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ABSTRACT 

 

The thesis deals with the numerical simulation of nanofluid forced convection heat 

transfer under the turbulent flow with different volume concentrations. The objective of 

this thesis is to study the heat transfer coefficient of nanofluid at various volume 

concentrations and Reynolds number using Computational Fluid Dynamic (CFD) 

software. This thesis describes the CFD analysis techniques to predict the heat transfer 

coefficient using FLUENT software. Aluminum Oxide, Al2O3/Water with 0.02%, 0.1% 

and 0.5% of volume concentration were studied in this thesis which commonly 

available nanofluid in market. The structural three-dimensional solid modelling of plain 

pipe tube was developed using the computer aided-drawing software, SolidWorks. The 

strategy of validation of CFD model was developed by comparing the result from water 

simulation with the available equation in the study of forced convection heat transfer. 

The CFD analysis was then performed using FLUENT with nanofluid as the working 

fluid. The CFD model of components was analyzed using the pressure based solver and 

k-epsilon viscous model. Finally, the bulk temperature and wall temperature of the 

working fluid obtained from the simulation are used to calculate the heat transfer 

coefficient of the fluid. From the result, it is observed that the heat transfer coefficient 

of base fluid, water is increased about 20% in the presence of nanoparticles when 

Reynolds number and volume concentration are increase. But, increase in heat transfer 

coefficient by increasing volume concentration of nanofluid is valid when Reynolds 

number below 10,000. Results obtained from simulation were then compared with the 

experiment and it is observed that a close agreement between simulation and experiment 

is achieved. Both simulation and experiment results concluded that the heat transfer 

coenfficient increase when nanofluid is used as the working fluid. These results are 

significant to improve today cooling fluid in the way of increasing the heat transfer 

coefficient. 
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ABSTRAK 

 

Tesis ini berurusan dengan simulasi numerik konveksi paksa perpindahan panas 

bendalirnano di bawah aliran gerlora dengan kepekatan isipadu yang berbeza. Tujuan 

tesis ini adalah untuk mempelajari pekali perpindahan panas bendalirnano pada pelbagai 

kepekatan isipadu dan bilangan Reynolds dengan menggunakan perisian Bendalir 

Dinamik Berkomputer (BDB). Tesis ini membincangkan teknik-teknik analisis BDB 

untuk mengagak pekali pemindahan panas menggunakan perisian FLUENT. 

Aluminium Oksida, Al2O3/Water dengan kepekatan isipadu 0.02%, 0,1% dan 0,5% tela 

dipelajari dalam tesis yang merupakan bendalirnano yang biasa terdapat di pasaran. 

Pemodelan padat struktur tiga-dimensi untuk tabung paip polos dibangunkan dengan 

menggunakan komputer perisian dibantu-rekabentuk, SolidWorks. Strategi untuk 

mengesahkan model BDB yang dibangunkan adalah dengan membandingkan dengan 

hasil dari simulasi air dan dengan persamaan yang terdapat dalam kajian konveksi paksa 

perpindahan panas. Analisis BDM kemudian dilakukan dengan menggunakan FLUENT 

dengan nanofluid sebagai bendalir kerja. Model komponen BDB dianalisis 

menggunakan penyelesai bersaskan tekanan dan model kelikatan k-epsilon. Akhirnya, 

suhu massa bendalir kerja dan suhu dinding paip yang diperolehi daripada simulasi 

digunakan untuk mengira pekali perpindahan panas dari bendalir. Dari hasil tersebut, 

dilihat bahawa pekali perpindahan panas bendalir asas, air meningkat sebanyak 20% 

dengan kehadiran partikel nano apabila bilangan Reynolds dan kepekatan isipadu 

meningkat. Namun begitu, peningkatan pekali perpindahan panas dengan meningkatkan 

kepekatan isipadu bendalirnano ketika bilangan Reynolds di bawah 10,000. Keputusan 

yang diperolehi daripada simulasi kemudian dibandingkan dengan eksperimen dan 

diamati bahawa terdapat persetujuan yang erat antara simulasi dan eksperimen. 

