NATURAL ORGANIC MATTER REMOVAL FROM SURFACE WATER USING SUBMERGED ULTRAFILTRATION MEMBRANE UNIT

ZULARISAM AB WAHID

A thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering

ACKNOWLEDGEMENTS

Above all, THANKS to ALLAH and HIS messenger Prophet Muhammad S.A.W for the love, mercy and guidance that leads me to be a true Muslim scholar.

I would like to take this precious moment to express my sincere appreciation and wholehearted appreciation to my advisors, Prof. Dr. Ahmad Fauzi and Prof. Dr. Mohd Razman for their consistent encouragement, keen effort in respect to technical assistance and continuous guidance throughout the course of this study.

I would also like to thank all the MRU members; Mr. Suhaimi Abdullah, Mr. Ng Bee Cher, Mr. Yahya, Mr. Rahman, Dr. Tutuk, Mr. Mukhlis, Mr. Hafiz, Pn Suhaila, Mr. Anam and Pn. Rehan as well as Environmental Lab personnel; Pak Joy, Ramlee, Azlan, Pak Usop and other staffs for sharing their ideas, expertise and time with me.

I would like to thank Dr. Johan, Dr. Fadil Mat Din, Dr. Ramlah, Mr. Law and Dr. Rosli for their encouragement and fruitful discussion as well as other lab members for sharing good memories; Hafiz, Mukhlis, Syukri, Fizah, Rehan and Adib.

I am grateful to UMP for granting me financial support and study leave which make this work successfully carried out.

I would also like to address my unlimited thanks to my mother: Hajah Pn. Hafsah, my sisters and brother, my wife Dr. Mimi Sakinah, my children; Ahmad Faris and Dhiya' An Nadrah for their patience, love, trust and bottomless support. To my late Father, you're the turning point of my successful life. May Allah bless you with all HIS blessings.

ABSTRACT

This research is conducted to provide quantitative and qualitative integrated understandings of natural organic matter (NOM) fouling characteristics regarding to mechanisms and factors involved, and as well as to develop an optimization works for surface water treatment. In conjunction, a fouling behaviour and autopsy protocol for ultrafiltration membrane fouled with natural organic matter source waters were studied. The Ulu Pontian river, Bekok Dam water and Yong Peng water were used. Fouling characteristics were assessed by filtering the feed water with an immersed ultrafiltration polysulfone and cellulose acetate membranes that were spun by a dry-wet phase inversion spinning process. Relatively hydrophilic NOM source exhibited greater flux decline (72%) but lesser natural organic matter removal (17%) considerably due to pore adsorption, indicating that the low molecular weight (7%>30 kDa), aliphatic linear structure and neutral/base organic matter contained within the hydrophilic fraction were the prime foulants. In contrast, relatively hydrophobic natural organic matter source water that possessed higher charge density (22.63 meq/gC), greater molecular weight (24%>30 kDa) and bulky aromatic structure has shown lesser flux decline (Bekok Dam: 57%) and better NOM rejection (37%) noticeably due to cake deposition, despite filtering through a hydrophobic membrane, suggesting that the electrostatic repulsion was more influential than the steric hindrance. In comparison, a noncharged model compound of similar molecular weight was used to quantify the role of charge repulsion on NOM rejection. However, hydrophobic organic matter source of Yong Peng water has demonstrated the opposite results (flux decline: 77%), presumably due to the governing adsorptive fouling which offsett the electrostatic interactions. Analyses of permeate characteristics revealed that the hydrophobic NOM was preferentially removed by the membrane as opposed to the hydrophilic natural organic matter, hence suggesting that the charge interactions, in addition to size exclusion were more crucial to natural organic matter removal. These findings were consistent with the surrogated and fractionated natural organic matter results, which showed the hydrophilic component exhibiting the highest flux decline (52%) despite lesser dissolved organic carbon (14%) and ultraviolet₂₅₄ removal (23%) compared to hydrophobic (35%) and transphilic fractions (20%). Membrane autopsies analyses confirmed the flux decline results, resistance-in-series and permeate analyses as membrane was mainly fouled by the hydrophilic natural organic matter rather than humic compounds. Adequacy of the present quadratic models were statistically significant to represent both the natural organic matter removal (R²=0.966; F=49.36) and membrane permeability ($R^2=0.886$; F=13.33). Alum dose exhibited the most significant factor that influenced the natural organic matter removal, followed by the two level interactions of pH and specific ultraviolet absorbance, the main effect of pH, the main effect of specific ultraviolet absorbance, the two level interaction of specific ultraviolet absorbance and alum, the second order effect of specific ultraviolet absorbance and the second order effect of pH. In the case of membrane permeability, the main effect of alum dosage and the second order effect of pH provided the principal effect, whereas the second order effect of alum, the main effect of pH, the two level interaction of pH and specific ultraviolet absorbance provided the secondary effect. Permeate quality surpassing the National Drinking Water Standards was achieved with removal up to 79.50 % of dissolved organic carbon, 87% ultraviolet absorbance, >96% of colour >99% of turbidity and with effective-cost of RM 1.12/m³, suggesting it is cost-competitive compared to conventional water treatment.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	TI	TLE PAGE	i
	DE	CCLARATION	ii
	DE	DICATION	iii
	AC	CKNOWLEDMENTS	iv
	AB	STRACT	v
	AB	STRAK	vi
	ТА	BLE OF CONTENTS	vii
	LIS	ST OF TABLES	xvi
	LIS	ST OF FIGURES	XX
	AB	BREVIATIONS	XXV
	LIS	ST OF SYMBOLS	xxvii
	LIS	ST OF APPENDICES	XXX
1	INT	RODUCTION	1
	1.1	Background of the problem	1
	1.2	Statement of Problems	2
	1.3	Objectives	6
	1.4	Scope of study	7
	1.5	Significance of Research	9

