965). Theory information for the model can be referred to the section

2.3. Flow chart for the development of fatigue life calculation algorithm is shown in

Figure 3.3. Algorithm development process of fatigue damage calculation is as follows:

i. Various amplitude fatigue data should be input to the algorithm that has been

developed.

ii. Range, maximum strain, minimum strain and average strain for each fatigue

cycle been determine using cycle „rainflow‟ counting method.

iii. The largest range of cycles was determined from available cycle to obtain the

maximum strain(εmax)and minimum strain(εmin).

37

iv. Choose the model Coffin Manson (Coffin 1954; Manson 1965). Because of this

model has two unknown of reversal to failure (2Nf) at both side, the iteration

method can be used to obtain the value of reversal to failure (2Nf). M and M1

represents the value of reversal to failure on the strain, e. The initial value of M1

is set as 10 and will be repeated by taking the value of M to obtain value M=M1.

Constant value of E is 204GPa, b = -0.092 and c = -0.445.

v. Then input the value of reversal to failure, 2Nf for each cycle „rainflow‟. Fatigue

damage for each cycle is then calculated by using the rules of Palmgren-Miner.

The total amount of fatigue damage was determined by taking the cumulative

value of fatigue damage for each cycle.

38

Figure 3.1: Flow Chart of Project

Case Study

Determination Program for the Development

Study MATLAB GUI

Programming

Demo

Program Development

Identify Appropriate Coding for the System

Submit Report

GUI Design

Start building software using GUI

Testing OK?

Testing OK?

NO

NO

YES

YES

START

FINISH

Algorithm

Development

Literature

Review

39

Figure 3.2: Flow chart for algorithm development using rainflow cycle counting

START

Input fatigue data

Data exchange to PV form

Re-arrange the data with start and finish point is

the highest peak in PV data

Get the first 3 points

Range 1 = magnitude (point 1- point 2)

Range 2 = magnitude (point 1- point 2)

If range 1 ≤ range 2
Get the first 3 points

Range 1 = magnitude (point 1- point 2)

Range 2 = magnitude (point 1- point 2)

If the number of PV

data ≤ 3

FINISH

Taking cycle

Range = Range 1

Mean = mean (point 1, point 2)

NO

NO

Taking cycle

Range = Range 1

Mean = mean (point 1, point 2)

YES

40

Figure 3.3: Flow chart for development algorithm fatigue life calculation for

 variable amplitude loading

START

Input range of the cycle

obtained by using

„rainflow‟ method

Determine min strain, εmin and max strain,

εmax for the largest range of cycle

∆𝐸

2
=
𝜎′𝑓

𝐸
 2𝑁𝑓

𝑏
+ 𝜀′𝑓 2𝑁𝑓

𝑐

Coffin Manson

b=-0.092; c=-0.445; 𝜀′𝑓=0.26

Input value of reversal

to failure, 2Nf

𝐷𝑖 =
1

𝑁𝑖

Input damage of one
cycle data, Di

𝐷 =
𝑛1

𝑁1

+
𝑛2

𝑁2

+
𝑛3

𝑁3

Palgrem-Miner Rule

FINISH

41

3.5 DEVELOP INTERFACE USING GRAPHICAL USER INTERFACE

 This is the main part of this project. GUIDE, the MATLAB
®
 graphical user

interfaces (GUIs). This tool allows a programmer a layout the GUI, selecting and

aligning the GUI components to be placed in it. Once the components are in place, the

programmer can edit their properties: name, color, size, font, text to display, and so

forth.

When guide saves the GUI, it creates working program including skeleton

functions that the programmer can modify to implement the behavior of the GUI. Figure

3.4 show the layout GUI after done with the designation with a few basic components

that had been used like push button.

Figure 3.4: Layout GUI (Main Window)

 All the material properties need to be filling before calculate the fatigue life. The

user can choose a data set to prompt a loading history by clicking time domain data

pushbutton. This software only calculates fatigue life using Coffin-Manson.

PushButton

42

For example, if the user wants to display rainflow histogram, first click

pushbutton “rainflow histogram” at the interface. This is the way to callback function

rainflow before one dataset of cycle range display. The 3D histogram will visual at axes

as shown in Figure 3.5.

Figure 3.5: Layout GUI (Display Axes)

Axes

Edittext

Popupmenu

43

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 INTRODUCTION

 This chapter consists of the discussions on the result from the MATLAB
®
 GUI

layout that has been developed using Graphical User Interface (GUI). The GUI in this

project has performed the task from the data loading. This chapter also will explain the

main menu of GUI.

4.2 MAIN MENU OF THE GUI

The menu of GUI in this project contains a few buttons that has been named as

shown in Figure 4.1. The fatigue life prediction panel contain two pushbutton will

explain in the next sub chapter. The user needs to fill all the material properties before

calculating the fatigue life. This software also provide the user to display time loading

history, rainflow histogram and total damage histogram. All this will display in the axes

box. The other pushbutton is credit which is containing the detail about GUI developer

and also the supervisor as shown in Figure 4.2. The user can use the help to get help

when using this software.