Daripada hasil simulasi dan eksperimen dapatlah disimpulkan bahawa pekali 

pemindahan panas meningkat disaat nanofluid digunakan sebagai bendalir kerja. Hasil 

daripada keputusan ini dapatlah digunakan untuk meningkatkan cairan pendingin hari 

ini dengan cara meningkatkan pekali perpindahan panas. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 INTRODUCTION 

 

In today’s globalized and modern world, there are many products available for 

consumers to be used in all ranges, from food to clothing, electrical appliances to 

transportation. But do we know, lots of these products such as electronic devices (e.g., 

laptops, computers, and game consoles), heat exchangers (e.g., refrigerator, heater, and 

air conditioner) and transportation vehicles need to have a liquid coolant to prevent the 

overheating or to improve the rate of heat transfer. However, the liquid coolants or heat 

transfer fluids that we have today such as water, engine oil, and ethylene glycol 

generally has poor thermal properties. For more than 100 years, many scientists and 

engineers have made great efforts to improve the inherently poor thermal conductivities 

of these traditional heat transfer fluids (J.C. Maxwell, 1873). 

 

An innovative way of improving the thermal conductivities of heat transfer 

fluids is to suspend small solid particles in the fluids. In order to achieve this, nanofluids 

have been used. Nanofluids are nanometer-sized particles (<100 nm) dispersed in a base 

fluid such as water, ethylene glycol or propylene glycol. Addition of high thermal-

conductivity metallic nanoparticles (e.g., aluminum, copper, silicon and silver) increases 

the thermal conductivity of such mixtures; thus enhancing their overall energy transport 

capability. This term was made up by Choi in 1995 at Argonne National Laboratory of 

USA (S.U.S. Choi, 1995). 
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Nanofluids are thought to be the next-generation heat transfer fluids, and they 

offer exciting possibilities due to their enhanced heat transfer performance compared to 

ordinary fluids. Some of the advantages of these nanofluids are: 

 

(i) Better stability and heat transfer ability compared to those fluids containing 

micro or mili sized particles. 

(ii) Higher thermal conductive capability than the base fluids themselves because 

of large surface size for heat transfer due to smaller size of particles. 

 

Nanofluids are proposed for various uses in important fields such as electronics, 

transportation, medical, and Heating Ventilating and Air Conditioning (HVAC). Hence, 

there is a need for fundamental understanding of the heat transfer behavior of nanofluids 

in order to exploit their potential benefits and applications. Nanofluids with metallic 

nanoparticles and oxide nanoparticles have been investigated by several researchers 

such as Choi, Yu, Maxwell, Das et al., Xuan et al., Eastman et al., Lee et al., Hester et 

al. and many other scientists and researchers. 

 

1.2 PROBLEM STATEMENT 

 

As we already known, energy costs have escalated rapidly in the last decade and 

there are tremendous needs for new kinds of heating or cooling fluids, which will 

increase heating system thermal performance, reduce the overall size and energy 

consumption. This is because many conventional coolant fluids today are poor in 

thermal conductivities, which is not very practical to be used in industrial sector now. 

 

In order to reduce our rely on today’s conventional coolant fluids which is not 

very cost effective, research must be carry out numerically and experimentally to find 

the alternative way to solve this problem which is more valuable to people, society, 

country and world. 
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1.3   SIGNIFICANT OF STUDY  

 

There are few significances of this study when objectives have been achieved as 

follows: 

 

(i) Commercialize these nanofluids as a new era of liquid coolants which are very 

practical to be used in industrial sector. 

(ii) People can enjoy new liquid coolants which are more reliable compared to 

conventional liquid coolants which are poor in thermal properties. 

(iii) Apply the advantages of nanofluids as new coolant fluids in our country to 

overcome the overheating and to increase the rate of heat transfer in electrical 

devices, transportation engine and HVAC. 

 

1.4 PROJECT OBJECTIVES 

 

In order to complete a project successfully, the objectives for the project must be 

determined and the objectives of this project includes: 

 

(i) To investigate numerically the behaviors of nanofluid (Aluminum Oxide, 

Al2O3/Water nanofluid) for different Reynolds number and volume 

concentration during the forced convection heat transfer using FLUENT. 

(ii) To compare the results obtained from the numerical simulation software with 

the experimental and previous study. 

 

1.5 SCOPES OF THE PROJECT 

 

The scopes of this project are limited to: 

 

(i) Simulate the nanofluid forced convection heat transfer under turbulent flow 

condition using numerical method. 

(ii) Simulate forced convective heat transfer of Al2O3-water based nanofluid for 

different Reynolds number and volume concentrations. 
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(iii) Study the optimum working condition of nanofluid by considering some 

special requirements such as even suspension, stable suspension, durable 

suspension, low agglomeration of particles, and no chemical change of the 

nanofluid. 

(iv) Analyze nanofluid numerically using three different approaches which are: 

 

• The first approach assumes that the continuum assumption is still valid 

for fluids with suspended nanosize particles. 

• The second approach is to consider one-phase model for description of 

both the fluid and the solid phases. 

• The third approach is to adopt the Boltzmann theory. 