LIT	ERATI	URE REVIEW	12
2.1	Men	abrane Definition	12
2.2	Men	ibrane Classifications	13
	2.2.1	Factors Affecting Membrane Characteristics	13
2.3	Men	ibrane Reactor	18
2.4	Appl Wate	ication of Ultrafiltration Membrane in Drinking er Treatment	_ 20
	2.4.1	UF Model for Fouling Prediction	-22
2.5	Mass	s Transfer across Membrane Surface	22
2.6	Filtra	ation Equations	26
2.7	Influ	ence of Electrostatic Force on Particles Interaction	27
2.8	Facto	ors Affecting Submerged System Performance	29
	2.8.1	2.8.1 Roles of Gas Flow Rate on Membrane Performan	
	2.8.2	Roles of Module Design and Membrane Orientation on Membrane Performance	32
	2.9	Membrane Application in Surface Water Treatment	34
	2.9.1	Chemistry of Natural Organic Matter (NOM)	36
	2.9.2	Potential Foulants of Surface Water	38
		2.9.2.1 Roles of Inorganic Particles in Surface Water	40
	2.9.3	Fouling Mechanisms during Surface Water Treatment	41
	2.9.4	Transport Mechanism during Surface Water Treatment	43
	2.9.5	Effect of Solution Chemistry on Surface Water Fouling	45
	2.9.6	Effect of Membrane Characteristics on Fouling	47
	2.9.7	Physical and Chemical Cleaning Methods	48

viii

		2.9.8	Surface Water Pretreatment	49
		2.9.9	Controlled Hydrodynamic Conditions	50
		2.10	Conclusions	51
3	RES	EARCH	H METHODOLOGY	55
	3.1	Introc	luction	55
		3.1.1	Phase 1: Membrane Fabrication and Characterization	.55
		3.1.2	Phase 2: Sampling and Characterization of Selected Surface Water	57
		3.1.3	Phase 3: SUMR Reactor Construction and Its Effect on NOM Removal and Permeate Flux	57
		3.1.4	Phase 4: NOM fractionation and Fouling Characteristics Determination	57
		3.1.5	Phase 5: Synthetic NOM-Colloidal Membrane Interactions on Fouling Characteristics	59
		3.1.6	Phase 6: Membrane Autopsy and Foulant Analyses	59
		3.1.7	Phase 7: Factorial Design and Response Surface Methodology Optimization	60
	3.2	Resear	rch Design and Procedures	60
		3.2.1	Material Selection	61
			3.2.1.1 Polymer Selection3.2.1.2 Solvent Selection3.2.1.3 Polymeric Additives	61 62 63
		3.2.2	Dope Preparation	64
		3.2.3	Hollow Fiber Membrane Spinning	66
		3.2.4	Dry/Wet Spinning Process	66
		3.2.5	Solvent Exchange Process	69