44

Figure 4.1: Main Interface

Figure 4.2: Credit Interface

45

Figure 4.3: Close Interface

 When the user click Close button on the GUI, the close appears as shown in

Figure 4.3 which is by clicking the YES button closes both the close programme and the

GUI calls it. But when the user clicking the NO button closes just the programme.

4.3 INTERFACE MATLAB
®
 GUI SOFTWARE

4.3.1 Display the loading history

 The material properties need to be filling under the material properties panel.

The users need to choose the loading data and the method for calculating the fatigue

life. By clicking the time domain data pushbutton, the loading history will appear at the

axes as shown in Figure 4.4.

46

Figure 4.4: Time loading history

Loading is another major input to the fatigue analysis. Loading information can

be obtained using a number of different methods. Several types of variable amplitude

loading history from SAE standard. For this software, the load history has a

predominantly compressive (negative) mean that is referred as suspension history. The

variable amplitude load-time histories are shown in Figure 4.5. The term SAESUS

represent the load-time history for the suspension respectively. The considered load-

time histories are based on the SAE‟s profile. The abscissa is the time, in seconds.

Figure 4.5: SAE standard suspension (SAESUS) loading

47

4.3.2 Display the rainflow histogram

 The rainflow histogram can be display by clicking the rainflow histogram

pushbutton. The cycle from the time loading data extracted by peak to peak using

rainflow cycle counting method. This cycle counting method can be referred in

literature review. The M-files of rainflow cycle shown in Appendix. The Figure 4.6 has

shown the interface after clicking the pushbutton.

Figure 4.6: Rainflow histogram

4.3.3 Display the total damage histogram

 The total damage can be display by clicking pushbutton total damage histogram.

Figure 4.7 shown the interface. The detail of total damage histogram will be discussed

in next sub chapter. Total life and total damage value can be calculated by clicking the

pushbutton. The interface as shown in Figure 4.8 and Figure 4.9.

48

Figure 4.7: Total damage histogram

Figure 4.8: Total damage value

49

Figure 4.9: Total life value

4.4 DISCUSSION

 For fatigue life prediction, strain-life approach is used using Coffin-Manson

model. A steel material used for the purpose of stimulation is SAE1045 steel. This

material selected because it is a material that commonly used in the automotive

industry. In addition, these materials are also chosen because it is widely used in the

investigation of the fatigue life parameter determination „Society of Automotive

Engineers Fatigue Design and Evaluation‟, SAEFDE (Pals & Stephen 2004).

Mechanical properties of SAE1045 are shown in the Table 4.1.

For the simulation using software that has been developed, the fatigue data had

been input will converted to the cycle of fatigue by using the rainflow. The data that be

used is SAESUS data. Each cycle fatigue is displayed in a three-dimensional surface

shown in Figure 4.10. In Figure 4.10, x-axis represents the range of strains, the y-axis

represents the strain mean and z-axis represents the number of fatigue cycles in the

50

same range and mean. The results obtained in the majority of the signal cycle fatigue

have a range of small amplitude.

Table 4.1: Mechanical properties of SAE1045

Mechanical Properties SAE1045 Steel

Modulus of Elasticity, E (Gpa) 204

Fatigue Strength Coefficient, 𝜎𝑓` (Mpa) 948

Fatigue Strength Exponent, b -0.092

Fatigue Ductility Exponent, c -0.445

Fatigue Ductility Coefficient, 𝜀𝑓` 0.26

Sources: nSoft 2001

Figure 4.10: SAESUS cycle distribution in three-dimensional surface

Fatigue damage for each cycle is calculated using model Coffin-Manson (Eq.

2.1). Figure 4.11 shows the three-dimensional surface plot of fatigue damage in the

fatigue data that been analyse. In Figure 4.11, the x-axis represents the range of strain

for the cycle that obtained by using the „rainflow‟, y-axis represents the strain mean and

z-axis represents the fatigue damage to the cycle that has the same range and mean. The

value of fatigue damage is displayed on the surface get from the fatigue damage in a

cycle time‟s total of the cycle in a fatigue signal. The number of cycles is shown in the

surface distribution of the cycle. From the surface of fatigue damage, the high fatigue

damage was found in the cycle there is a high cycle range. While the cycle in the range

0

20

40

60

80

0

20

40

60

80

0

10

20

30

40

5

10

15

20

25

30

51

of small strain gives the fatigue damage low even has a lot of cycles. Palmgren-Miner

rules are used to determine the overall of fatigue life for variable loading. Overall

damage value is the total of cumulative fatigue damage for each cycle fatigue. Then, the

fatigue life obtained by calculating the reciprocal value of the overall fatigue damage.

Figure 4.11: SAESUS fatigue damage distribution three-dimensional surface for fatigue

 damage

4.4.1 Comparison result with MSC Fatigue Software

 The comparison between the software that has been developed and the

MSC.Fatigue software show the result of total life in Table 4.2.

