APPLIED CALCULUS
FOR ENGINEERING & SCIENCE STUDENTS
This module is designed for one-semester calculus course aimed at students majoring in science and engineering. A wide variety of topics, examples and problems are provided. This module can be used as an aided tool in teaching and learning multivariable calculus.

This module consists of four chapters. Students are introduced to polar coordinates and vectors in Chapter 1. This chapter includes the 3-dimensional graph sketching and polar curve, allowing for a source of rich illustrations and exercises. The next chapter concentrate on vector-valued functions including discussions on arc length, curvature and motion in space. Chapter 3 covers partial derivative involving functions with more than one variable. The final chapter covers multiple integrals and the applications.

This text also provides a complete set of teaching materials for courses in multivariable calculus that incorporates recent curricular and pedagogical developments in teaching and learning of calculus. An effort has been made to present the material clearly and at a level of sophistication appropriate for the audience. With the knowledge that any book can always be improved, we welcome corrections, constructive criticism, and suggestions from every reader.
PREFACE

This module is designed for one-semester calculus course aimed at students majoring in science and engineering. A wide variety of topics, examples and problems are provided. This module can be used as an aided tool in teaching and learning multivariable calculus.

This module consists of four chapters. Students are introduced to polar coordinates and vectors in Chapter 1. This chapter includes the 3-dimensional graph sketching and polar curve, allowing for a source of rich illustrations and exercises. The next chapter concentrate on vector-valued functions including discussions on arc length, curvature and motion in space. Chapter 3 covers partial derivative involving functions with more than one variable. The final chapter covers multiple integrals and the applications.

This text also provides a complete set of teaching materials for courses in multivariable calculus that incorporates recent curricular and pedagogical developments in teaching and learning of calculus. An effort has been made to present the material clearly and at a level of sophistication appropriate for the audience. With the knowledge that any book can always be improved, we welcome corrections, constructive criticism, and suggestions from every reader.
TABLE OF CONTENTS

CHAPTER 1 : POLAR COORDINATES & VECTORS

1.0 Introduction ... 3

1.1 Parametric equations .. 7

EXERCISES 1.1 ... 14

1.2 Three Dimensional Coordinate Systems ... 17

 1.2.1 Line, Plane and Space .. 20

 1.2.2 Surfaces (Planes) ... 21

 1.2.3 Distance in Three Dimensional System ... 24

EXERCISES 1.2 ... 25

1.3 Cylindrical and Quadric Surfaces .. 29

 1.3.1 Level Curves ... 29

 1.3.2 Cylindrical Surfaces .. 31

 1.3.3 Paraboloids .. 35

 1.3.4 Spheres .. 38

 1.3.5 Ellipsoids ... 43

 1.3.6 Cones ... 44

EXERCISES 1.3 ... 45

1.4 Lines and Planes ... 49

 1.4.1 Equation of Lines ... 49

 1.4.2 Characteristics of Lines ... 55

 1.4.3 Equation of Planes ... 58

 1.4.4 Intersecting Planes ... 64

 1.4.5 Distance between Two Planes ... 65

EXERCISES 1.4 ... 67

1.5 Polar Coordinates ... 72

 1.5.1 Relationship between Polar and Rectangular Coordinates 75

 1.5.2 Graphing Polar Curve .. 79

 1.5.3 Symmetric Test ... 95

EXERCISES 1.5 ... 100

TUTORIAL 1 : Polar Coordinates & Vectors .. 105
CHAPTER 2: VECTOR-VALUED FUNCTIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td>2.1</td>
<td>Vector Functions and Space Curves</td>
<td></td>
</tr>
<tr>
<td>2.1.1</td>
<td>Domain and Graph of Selected Functions</td>
<td>118</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Operational Properties of Vector Functions</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Derivatives and Integrals of Vector Functions</td>
<td>130</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Derivatives of Vector Functions</td>
<td>130</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Tangent Line and Tangent Vector</td>
<td>131</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Differentiation Rules</td>
<td>136</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Integration of Vector Functions</td>
<td>138</td>
</tr>
<tr>
<td>2.3</td>
<td>Arc Length and Curvature</td>
<td>142</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Unit Tangent, Unit Normal and Binormal Vectors</td>
<td>142</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Arc Length</td>
<td>147</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Curvature</td>
<td>148</td>
</tr>
<tr>
<td>2.4</td>
<td>Motion in Space: Velocity and Acceleration</td>
<td>153</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Normal and Tangential Components of Acceleration</td>
<td>156</td>
</tr>
<tr>
<td>2.5</td>
<td>TUTORIAL 2: Vector-valued Functions</td>
<td>160</td>
</tr>
</tbody>
</table>

CHAPTER 3: PARTIAL DERIVATIVES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>Introduction</td>
<td>165</td>
</tr>
<tr>
<td>3.1</td>
<td>Functions of Two or More Variables</td>
<td>165</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Graphing Function of Two Independent Variables</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Partial Derivatives</td>
<td>172</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Partial Derivative as a Slope</td>
<td>175</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Partial Derivative as Rate of Change</td>
<td>177</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Higher Order Partial Derivative</td>
<td>178</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Geometric Interpretation of Second Order Partial Derivatives</td>
<td>179</td>
</tr>
<tr>
<td>3.3</td>
<td>The Chain Rule</td>
<td>184</td>
</tr>
<tr>
<td>3.4</td>
<td>Implicit Partial Differentiation</td>
<td>192</td>
</tr>
<tr>
<td>3.5</td>
<td>Extrema of Functions of Two Variables</td>
<td>200</td>
</tr>
<tr>
<td>3.6</td>
<td>TUTORIAL 3: Partial Derivatives</td>
<td>206</td>
</tr>
</tbody>
</table>

CHAPTER 4: MULTIPLE INTEGRALS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>Introduction</td>
<td>213</td>
</tr>
<tr>
<td>4.1</td>
<td>Area in Polar Coordinates</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td></td>
<td>223</td>
</tr>
<tr>
<td>4.2</td>
<td>Double Integrals over Rectangular Region</td>
<td>224</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Volume under a Surface</td>
<td>224</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Fubini's Theorem</td>
<td>226</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Properties of Double Integrals</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td></td>
<td>230</td>
</tr>
<tr>
<td>4.3</td>
<td>Double Integrals over Nonrectangular Region</td>
<td>232</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Area and Volume</td>
<td>233</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Reverse the Order of Integration</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td></td>
<td>239</td>
</tr>
<tr>
<td>4.4</td>
<td>Double Integrals in Polar Coordinates</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>4.5</td>
<td>Triple Integrals</td>
<td>252</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Properties of Triple Integrals</td>
<td>252</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Evaluating Triple Integrals Over More General Regions</td>
<td>253</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Volume Calculated as A Triple Integral</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>4.6</td>
<td>Triple Integrals in Cylindrical and Spherical Coordinates</td>
<td>257</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Cylindrical Coordinates</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td></td>
<td>261</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Triple Integrals in Cylindrical Coordinates</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td></td>
<td>266</td>
</tr>
</tbody>
</table>
4.6.3 Spherical Coordinates ...268
EXERCISES 4.6.3 ..271
4.6.4 Triple Integrals in Spherical Coordinates272
EXERCISES 4.6.4 ..275
4.7 Applications of Multiple Integrals ...277
4.7.1 Surface Area ..277
4.7.2 Mass ..281
4.7.3 Center of Gravity and Centroid of Lamina282
4.7.4 Center of Gravity and Centroid of Solid284
EXERCISES 4.7 ..289
TUTORIAL 4 : Multiple Integrals ..291

APPENDICES ...299