ix

			А
	3.2.6	Potting-up Procedure of Hollow Fiber Membrane Module	69
	3.2.7	Molecular Weight Cut-Off (MWCO) Measurement	72
3.3	Surfac	ce Water Sources	73
	3.3.1	Sampling and Sites Descriptions	73
	3.3.2	Overview of Bekok Dam	74
	3.3.3	Overview of Bekok River as Water Intake for Yong Peng 2/3 WTP	74
3.4	Subme	erged Ultrafiltration Reactor	76
	3.4.1	Design and Fabrication of Submerged Membrane Reactor	77
	3.4.2	Membrane Filtration for Compaction, Characterization and Integrity Test	78
	3.4.3	Membrane Flux Decline Test for Hydraulic Resistances	79
	3.4.4	Model Foulant of Synthetic Water	82
		3.4.4.1 Synthetic NOM Water Preparation	83
3.5	Membr	rane Autopsy and Foulant Analyses	83
3.6	Enhanc	ced Coagulation of Jar Test	84
3.7	Integra Protoco	ted Coagulation-Direct Membrane Filtration	85
	3.7.1	Experimental Design	85
	3.7.2	Screening Process Using Two-Level 2k Factorial Design	86
	3.7.3	Optimization Process Using Central Composite Design (CCD)	87
3.8	Determ	ination of Flux Recovery	88
3.9	Instrum	entation and Data Analysis	87
	201	Analytical Method	

.

	3.9.2	Dissolved Organic Carbon (DOC)	89
	3.9.3	Spesific Ultraviolet Absorbance (SUVA)	89
	3.9.4	Contact Angle Measurement (Index of Hydrophobicity)	89
	3.9.5	Colour Measurement	90
	3.9.6	Bacteria Count	90
	3.9.7	Determination of Apparent Molecular Weight Distribution (AMWD)	91
	3.9.8	Charge Density Determination with Potentiometric Titration	92
	3.9.9	NOM Fractionation with Non	
		Funtionalized Ion Exchange Technique	93
	3.9.10	Fouling Model	94
MEI CHA	MBRAN ARACTE	E AND NATURAL ORGANIC MATTER CRIZATIONS	95
4.1	Introd	uction	95
4.2	Memb	rane Characterization	96
	4.2.1	Membrane Zeta Potential Measurement	98
	4.2.2	Membrane Morphological Analyses	100
	4.2.3	Membrane Permeability Test	103
	4.2.4	Determination of Membrane Intrinsic resistance (R_m)	104
4.3	Surface	e Water Sources	105
	4.3.1	Surface Water Characterization	105
	4.3.2	Existing Surface Water Quality	107
	4.3.3	NOM Fractionation with Non- functionalize Ion Exchange Resin	109
	4.3.4	Potentiometric Titration for NOM Fraction Charge Density Measurement	112

xi

	4.3.5	Apparent Molecular Weight Distributions (AMWD) of NOM Source Waters	114
	4.3.6	5 ATR/FTIR Spectra of Surface Water	116
	4.3.7	 Regression and Correlation Analysis between Surface Water and UV_{254nm}, SUVA and DOC 	110
4.4	Conc	clusions	101
			121
ROL FOU	ES OF	'NOM AND MEMBRANE PROPERTIES ON CHARACTERISTICS AND PERMEATE	
QUA	LITY		124
5.1	Intro	duction	124
		5.1.1 NOM Charge Density Analysis	125
		5.1.2 NOM Distribution Analysis	126
		5.1.3 NOM Structural Analysis	126
5.2	Resul	lts and Discussion	127
	5.2.1	Effect of Particulate and Dissolved Organic Matter	127
	5.2.2	Effect of DOC on Membrane Performance	135
	5.2.3	Effect of SUVA on Membrane Performance	138
		5.2.3.1 Morphological Analyses	143
		5.2.3.2 Flux Profiles Based on Delivered DOC	145
5.3	Evalu Memł	ation of NOM Tretability with Submerged UF prane Reactor	149
	5.3.1	NOM Removal Comparison between PSF And CA UF membranes	150
	5.3.2	Comparison of NOM MWD	156
	5.3.3	The Fractional Distribution of hydrophobic/ hydrophilic NOM from Feed to Permeate	161
	5.3.4	The Carboxylic Acidity Distribution of NOM Source Water	166

