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Abstract. Assembly line balancing (ALB) is about distributing the assembly tasks into 

workstations with the almost equal workload. Recently, researchers started to consider the 

resource constraints in ALB such as machine and worker, to make the assembly layout more 

efficient. This paper presents an ALB with resource constraints (ALB-RC) to minimize the 

workstation, machine and worker. For the optimization purpose, genetic algorithm (GA) with 

two new crossovers is introduced. The crossovers are developed using ranking approach and 

known as rank-based crossover type I and type II (RBC-I and RBC-II). These crossovers are 

tested against popular combinatorial crossovers using 17 benchmark problems. The 

computational experiment results indicated that the RBC-II has better overall performance 

because of the balance between divergence and guidance in the reproduction process. In future, 

the RBC-I and RBC-II will be tested for different variant of ALB problems. 

1. Introduction 
Assembly line balancing (ALB) plays a vital function in a production system. The installation of an 

assembly line is a long-term decision and requires large capital investments. It is important that such a 

system is designed and balanced so that it works as efficiently as possible [1]. The simplest version of 
ALB problem is known as simple assembly line balancing problem (SALBP) which also known as 

One-sided ALB [2]. SALBP deals with a serial assembly line which processes a unique model of a 

single product. In previous research, a lot of attention has been given to this type of problem.  

 However, in the majority of the previous works, researchers make assumptions where any of 
assembly tasks can be processed or assembled in any workstations. This is certainly true for the 

product which only requires a common or simple tool to be assembled. However, when the complexity 

of a product increased, it requires a special tool, machine or highly skilled labor to assemble that 
particular component. Therefore, the limitation of resources will be another constraint for the industry. 

In fact, the issue of line balancing with the minimum number of resources has always been a serious 

problem in the industry [3]. This problem is known as assembly line balancing with resource 
constraints (ALB-RC) 

 Previously, researchers had studied the line balancing with resource constraints. [4] started the 

ALB-RC by considering two resources and solve the problem using integer programming. Next, [5] 

proposed a model to support generalized constraints problem. [6] later on model and optimize the 
ALB with worker skill constraint. The purpose is to match the assembly task with the level of the 

worker skill. Besides that, [7] optimize the multi-objective ALB with general resources using 

domination concept.  

http://creativecommons.org/licenses/by/3.0
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 Researchers also implemented different algorithms to optimize the ALB-RC problem. [8] combined 
priority rule-based method (PRBM) and genetic algorithm (GA) to optimize this problem. The PRBM 

is used to generate initial chromosomes for GA. Meanwhile, [9] implement the hybrid multi-objective 

genetic algorithm (MOGA) to optimize the problem to obtain Pareto front. In addition, [10] 
implemented elitist non-dominated sorting GA (NSGA-II) to optimize this problem. 

This paper extends the existing ALB-RC by considering the worker selection, besides the workstation 

number and tool resource. In this problem, the engineer has a different option for workers with 
different ability to conduct assembly task. The problem is later optimized by GA with new crossover 

operators.   

2. ALB-RC Problem Modelling 

The ALB problem is represented using a precedence graph. The number inside the node represents the 
assembly task. The directed edge means the precedence between task i and j. In ALB, the assembly 

tasks need to be assigned into workstations, so that the workstation time is almost equal. To presents 

the ALB-RC, the following example is used. Figure 1 shows a precedence graph that represents an 
assembly process. Each of nodes represents the assembly task while the arrows represent the 

precedence. 

 
Figure 1. Example of precedence graph 

 
 Table 1 meanwhile shows the assembly information which includes the task time, tool and also 

worker. The worker columns with tick mark meaning that the worker is able to conduct a specific 

assembly task. To assemble an assembly task, only one worker is required.  

 
Table 1. Assembly information for Figure 1 

 

Task Time Tool 
Workers 

1 2 3 4 5 6 7 

1 18 A / 
 

/ / 
 

/ / 

2 22 B 
 

/ 
 

/ 
 

/ 
 

3 9 B / / / 
 

/ 
 

/ 

4 7 A 
  

/ 
 

/ / / 

5 12 A / 
  

/ 
 

/ 
 

6 6 B 
 

/ / 
 

/ 
  

7 20 A / / 
 

/ 
  

/ 

  
 For clarity of the ALB-RC evaluation, let consider a feasible assembly sequence f1 = [1 4 3 2 6 5 7]. 

For this example, the maximum cycle time, ctmax is 34 time unit. It means that the workstation time 

cannot exceed the ctmax or otherwise, the demand for the product cannot be fulfilled. In table 2, the 

Worker row shows the entire workers that capable to conduct a specific assembly task.  
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Table 2. Example of a feasible assembly sequence 
 

Sequence 1 4 3 2 6 5 7 

Time 18 7 9 22 6 12 20 

Tool A A B B B A A 

Worker 1,3,4,6,7 3,5,6,7 1,2,3,5,7 2,4,6 2,3,5 1,4,6 1,2,4,7 

 

 The assembly tasks were assigned into the workstation as shown in table 3. The station time row 
shows cumulative time to conduct assembly process for all tasks in a specific station. The Tool row 

shows the required tool to conduct assembly process in a specific station. Meanwhile, the worker 

selection is made based on the number of workers frequency in a workstation. For example, in 

workstation 1, workers 3 and 7 have the highest frequency. In this case, the worker is select randomly.  
 