Table 4.2: Total life result

GUI Software MSC Fatigue

1.485e5 (in sec) 1.644e5 (in sec)

 From the result above, it show two different value of the total life between using

GUI software and MSC.Fatigue. The different between two value because of

MSC.Fatigue use the complex and more accurate algorithm compare to the GUI

software. The iteration method that used in GUI software give less decimal places

compare to MSC.Fatigue software.

0

20

40

60

80

0

20

40

60

80

0

0.5

1

1.5

x 10
-4

2

4

6

8

10

12

x 10
-5

52

 The distribution of rainflow cycle that display either from GUI software or

MSC.Fatigue is most the same. For the GUI software, the raiflow histogram plot with

cycle range and mean is 64 bin. The Figure 4.12(a) and 4.12(b) shows the rainflow

histogram for each software.

(a) (b)

Figure 4.12: Cycle distribution in three dimension histogram; (a) GUI Software

 (b) MSC.Fatigue

53

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

 This project is successfully developed. Graphical User Interface (GUI) for

calculating fatigue life using variable amplitude loading data has been presented. There

are many function in using MATLAB
®
, with the function in MATLAB

®
, it can create

GUIDE and design the layout of the GUI. From the GUI, it can show many thing based

on its application. For this project, the GUI is creating to display the total life and total

damage based on variable amplitude loading data which is only focus on the Low Cycle

Fatigue by using Coffin-Manson method. The knowledge about this has been studied

from the literature review.

The first objective for this thesis is to create and design GUI using GUIDE in

MATLAB
®
 Software package to make an easier for the user to use. The design in GUI

must be user-friendly to make sure the use understand to use it. The next objective is

Develop the Fatigue Life Prediction Algorithm using methods Coffin Manson by

implement iteration method to solve the equation. The data from SAESUS will be used

to calculate fatigue life for variable amplitude loading data. This method will display a

fatigue life in MATLAB
®
 GUI. The result can achieve after this software running

smoothly using the model fatigue.

 The objective of this project is to interface the MATLAB
®
 GUI that is achieved.

The main contribution of this project is to interfacing the GUI.

54

5.2 RECOMMENDATION

 The recommendations for future development of this software are:

i. This software only uses Coffin-Manson method for calculating fatigue

life. So for the future this software can be developed further by adding

another method such as Morrow, Smith, Watson and Topper (SWT) and

DuQuesnay.

ii. The other algorithm development methods can be used for enhancement

this software. There is many other iterations method where it is faster and

more converge to the fixed point.

55

REFERENCES

Ariduru S. 2004. Fatigue Life Calculation by Rainflow Cycle Counting Method. M. Sc.

Thesis. Middle East Technical University.

ASTM Standard E1049. 1985. Standard Practice for Cycle Counting in Fatigue

Analysis. Philadelphia: ASTM

Christian Lalanne, 1999. Mechanical Vibration & Shock, Fatigue Damage, Volume IV,

Taylor and Francis Books, Inc.

D. Kujawski, F. Ellyin. 1984. A Cumulative Damage Theory for Fatigue Crack

Initiation and Propagation. International Journal of Fatigue, 6:119-137.

G. Bhuyan, O. Vosikovsky. 1989. Prediction of Fatigue Crack Initiation Lives for

Welded Plate T-joints Based on the Local Stress-Strain Approach. International

Journal of Fatigue, 11:153-159.

Hanselman D., Field B. L. 2005. Mastering MATLAB7. Pearson & Prentice Hall, Inc.

J. Szusta, A. Seweryn. 2010. Low-Cycle Fatigue Model of Damage Accumulation –

The Strain Approach. Engineering Fracture Mechanics, 77:1604-1616.

L. Molent, M. McDonald, S. Barter, and R. Jones. 2008. Evaluation of Spectrum

Fatigue Crack Growth Using Variable Amplitude Data. International Journal of

Fatigue, 30:119-137.

Manson S.S 1965. Fatigue: a complex subject – some simple approximation.

Experimental Mechanics 5: 193-226

Masahiro Jono. 2005. Fatigue Damage and Crack Growth Under Variable Amplitude

Loading with Reference to the Counting Methods of Stress–Strain Ranges.

International Journal of Fatigue, 27:1006-1015.

Matsuishi, M. & Endo, T. 1968. Fatigue of materials subjected to varying stress.

Fukuoka: Japan Society of Mechanical Engineers.

Memon, I.R., Zhang, X. & Cui, D. 2002. Fatigue Life Prediction of 3-D Problems by

Damage Mechanics with Two-Block Loading. International Journal of Fatigue

24: 29-37.

Miner, M.A. 1945. Cumulative Damage In Fatigue. Journal of Applied Mechanics 67:

159-164

Morrow, J.D., 1968. Fatigue Design Handbook. In: Advances in engineering.