 

 

 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

Heat is the form of energy that can be transferred from one system to another as 

a result of temperature difference. The science that deals with the determination of the 

rates of such energy transfer is called heat transfer. 

 

In other word, heat transfer is the transition of thermal energy from a hotter mass 

to a cooler mass. When an object is at a different temperature than its surroundings or 

another object, transfer of thermal energy, also known as heat transfer, or heat 

exchange, occurs in such a way that the body and the surroundings reach thermal 

equilibrium; this means that they are at the same temperature. Heat transfer always 

occurs from a higher-temperature object to a cooler-temperature one as described by the 

second law of thermodynamics or the Clausius statement. Where there is a temperature 

difference between objects in proximity, heat transfer between them can never be 

stopped; it can only be slowed. 

 

In the simplest of terms, the discipline of heat transfer is concerned with only 

two things: temperature, and the flow of heat. Temperature represents the amount of 

thermal energy available, whereas heat flow represents the movement of thermal energy 

from place to place.  

 

On a microscopic scale, thermal energy is related to the kinetic energy of 

molecules. The greater a material's temperature, then the greater the thermal agitation of 

its constituent molecules (manifested both in linear motion and vibration modes). It is 
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natural for regions containing greater molecular kinetic energy to pass this energy to 

regions with less kinetic energy.  

 

Several material properties serve to modulate the heat transferred between two 

regions at differing temperatures. Examples include thermal conductivities, specific 

heats, material densities, fluid velocities, fluid viscosities, surface emissivity, and more. 

Taken together, these properties serve to make the solution of many heat transfer 

problems an involved process.  

 

For this chapter, a little bit of historical background and a brief explanation of 

the basic theory of heat transfer will be discussed. Then some discussion on concepts of 

nanofluids, technology for production of nanofluids and the benefits of nanofluids in 

industry will be explained. Besides, some discussion on the materials used for making 

the nanofluids and together with the previous study in both experimental and numerical 

about nanofluids will be discussed. Then it is followed by some of the result from 

previous study by researchers have been included as a references to this study. Finally, 

this chapter is ends by a little bit conclusions from overall of this study.  

 

2.2 HISTORY OF HEAT TRANSFER 

 

First modern chemist to study heat was Joseph Black (1728 - 1799).  Black tried 

to explain heat in terms of a fluid.  He explained how a kettle of water placed over a fire 

increased in temperature but a kettle filled with water and ice placed over a fire did not 

change in temperature till all the ice was melted.  He said that until the ice was saturated 

with the heat-fluid and thus became melted could its temperature rise. French chemist 

Antoine Lavoisier (1743-1794) accepted this theory and proposed a theory based from 

this phenomenon called as “caloric theory”. The caloric theory states that heat is a fluid-

like substance called “caloric” (Latin word for heat) that is a mass less, colorless, 

odorless, and tasteless substance that can be poured from one body into another. When 

caloric was added to a body, its temperature increased; and when caloric was removed 

from body, its temperature decreased. 
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Another idea competed with the caloric theory.  Scientist knew that kinetic 

energy of motion plus the stored energy called potential energy was given the name 

mechanical energy and that friction was a part of the conservation of these energies.  

They knew friction could warm up an object so maybe the invisible motion of invisible 

particles was what we call heat. Summed up; friction was converting mechanical energy 

into heat. The problem was this idea of really small particles of matter (i.e., atoms and 

molecules). 

 

An English physicist, James Prescott Joule (1818-1889) was attempting to find 

the mechanical equivalent of heat.  In the end he found that a given amount of energy of 

whatever form always yielded that same amount of heat (at 4.18 joules per calorie).  

The relationship of the motion of atoms to temperature and heat was placed on firm 

theoretical basis about 1860 by the Scottish physicist James Clerk Maxwell and thus put 

the caloric theory to the rest. 

 

2.3 THEORY OF HEAT TRANSFER 

 

From the introduction, heat is defined as the form of energy that can be 

transferred from one system to another as a result of temperature difference. The 

transfer of energy as heat is always from the higher temperature medium to the lower 

one. This transfer process stops when both medium reach the same temperature. 

 

Heat can be transferred in the three different mechanisms which are conduction, 

convection, and radiation. These three mechanisms of heat transfer require the existence 

of a temperature difference, and begin from the high temperature medium to a lower 

temperature medium. Below is the brief description of each mechanism of heat transfer: 

 

(i) Conduction:  

Regions with greater molecular kinetic energy will pass their thermal energy 

to regions with less molecular energy through direct molecular collisions, a 

process known as conduction. In metals, a significant portion of the 

transported thermal energy is also carried by conduction-band electrons.  

 