Table 3. Assembly task and workstation assignment 

 
Workstation 1 2 3 

Task 1, 4, 3 2, 6 5, 7 

Station time 34 28 32 

Tool A,B B A 

Worker 3 2 1 

 

Based on the presented approach, the objective function can be measured as follow: 

 Number of workstation = 3 

 Number of tool = 4 
 Number of worker = 3 

 

3. Genetic Algorithm 
Genetic algorithm is an optimization technique that mimics the survival for the fitness concept. 

Solutions with better fitness have larger possibilities to remain in the population, while the solution 

with bad fitness will be eliminated from the population [11]. In general, GA consists of five main 
steps; Initialization, Evaluation, Selection, Crossover and Mutation. The algorithm is coded using 

permutation number to represent the assembly tasks. However, due to the randomness of permutation, 

the generated number may violate the precedence relation in assembly. Therefore, topological sort 

based on the earliest task appearance is implemented to decode the solution.  
 The purpose of selection step is to choose the chromosome to be placed in the mating pool. The 

selected chromosome will be the parent of the children in a new generation. The selection process is 

conducted using Roulette wheel selection (RWS) mechanism. Meanwhile, for the crossover, we 
introduced two crossover operators, named Rank based crossover type I and II (RBC-I and RBC-II). 

The proposed crossovers are compared with popular crossover operator for permutation problem, i.e. 

ordered crossover (OX), partially matched crossover (PMX) and Moon crossover [12]. 

3.1. Proposed Rank Based Crossover 

 Both of the proposed crossovers taken into account the best chromosome from the population in the 

reproduction process. In both of the proposed crossover, each of the assembly tasks will be given a 

rank according to their position in the chromosome. Then the rank for parent and best chromosome 
will be summed up to form a new rank. The child solution will be generated based on the new rank. 

By using this approach, the new child will inherit the gene from their parent and also the best solution. 

3.1.1. Rank based crossover type-I (RBC-I) 
 In RBC-I, the parent rank (R1) and the best solution rank (Rbest) will be added (Figure 2). Next, the 

rank is sorted according to the parent (P1) and the best solution (Xbest). The sorted parent rank (R’1) 

and the best rank (R’best) is added to form sorted offspring rank (R’O1). Finally, the P’1 is sorted 
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according to the R’O1 to generate offspring solution, O1. In the case where the rank is tied, the selection 
is made randomly. The numerical procedure for RBC-I is presented in Figure 2. 

 

 
Figure 2. Numerical procedure for RBC-I 

3.1.2. Rank based crossover type-II (RBC-II) 

 The RBC-II applied the same rank concept as in RBC-I, but this crossover considers two parents. 

The early steps where the rank is assigned and sorted is the same with RBC-I as shown in figure 3. To 
calculate the rank for offspring solutions (R’O), the following formula is used in RBC-II. 

          R’O = Cbest (R’best) + C1(R’1) + C2(R’2)          (1) 

Cbest, C1 and C2 are the coefficients for the Xbest, P1 and P2 respectively. The Cbest is fixed at 0.2. 

Meanwhile, the C1 and C2 coefficient is depend on the offspring. To generate offspring 1 (O1), the C1 
and C2 are as follow. 

          C1 = 0.7(1 – Cbest)         (2) 

          C2 = 0.3(1 – Cbest)         (3) 

On the other hand, to generate offspring 2 (O2), the following coefficients are used. 

          C1 = 0.3(1 – Cbest)         (4) 

          C2 = 0.7(1 – Cbest)         (5) 

 The offspring solutions (O1 and O2) are generated by sorting the R’O in the ascending orders. As in 
RBC-I, in the event of tie rank, the selection is made randomly. The numerical example for RBC-II is 

shown in figure 3. 

 



5

1234567890

ICADME 2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 908 (2017) 012059  doi :10.1088/1742-6596/908/1/012059

 

 
 

 

 

 

 
Figure 3. Numerical example of RBC-II 

4. Computational Experiment 

A computational experiment has been conducted to measure the performance of RBC-I and RBC-II. 

For this purpose, a set of ALB benchmark problem by Scholl is used [13]. The benchmark set consist 
of 17 problems that varies in term of the size. The benchmark test problem is divided into three 

categories; small (n ≤ 20 task), medium (20 < n ≤ 70) and large (n > 70). For comparison purpose, the 

RBC-I and RBC-II are compared with popular crossover operators for the combinatorial problem. The 
comparison crossovers are the ordered crossover (OX), partially matched crossover (PMX) and Moon 

crossover. The OX and PMX are among popular crossover operator for the combinatorial problem. 