Warrendale: Society of Automotive Engineers. 4:21-29.

56

Morrow, D. & Vold, H. 1997. Compression of Time Histories Used for Component

Fatigue Evaluation SAE930403 in PT-67 in Recent Developments in Fatigue

Technology. USA: Society of Automotive Engineers (SAE).

Nizwan C. K. E, 2009. Pembangunan Algoritma Penyuntingan Data Lesu

Menggunakan Kaedah Penjelmaan Masa-Frekuensi. S. Sn. Tesis. Universiti

Kebangsaan Malaysia.

nSoft
®
 User Manual. 2001. nSoft V5.3 Online Documentation. Sheffield: nCode

International Ltd.

Palmgren, A. 1924. Die Lebensdauer von Kugellagern. Verfahrenstechinik. Berlin, 68:

339-341.

Ramberg, W., & Osgood, W. R. 1943. Description of Stress-Strain Curves by Three

Parameters. Technical Note No. 902. Washington DC: National Advisory

Committee For Aeronautics.

Richard C.Rise, Brian N.Leis, Drew V.Nelson, Henry D.Berns, Dan Lingenfelser, M.R.

Mitchell, 1988. Fatigue Design Handbook, Society of Automotive Engineers, Inc.

Richard, C. Rise, Leis, B. N. & Drew Nelson. 1997. Fatigue Design Handbook. 3
rd

Edition. Warrendele: Society of Automotive Engineers.

Smith, K. N., Watson, P. & Topper, T. H. 1970. A stress-strain function for the fatigue

of metals. Journal of Materials, JMLSA 5 (4): 767-778.

Sonsino, C. M. 2007. Fatigue testing under variable amplitude loading, International

Journal of Fatigue 29 (6): 1080-1089.

Stephens, R. I., Ali Fatemi, Stephens, R. R. & Henry, O. F. 2001. Metal Fatigue in

Engineering. New York: John Wiley & Sons, Inc.

Stephens, R. I., 2001. Metal Fatigue in Engineering. 2
nd

 Edition. New York: John Wiley

& Sons, Inc.

Stephens, R. I., Dindinger, P. M. & Gunger, J. E. 1997. Fatigue Damage Editing for

Accelerated Durability Testing Using Strain Range and SWT Parameter Criteria.

International Journal of Fatigue 19: 599-606.

J. Palm III W., Introduction to MATLAB7 for Engineers, 2005, McGraw Hill, Americas,

New York, NY.

Yung-Li Lee, Jwo Pan, Hathaway, R. & Barkey, M. 2005. Fatigue Testing and Analysis

(Theory and Practice). United Kingdom: Elsevier Inc.

57

APPENDICES A1

Figure 6.1: Time loading history for D1

Figure 6.2: Time loading history for D2

0 0.5 1 1.5 2 2.5 3

x 10
4

-150

-100

-50

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-50

0

50

100

150

200

250

58

APPENDICES A2

Figure 6.3: Time loading history for D3

Figure 6.4: Time loading history for D4

0 0.5 1 1.5 2 2.5 3

x 10
4

-200

-100

0

100

200

300

400

500

0 0.5 1 1.5 2 2.5 3

x 10
4

-300

-200

-100

0

100

200

300

400

500

600

59

APPENDICES B1

Figure 6.5: Rainflow histogram for D1

Figure 6.6: Total damage histogram for D1

60

APPENDICES B2

Figure 6.7: Rainflow histogram for D2

Figure 6.8: Total damage histogram for D2

61

APPENDICES B3

Figure 6.9: Rainflow histogram for D3

Figure 6.10: Total damage histogram for D3

62

APPENDICES B4

Figure 6.11: Rainflow histogram for D4

Figure 6.12: Total damage histogram for D4

63

APPENDICES C1

function varargout = main(varargin)

% MAIN M-file for main.fig

% MAIN, by itself, creates a new MAIN or raises the existing

% singleton*.

%

% H = MAIN returns the handle to a new MAIN or the handle to

% the existing singleton*.

%

% MAIN('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in MAIN.M with the given input arguments.

%

% MAIN('Property','Value',...) creates a new MAIN or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before main_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to main_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help main

% Last Modified by GUIDE v2.5 24-Oct-2010 01:24:07

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @main_OpeningFcn, ...