			xiii
	5.3.5	Comparison of Fouling Behaviour between Relatively Hydrophilic and Hydrophobic NOM Sources: A Specific Case Study of Bekok Dam and Ulu Pontian	167
	5.3.6	Ultrafiltration Membrane Performance on Trace Metals Removal	173
5.4	Concl	usion	174
FOU	LING B	BEHAVIOURS OF FRACTIONAL NOM SOU	RCE
WAT ULT	FERS AI RAFILT	ND FLUX RECOVERY OF FRATION MEMBRANE	175
6.1	Introd	uction	175
6.2	Influer Charac	nce of NOM Fractions on Fouling and Rejection cteristics	176
	6.2.1	Flux Decline Characteristics of NOM Fractions	176
6.3	Resista	ance In Series of NOM Fractions	187
6.4	Flux R Cleani	ecovery through Membrane	193
	6.4.1	Roles of Fouling Mechanisms on Flux Recovery Effectiveness	194
6.5	Qualita	ative Analysis of Fouled and Cleaned Membrane	197
6.6	Conclu	isions	197
SYN. INTE	THETIC CRACTI	NOM FOULANT-COLLOIDAL-MEMBRAN ONS ON FOULING CHARACTERISTICS	IE 199
7.1	Introdu	iction	199
7.2	Materia	als and Methods	200
	7.2.1	Synthetic Model Foulants Characterization	200
	7.2.2	Membrane Fouling Experiments	203

7.3	Resu	Its and Discussion	205
	7.3.1	Interaction among Organic and Colloidal Solutes during Individual/Combined Fouling	205
	7.3.2	Influence of Ionic Strength (IS) on Individual/Combined Fouling	209
	7.33	Influence of Ionic Strength (IS) on	
		Individual and Combined Fouling	215
	7.3.4	Influence of Ca ²⁺ Content on Individual and	
		Combined Fouling	218
	7.3.5	Comparison of DOC Removal for HA and	
		Dextran Surrogates	220
7.4	Concl	usions	221
MEM ULU WAT	IBRAN PONTI TER	E AUTOPSY AND FOULANT ANALYSES IAN, BEKOK DAM AND YONG PENG	223
8.1	Introd	uction	223
8.2	Metho	odology	225
8.3	Result	ts and Discussion	226
·	8.3.1	Membrane Autopsy by Contact Angle Assessment	226
	8.3.2	Membrane Autopsy by Zeta Potential Measurement	230
	8.3.3	Membrane Autopsy by ATR-FTIR Spectral Analysis	232
	8.3.4	Membrane Autopsy by Morphological Analysis	239
8.4	Conclu	isions	241
Баст	ORIAT	DESIGN AND DESDONGE SUDEA OF	

9

FACTORIAL DESIGN AND RESPONSE SURFACE METHODOLOGY FOR INTEGRATED COAGULATION-DIRECT ULTRAFILTRATION OF NOM SOURCE WATER

242

xiv

	9.1	Introd	uction	242
	9.2	.2 Material and Methods		
		9.2.1	NOM Source Water, Isolation and Concentration Apparatus	244
		9.2.3	Submerged Coagulation-UF Membrane	248
	9.3	Analy	sis of Data	250
		9.3.1	Full Factorial Design (First Order Model)	250
		9.3.2	Response Surface Methodology (Second Order Model)	251
	9.4	Result	s and Discussion	252
		9.4.1	Factorial Design	252
		9.4.2	Response Surface Methodology (RSM)	257
		9.4.3	Validation of Empirical Model Adequacy	264
		9.4.4	Process Optimization	265
	9.5	Cost B	enefit Analysis	267
	9.6	Conclu	isions	269
	GENI FOR 1	ERAL C FUTUR	CONCLUSIONS AND RECOMMENDATIONS E WORK	270
	10.1	Genera	ll Conclusions	270
	10.2	Recom	mendations for Future Work	275
	REFE	RENCI	ËS	277
	APPE	NDICE	SA-D	298
LIST OF PUBLICATIONS DERIVED FROM THIS STUDY 352				