Meanwhile, the Moon crossover is used since it was claimed to be the best crossover for the 

combinatorial problem [12]. For the computational experiment, the population size is set to 30, 
maximum generation is 300, probability of crossover is 0.7 and probability of mutation is 0.2. The 

optimization is run for ten times to reduce the pseudorandom effect. Table 4 presents the best fitness 

obtained by GA using different crossover strategies. 
 Based on the results in table 4, all the crossovers were able to search for an optimum solution for 

the small size problems. However, when the problem size is increased, the RBC-I and RBC-II has 

better performance compared with other crossovers, except in Hahn problem. In medium size problem, 

the RBC-II has better fitness in 83% of the problem. Meanwhile, in large size problem, the RBC-I and 
II individually has better fitness in 50% of the problem. 

 To have better view from the computational experiment result, a standard competition ranking 

approach is used. The crossover with the best fitness will be given rank 1, followed by the next as rank 
2 etc. If the crossover performance is equivalent, the following rank is ignored. The summary of the 

standard competition ranking is presented in table 5. 
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Table 4. Optimization results 
 

No Problem 
No. of 

Task 

Given Cycle 

Time 

Crossover type 

OX PMX Moon RBC-I RBC-II 

1 Mertens 7 8 8.7500 8.7500 8.7500 8.7500 8.7500 

2 Bowman 8 20 8.5000 8.5000 8.5000 8.5000 8.5000 

3 Jaeschke 9 18 3.5000 3.5000 3.5000 3.5000 3.5000 

4 Mansoor 11 48 2.9286 2.9286 2.9286 2.9286 2.9286 

5 Jackson 11 13 2.2857 2.2857 2.2857 2.2857 2.2857 

6 Buxey 29 54 4.0457 4.0576 4.0517 3.7789 3.5181 

7 Sawyer 30 75 1.6800 1.6800 1.6800 1.8000 1.4400 

8 Gunther 35 69 2.7952 2.8952 2.7810 2.6738 2.5881 

9 Kilbridge 45 69 3.8831 3.9642 3.9599 3.8789 3.7999 

10 Hahn 53 2004 5.6467 5.5190 5.5815 5.6495 5.6440 

11 Warnecke 58 111 3.4024 3.5080 3.8168 3.5628 3.1858 

12 Wee Mag 75 56 4.1857 4.1303 4.0446 4.0053 3.8964 

13 Arc83 83 6540 2.4743 2.5198 2.5879 2.4320 2.5132 

14 Lutz 2 89 19 3.0760 2.9237 3.0062 2.5626 2.9492 

15 Mukherje 94 263 3.2866 3.3370 3.2747 3.4274 3.0903 

16 Arc111 111 6540 6.7874 6.6003 6.5334 6.4993 5.5394 

17 Barthol2 148 170 3.2254 3.1278 3.1912 2.9669 3.1034 

 

Table 5. Summary of standard competition ranking 
 

Crossover Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Average rank 

OX 5 3 3 2 4 2.8235 

PMX 6 2 2 4 3 2.7647 

Moon 5 3 3 4 2 2.7058 

RBC-I 8 5 0 1 3 2.1764 

RBC-II 13 1 3 0 0 1.4117 

 

 Based on table 5, the RBC-II was most frequently ranked as 1, followed by RBC-I and PMX. 

Meanwhile, the OX has the most frequently ranked as 5. The average rank for each of crossover is 
then calculated. Based on the average rank the best crossover is RBC-II. The RBC-II is only ranked 

from 1 until 3. In the meantime, RBC-I is in the second best according to the average rank. For RBC-I, 

besides ranked as 1 and 2, this crossover was also ranked as 5 in three cases. On the other hand, the 

OX is the worst crossover based on the average rank.  
 The RBC-I and II have shown better performance because of the involvement of the best 

chromosome in the reproduction process. This makes the search direction is more guided compared 

with other crossovers. In the OX, PMX and Moon crossovers, the reproduction process solely depend 
on the parents. Even though the parents were selected among the best, the variation in the 

chromosomes makes the search direction become too diverse.  

 Meanwhile, in the comparison between RBC-I and II, the RBC-I is too dependent on the best 

solution because a single parent is mated with the best solution for the regeneration. This makes the 
chance for the chromosome to trap in local optima is slightly higher. In RBC-II, the regeneration 

process involved a pair of parents and the best solution. Two chromosomes from parents make the 

regeneration is not too relied on the best solution. Furthermore, the generated offspring only inherit 
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20% of the gene from the best solution (since Cbest = 0.2). This makes the RBC-II able to generate 
more varied offspring, but in the guided mode.  

5. Conclusions 

This paper presents an assembly line balancing with resource constraints. In particular, besides 
balancing the assembly workload in the station, this work also consider to minimize the number of 

machines and workers in an assembly line. For optimization purpose, two crossover operators for 

genetic algorithm were introduced. The proposed crossovers were based on the assembly sequence 
rank, known as Rank-based crossover type I and II (RBC-I and RBC-II). In different with other 

crossover operators, the RBC-I and II consider the best chromosome in the regeneration process. 

 The computational experiments using 17 benchmark problems indicated that the RBC-II has better 

overall performance compared with comparison crossovers in the genetic algorithm. The RBC-II 
performance is because of the balance between divergence and guidance during the reproduction 

process in the crossover. In future, an industrial case study will be conducted to validate the problem 

modeling and the RBC-II performance. 
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