 'gui_OutputFcn', @main_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

64

% --- Executes just before main is made visible.

function main_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to main (see VARARGIN)

% Choose default command line output for main

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes main wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = main_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

function edit1_Callback(hObject, eventdata, handles)

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text

% str2double(get(hObject,'String')) returns contents of edit1 as a double

% --- Executes during object creation, after setting all properties.

function edit1_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

65

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function edit8_Callback(hObject, eventdata, handles)

% hObject handle to edit8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit8 as text

% str2double(get(hObject,'String')) returns contents of edit8 as a double

% --- Executes during object creation, after setting all properties.

function edit8_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function edit9_Callback(hObject, eventdata, handles)

% hObject handle to edit9 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit9 as text

% str2double(get(hObject,'String')) returns contents of edit9 as a double

% --- Executes during object creation, after setting all properties.

function edit9_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit9 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

66

function edit10_Callback(hObject, eventdata, handles)

% hObject handle to edit10 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit10 as text

% str2double(get(hObject,'String')) returns contents of edit10 as a double

% --- Executes during object creation, after setting all properties.

function edit10_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit10 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function edit11_Callback(hObject, eventdata, handles)

% hObject handle to edit11 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit11 as text

% str2double(get(hObject,'String')) returns contents of edit11 as a double

% --- Executes during object creation, after setting all properties.

function edit11_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit11 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

% --- Executes on selection change in popupmenu1.

function popupmenu1_Callback(hObject, eventdata, handles)

% hObject handle to popupmenu1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

67

% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array

% contents{get(hObject,'Value')} returns selected item from popupmenu1

% --- Executes during object creation, after setting all properties.

function popupmenu1_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenu1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

% --- Executes on selection change in popupmenu2.

function popupmenu2_Callback(hObject, eventdata, handles)

% hObject handle to popupmenu2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

val = get(hObject,'Value');

str = get(hObject, 'String');

switch str{val};

case 'saesus' % User selects saesus

handles.current_data = handles.saesus;

case 'D1' % User selects D1

handles.current_data = handles.D1;

case 'D2' % User selects D2

handles.current_data = handles.D2;

case 'D3' % User selects D3

handles.current_data = handles.D3;

case 'D4' % User selects D4

handles.current_data = handles.D4;

end

guidata(hObject,handles)

% Hints: contents = get(hObject,'String') returns popupmenu2 contents as cell array

% contents{get(hObject,'Value')} returns selected item from popupmenu2

% --- Executes during object creation, after setting all properties.

function popupmenu2_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenu2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.

68

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

load saesus.txt;

assignin('base','saesus',saesus);

z=saesus.*10e-6;

assignin('base','z',z);

[cyclerange, Emin, Emax, meancycle,maxcycle]=RFCFunct(z);

assignin('base','cyclerange',cyclerange);

assignin('base','Emin',Emin);

assignin('base','Emax',Emax);

assignin('base','meancycle',meancycle);

assignin('base','maxcycle',maxcycle);

cyclerange=cyclerange.*0.5;

assignin('base','cyclerange',cyclerange);

Emin=Emin.*0.5;

assignin('base','Emin',Emin);

Emax=Emax.*0.5;

assignin('base','Emax',Emax);

meancycle=meancycle.*0.5;

assignin('base','meancycle',meancycle);

maxcycle=maxcycle.*0.5;

assignin('base','maxcycle',maxcycle);

range=maxcycle/64:maxcycle/64:maxcycle;

assignin('base','range',range);

[damage]=DamageFunct(range)

assignin('base','damage',damage);

X=[cyclerange',meancycle'];

assignin('base','X',X);

 Z=hist3(X,[64 64]);

 assignin('base','Z',Z);

for a=1:64

 assignin('base','a',a);

 D(a,:)=Z(a,:).*damage(a);

 assignin('base','D',D);

end

totaldamage0=sum(D)

69

assignin('base','totaldamage0',totaldamage0);

totaldamage=sum(totaldamage0)

assignin('base','totaldamage',totaldamage);

set(handles.edit12,'string',totaldamage);

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

load saesus.txt;

assignin('base','saesus',saesus);

z=saesus.*10e-6;

assignin('base','z',z);

[cyclerange, Emin, Emax, meancycle,maxcycle]=RFCFunct(z);

assignin('base','cyclerange',cyclerange);

assignin('base','Emin',Emin);

assignin('base','Emax',Emax);

assignin('base','meancycle',meancycle);

assignin('base','maxcycle',maxcycle);

cyclerange=cyclerange.*0.5;

assignin('base','cyclerange',cyclerange);

Emin=Emin.*0.5;

assignin('base','Emin',Emin);

Emax=Emax.*0.5;

assignin('base','Emax',Emax);

meancycle=meancycle.*0.5;

assignin('base','meancycle',meancycle);

maxcycle=maxcycle.*0.5;

assignin('base','maxcycle',maxcycle);

range=maxcycle/64:maxcycle/64:maxcycle;

assignin('base','range',range);

[damage]=DamageFunct(range)

assignin('base','damage',damage);

X=[cyclerange',meancycle'];

assignin('base','X',X);

 Z=hist3(X,[64 64]);

 assignin('base','Z',Z);

for a=1:64

 assignin('base','a',a);

 D(a,:)=Z(a,:).*damage(a);

 assignin('base','D',D);

end

totaldamage0=sum(D)

assignin('base','totaldamage0',totaldamage0);

totaldamage=sum(totaldamage0)

70

assignin('base','totaldamage',totaldamage);

NF=1/totaldamage

assignin('base','NF',NF);

set(handles.edit13,'string',NF);

function edit12_Callback(hObject, eventdata, handles)

% hObject handle to edit12 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit12 as text

% str2double(get(hObject,'String')) returns contents of edit12 as a double

% --- Executes during object creation, after setting all properties.

function edit12_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit12 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function edit13_Callback(hObject, eventdata, handles)

% hObject handle to edit13 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit13 as text

% str2double(get(hObject,'String')) returns contents of edit13 as a double

% --- Executes during object creation, after setting all properties.

function edit13_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit13 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

% --- Executes on button press in pushbutton3.

