One-step electrosynthesis of MnO_2/rGO nanocomposite and its enhanced electrochemical performance

Gomaa A.M. Ali^{a,b}, Mashitah M. Yusoff^a, H. Algarni^{c,d}, Kwok Feng Chong^{a,*}

- ^a Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan, 26300 Gambang, Pahang, Malaysia
- ^b Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
- ^c Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
- d Department of Physics, Faculty of Sciences, King Khalid University, P. O. Box 9004, Abha, Saudi Arabia

ARTICLEINFO

Keywords: Manganese oxide Energy storage Supercapacitors Electron transfer Graphene

ABSTRACT

We present a facile one-step electrochemical approach to generate MnO_2/rGO nanocomposite from a mixture of Mn_3O_4 and graphene oxide (GO). The electrochemical conversion of Mn_3O_4 into MnO_2 through potential cycling is expedited in the presence of GO while the GO is reduced into reduced graphene oxide (rGO). The MnO_2 nanoparticles are evenly distributed on the rGO nanosheets and act as the spacer to prevent rGO nanosheets from restacking. This unique structure provides high electroactive surface area (1173 $m^2\ g^{-1}$) that improves ions diffusion within the MnO_2/rGO structure. As a result, the MnO_2/rGO nanocomposite exhibits high specific capacitance of $473\ Fg^{-1}$ at $0.25\ Ag^{-1}$, which is remarkably higher (3 times) than the Mn_3O_4/GO prior conversion. In addition, the electrosynthesized nanocomposite shows higher conductivity and excellent potential cycling stability of 95% at 2000 cycles.