xv

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Characteristics of seven membrane separation process	17
2.2	Materials for commercial polymer membrane	18
2.3	Module characteristics among membranes	18
2.4	Comparison between hollow fiber and flat sheet performance	34
2.5	Membranes characteristic for water treatment	35
2.6	Physical and chemical characteristics of humic substances	38
2.7	Constant pressure filtration laws	42
2.8	Common IR spectra for humic substances, polysaccharides and proteins	l 59
3.1	Physical, mechanical and chemical properties of PSF polymer	62
3.2	Physical properties of N, N-dimethylacetamide	63
3.3	PVP-K30 characteristics	63
3.4	Dope formulation for PSF membrane	64
3.5	Dope formulation for CA membrane	. 64

3.6	Phase inversion and rheological factors for spinning condition	68
3.7	Coagulation, flocculation and settling steps for jar test	84
3.8	Variable Names and Levels for Screening process	86
3.9	Molecular weight distribution (%) calculation	92
4.1	Characteristics of the experimental membranes	98
4.2	Intrinsic membrane resistance (R_m) of PSF and CA membranes	105
4.3	DOC concentrations of NOM fractions for the three surface waters (based on DOC and mass balance technique)	111
5.1	Types of particulates effect and organic interactions on CA and PSF membranes during filtration with Ulu Pontian River	134
5.2	Flux decline as a function of delivered DOC (mg/m ²) for the three diluted pretreated surface waters (DOC: 5 mg/L) filtered with PSF membrane	146
5.4	The Charge density, hydrophobic concentration and apparent molecular weight distribution (AMWD) of three surface waters	153
5.5	Summary of mean NOM source waters removal filtered with CA and PSF membranes	154
6.1	Fouling model coefficient (c) of PSF membrane during fractional of NOM filtration	l 184
6.2	Fouling model coefficient (c) of CA membrane during fractional of NOM filtration	185
6.3	Dominant rejection mechanism on NOM fraction with different membrane (from most dominant to less dominant)	187

xvii

6.4	Percentage of fouling resistance to total resistance (R _T) by NOM fractional components of Ulu Pontian river using PSF membrane	190
6.5	Hydraulic resistance for each fractional of Ulu Pontian NOM	189
6.6	Hydraulic resistance for different source of NOMs (derived from Figure 5.8)	190
6.7	Dominant fouling mechanism in NOM fractions as a function of hydraulic fouling resistance	192
6.8	Sequence of fouling mechanism in NOM fractions as a function of hydraulic fouling resistance	193
7.1	Characteristic properties of synthetic model foulant	202
7.2	Experimental protocol for fouling experiments	202
7.3	Fouling model coefficient (c) of PSF membrane during filtration of individual NOM surrogates	208
7.4	Fouling model coefficient (c) of PSF membrane during filtration of combined NOM surrogates	212
8.1	Contact angle characterization of clean and fouled membrane	226
9.1	Results of operating conditions with experimental design in confirmation runs	265
9.2	Results of optimum operational conditions for Yong Peng river	266
9.3	Plant speaciations	267
9.4	Cost data for membrane (C mem)	268

xviii

9.5	Equipment capital cost estimation (C_{equip})	268
9.6	Total operating costs per year (TOCs/year)	268

xix

LIST OF FIGURES

FIGURI	E TITLE	PAGE
1.1	Membrane process as a new alternative to conventional process	4
2.1	Schematic diagram of solutes membrane separation process	12
2.2	Controlling factors in ultrafiltration hollow fiber fabrication	14
2.3	Membrane cross section of symmetrical and asymmetrical membranes	16
2.4	Hollow fibre membrane circulated in bioreactor	20
2.5	Hollow fibre membrane immersed in external tank	20
2.6	Diagram showing gel polarization, concentration boundary layer and concentration profile at the membrane surface during membrane filtration	26
2.7	Layer permeability versus surface potential	28
2.8	Layer permeability versus particle radius	28
2.9	Permeate flux insensitivity to gas flow. TMP =1 bar, 3 g/l dextran	30
2.10	Gas flow rate effect on suction pressure for different flux	31
2.11	Linear relationship between critical flux and turbulence intensity	31