71

function pushbutton3_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

axes(handles.axes1);

cla;

popup_sel_index=get(handles.popupmenu2,'value');

switch popup_sel_index

 case 1

 load saesus.txt;

 assignin('base','saesus',saesus);

 data=saesus;

 assignin('base','data',data);

 T=1;

 assignin('base','T',T);

 t=[T:T:T*length(data)];

 assignin('base','t',t);

 plot(t,data,'color','k');

 case 2

 load D1.txt;

 assignin('base','D1',D1);

 data=D1;

 assignin('base','data',data);

 T=1;

 assignin('base','T',T);

 t=[T:T:T*length(data)];

 assignin('base','t',t);

 plot(t,data,'color','k');

 case 3

 load D2.txt;

 assignin('base','D2',D2);

 data=D2;

 assignin('base','data',data);

 T=1;

 assignin('base','T',T);

 t=[T:T:T*length(data)];

 assignin('base','t',t);

 plot(t,data,'color','k');

 case 4

 load D3.txt;

 assignin('base','D3',D3);

 data=D3;

 assignin('base','data',data);

 T=1;

 assignin('base','T',T);

 t=[T:T:T*length(data)];

 assignin('base','t',t);

 plot(t,data,'color','k');

72

 case 5

 load D4.txt;

 assignin('base','D4',D4);

 data=D4;

 assignin('base','data',data);

 T=1;

 assignin('base','T',T);

 t=[T:T:T*length(data)];

 assignin('base','t',t);

 plot(t,data,'color','k');

end

% --- Executes on button press in pushbutton4.

function pushbutton4_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

axes(handles.axes1);

cla;

popup_sel_index=get(handles.popupmenu2,'value');

switch popup_sel_index

 case 1

 load saesus.txt;

 assignin('base','saesus',saesus);

 z=saesus;

 assignin('base','z',z);

 [cyclerange, Emin, Emax, meancycle]=RFCFunct(z);

 assignin('base','cyclerange',cyclerange);

 assignin('base','Emin',Emin);

 assignin('base','Emax',Emax);

 assignin('base','meancycle',meancycle);

 X=[cyclerange',meancycle'];

 assignin('base','X',X);

 Z=hist3(X,[64 64]);

 assignin('base','Z',z);

 h = bar3(Z);

 assignin('base','h',h);

 for i=1:length(h)

 zdata = ones(6*length(h),4);

 assignin('base','zdata',zdata);

 k=1;

 assignin('base','k',k);

 for j=0:6:(6*length(h)-6);

 assignin('base','j',j);

 k=k+1;

 assignin('base','k',k);

 end

73

 set(h(i),'Cdata',zdata);

 end

 colormap jet

 colorbar

 xlabel('Mean');ylabel('cycle range');zlabel('cycles');

 case 2

 load D1.txt;

 assignin('base','D1',D1);

 z=D1;

 assignin('base','z',z);

 [cyclerange, Emin, Emax, meancycle]=RFCFunct(z);

 assignin('base','cyclerange',cyclerange);

 assignin('base','Emin',Emin);

 assignin('base','Emax',Emax);

 assignin('base','meancycle',meancycle);

 X=[cyclerange',meancycle'];

 assignin('base','X',X);

 Z=hist3(X,[64 64]);

 assignin('base','Z',z);

 h = bar3(Z);

 assignin('base','h',h);

 for i=1:length(h)

 zdata = ones(6*length(h),4);

 assignin('base','zdata',zdata);

 k=1;

 assignin('base','k',k);

 for j=0:6:(6*length(h)-6);

 assignin('base','j',j);

 k=k+1;

 assignin('base','k',k);

 end

 set(h(i),'Cdata',zdata);

 end

 colormap jet

 colorbar

 xlabel('Mean');ylabel('cycle range');zlabel('cycles');

 case 3

 load D2.txt;

 assignin('base','D2',D2);

 z=D2;

 assignin('base','z',z);

 [cyclerange, Emin, Emax, meancycle]=RFCFunct(z);

 assignin('base','cyclerange',cyclerange);

 assignin('base','Emin',Emin);

 assignin('base','Emax',Emax);

 assignin('base','meancycle',meancycle);

74

 X=[cyclerange',meancycle'];

 assignin('base','X',X);

 Z=hist3(X,[64 64]);

 assignin('base','Z',z);

 h = bar3(Z);

 assignin('base','h',h);

 for i=1:length(h)

 zdata = ones(6*length(h),4);

 assignin('base','zdata',zdata);

 k=1;

 assignin('base','k',k);

 for j=0:6:(6*length(h)-6);

 assignin('base','j',j);

 k=k+1;

 assignin('base','k',k);

 end

 set(h(i),'Cdata',zdata);

 end

 colormap jet

 colorbar

 xlabel('Mean');ylabel('cycle range');zlabel('cycles');

 case 4

 load D3.txt;

 assignin('base','D3',D3);

 z=D3;

 assignin('base','z',z);

 [cyclerange, Emin, Emax, meancycle]=RFCFunct(z);

 assignin('base','cyclerange',cyclerange);

 assignin('base','Emin',Emin);

 assignin('base','Emax',Emax);

 assignin('base','meancycle',meancycle);

 X=[cyclerange',meancycle'];

 assignin('base','X',X);

 Z=hist3(X,[64 64]);

 assignin('base','Z',z);

 h = bar3(Z);

 assignin('base','h',h);

 for i=1:length(h)

 zdata = ones(6*length(h),4);

 assignin('base','zdata',zdata);

 k=1;

 assignin('base','k',k);

 for j=0:6:(6*length(h)-6);

 assignin('base','j',j);

 k=k+1;

 assignin('base','k',k);

 end

75

 set(h(i),'Cdata',zdata);

 end

 colormap jet

 colorbar

 xlabel('Mean');ylabel('cycle range');zlabel('cycles');

 case 5

 load D4.txt;

 assignin('base','D4',D4);

 z=D4;

 assignin('base','z',z);

 [cyclerange, Emin, Emax, meancycle]=RFCFunct(z);

 assignin('base','cyclerange',cyclerange);

 assignin('base','Emin',Emin);

 assignin('base','Emax',Emax);

 assignin('base','meancycle',meancycle);

 X=[cyclerange',meancycle'];

 assignin('base','X',X);

 Z=hist3(X,[64 64]);

 assignin('base','Z',z);

 h = bar3(Z);

 assignin('base','h',h);

 for i=1:length(h)

 zdata = ones(6*length(h),4);

 assignin('base','zdata',zdata);

 k=1;

 assignin('base','k',k);

 for j=0:6:(6*length(h)-6);

 assignin('base','j',j);

 k=k+1;

 assignin('base','k',k);

 end

 set(h(i),'Cdata',zdata);

 end

 colormap jet

 colorbar

 xlabel('Mean');ylabel('cycle range');zlabel('cycles');

end

% --- Executes on button press in pushbutton5.

function pushbutton5_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

load saesus.txt;

assignin('base','saesus',saesus);

76

z=saesus.*10e-6;

assignin('base','z',z);

[cyclerange, Emin, Emax, meancycle,maxcycle]=RFCFunct(z);

cyclerange=cyclerange.*0.5;

assignin('base','cyclerange',cyclerange);

Emin=Emin.*0.5;

assignin('base','Emin',Emin);

Emax=Emax.*0.5;

assignin('base','Emax',Emax);

meancycle=meancycle.*0.5;

assignin('base','meancycle',meancycle);

maxcycle=maxcycle.*0.5;

assignin('base','maxcycle',maxcycle);

range=maxcycle/64:maxcycle/64:maxcycle;

assignin('base','range',range);

[damage]=DamageFunct(range)

X=[cyclerange',meancycle'];

assignin('base','X',X);

 Z=hist3(X,[64 64]);

 assignin('base','Z',Z);

for a=1:64

 D(a,:)=Z(a,:).*damage(a);

 assignin('base','D',D);

end

totaldamage0=sum(D)

totaldamage=sum(totaldamage0)

NF=1/totaldamage

 h = bar3(D);

 for i=1:length(h)

 zdata = ones(6*length(h),4);

 assignin('base','zdata',zdata);

 k=1;

 assignin('base','k',k);

 for j=0:6:(6*length(h)-6);

 assignin('base','j',j);

 k=k+1;

 assignin('base','k',k);

 end

 set(h(i),'Cdata',zdata);

 end

 colormap jet

 colorbar

 xlabel('Mean');ylabel('cycle range');zlabel('cycles'

% --- Executes on button press in pushbutton6.

function pushbutton6_Callback(hObject, eventdata, handles)

77

% hObject handle to pushbutton6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton7.

function pushbutton7_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton8.

function pushbutton8_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

delete(handles.figure1)

78

APPENDICES C2

function [cyclerange, Emin, Emax, meancycle,maxcycle]=RFCFunct(z)

N=length(z);

fs=200;

T=1/fs;

ts=N/fs;

t=[ts/N:ts/N:ts];

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%define peak or valley for the 1st point

if (z(1)>z(2)),

 peak(1)=z(1);

 i=2;

 j=1;

 k=1;

 m=2;

else

 valley(1)=z(1);

 i=1;

 j=2;

 k=2;

 m=1;

end

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

b=1;

for a=1:(length(z)-1)

 if z(a)==z(a+1),

 else

 c(b)=z(a);

 b=b+1;

 end

end

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%pick peak n valley

for n=1:(length(c)-2),

 if (c(n+1)>max(c(n),c(n+2))),

 peak(i)=c(n+1);

 tpeak(i)=(n+1)*T;

 i=i+1;

 elseif (c(n+1)<min(c(n),c(n+2))),

 valley(j)=c(n+1);

79

 tvalley(j)=(n+1)*T;

 j=j+1;

 else

 end

end

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%create new data(peak n valley data)

for l=1:length(peak),

 newData(k)=peak(l);

 tnewData(k)=tpeak(l);

 k=k+2;

end

for p=1:length(valley),

 newData(m)=valley(p);

 tnewData(m)=tvalley(p);

 m=m+2;

end

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%peak to peak

x=max(newData)%max peak

for q=1:length(newData)

 if (newData(q)==x),

 r=q;%point max peak;

 break

 else

 end

end

if newData(length(newData))<newData(length(newData)-1),

 if newData(1)<newData(2),

 if newData(length(newData))>newData(1),

 s=1:r;

 u=r:length(newData)-1;

 else

 s=1:r;

 u=r:length(newData);

 end

 elseif newData(1)>newData(2),

 if newData(length(newData))>newData(1)

 s=2:r;

 u=r:length(newData)-1;

80

 else

 s=1:r;

 u=r:length(newData)-1;

 end

 else

 end

else

 if newData(1)<newData(2),

 if newData(length(newData))>newData(1),

 s=1:r;

 u=r:length(newData);

 else

 s=2:r;

 u=r:length(newData)-1;

 end

 elseif newData(1)>newData(2),

 if newData(length(newData))>newData(1),

 s=2:r;

 u=r:length(newData);

 else

 s=1:r;

 u=r:length(newData)-1;

 end

 else

 end

end

PeakToPeak=[newData(u) newData(s)] ;

% subplot(2,2,2)

% plot(PeakToPeak);

% title('Time Histories(peak & valley-peak to peak)');

% ylabel('Amplitude [microstrain]')

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%rainflow cycle counting

PTP=PeakToPeak;

Npoint=1;

Ncycle=1;

L=length(PTP);

while L>3

 range1=abs(PTP(Npoint)-PTP(Npoint+1));

 mean1=min([PTP(Npoint) PTP(Npoint+1)])+range1/2;

 range2=abs(PTP(Npoint+1)-PTP(Npoint+2));

 if range1<=range2,

 cyclerange(Ncycle)=range1;

81

 meancycle(Ncycle)=mean1;

 Emin(Ncycle)=min([PTP(Npoint) PTP(Npoint+1)]);

 Emax(Ncycle)=max([PTP(Npoint) PTP(Npoint+1)]);

 Ncycle=Ncycle+1;

 if Npoint==2

 PTP=[PTP(1) PTP(Npoint+2:length(PTP))];

 else

 PTP=[PTP(1:Npoint-1) PTP(Npoint+2:length(PTP))];

 end

 L=length(PTP);

 Npoint=1;

 else

 Npoint=Npoint+1;

 end

end

cyclerange(Ncycle)=abs(PTP(Npoint)-PTP(Npoint+1));

Emin(Ncycle)=min([PTP(Npoint) PTP(Npoint+1)]);

Emax(Ncycle)=max([PTP(Npoint) PTP(Npoint+1)]);

meancycle(Ncycle)=min([PTP(Npoint) PTP(Npoint+1)])+(abs(PTP(Npoint)-

PTP(Npoint+1))/2);

maxcycle=max(cyclerange);

82

APPENDICES C3

function [damage]=DamageFunct(cyclerange)

% cyclerange=[50000 60000 70000].*1e-6;

b=-0.092;

c=-0.445;

E=204e9;

Ef=0.26;

Sf=948e6;

dataNf=[1:1:99 100:10:990 1000:100:9900 10000:10000:2e8];

for j=1:length(dataNf)

 dataEa(j)=Sf/E*((dataNf(j))^b)+Ef*((dataNf(j))^c);

end

for i=1:length(cyclerange)

 if cyclerange(i)<dataEa(length(dataEa))

 damage(i)=0;

 else

 for k=1:length(dataNf)

 error=abs(cyclerange(i)-dataEa(k))/cyclerange(i)*100;

 if error<5

 NF=dataNf(k);

 damage(i)=1/NF;

 break

 else

 end

 end

 end

end

83

UNDERGRADUATE PROJECT RESEARCH (GANTT CHART)

PROJECT ACTIVITIES

WEEKS

PSM 1 PSM 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PROBLEM STATEMENT

LITERATURE REVIEW

METHODOLOGY

PROPOSAL WRITING

PRESENTATION

RUN PROGRAM

REPORT WRITING

PLAN ACTUAL