2.12	Schematic diagram of submerged membrane modules. a) flat sheet b) hollow fiber with vertical orientation c) hollow fiber with	
	transverse orientation	33
2.13	Fraction of NOM in surface water based on DOC	37.
2.14	Schematic of humic acid model structure	37
2.15	Schematic of fulvic acid model structure	38
2.16	Effect of CFV on hydraulic resistance	51
3.1	Schematic diagram of operational framework	56
3.2	Experimental design of the ultrafiltration hollow fiber development	61
3.3	a) Molecular structure of polysulfone polymer b) Molecular structure of cellulose acetate polymer	62
3.4	Schematic diagram of dope solution preparation apparatus. Apparatus consists glass vessel, stirrer, thermometer, condenser, feed funnel and heating mantle	65
3.5	Schematic diagram of hollow fiber spinning rig	67
3.6	Typical dry/wet spinning process	68
3.7	Schematic diagram of fiber spin line	69
3.8	Experimental works with different membrane modules	70
3.9	Schematic diagram shows steps involved in cross flow membrane module fabrication	70
3.10	Schematic diagram shows steps involved in developing the submerged module	71
3.11	Cross flow testing rig for MWCO determination	72

xxi

3.12	Layout of Ulu Pontian river sampling point	73
3.13	Bekok Dam reservoir	75
3.14	Layout of Bekok Dam reservoir and intake of Yong Peng WTP	75
3.15	Bekok River as water intake for Yong Peng 2/3 water treatment plant	76
3.16	Schematic diagram of submerged UF membrane reactor	77
3.17	Picture of the submerged membrane module	78
3.18	Filtration procedure with Resistance-In-Series Model	80
3.19	Steps in Resistance-In-Series procedure	81
3.20	NOM samples for TC and EC measurements	90
3.21	Ultrafiltration fractionation schematic diagram	91
3.22	Schematic diagram of NOM fractionation procedure	93
4.1	Polarized reflection IR spectra of virgin CA and PSF membranes	97
4.2	Zeta potential curves of PSF and CA membranes by streaming potential	99
4.3	SEM morphologies views of PSF hollow fiber membrane. Membrane was spun at DER of 3.5 ml/min	101
4.4	SEM morphologies views of CA hollow fiber membrane. Membrane was spun at DER of 3.5 ml/min. Membrane was spun at DER of 3.5 ml/min	102
4.5	Membrane permeability graphs for PSF and CA virgin membrane	103
4.6	Experimental procedures for the characterization of NOM in source water	106

xxii

4.7	NOM fractions in Bekok Dam reservoir, Yong Peng water and Ulu Pontian river	112
4.8	The charge density per unit NOM mass (meq/gC) for carboxylic and phenolic groups of hydrophobic fractions of the three surface waters	113
4.9	Apparent molecular weight distributions (AMWD) of NOM source waters	115
4.10	FTIR analysis of NOM from Ulu Pontian river water	117
4.11	FTIR analysis of NOM from Bekok Dam reservoir	118
4.12	FTIR analysis of NOM from Yong Peng river water	118
4.13	Correlations between DOC, NOM UV_{254nm} , SUVA of each surface water	121
5.1	Flux decline comparison between CA and PSF membranes for the filtration of pretreated (0.45 μ m) and non-prefiltered (raw) Ulu Pontian River water at 0 L/(min.m ²).	128
5.2	Flux decline rate comparison between CA and PSF membranes for untreated and pretreated Ulu Pontian River	128
5.3	Zeta potential comparison between CA and PSF membranes before and after fouled with Ulu Pontian NOM source	132
5.4	SEM images of CA membrane fouled with a) untreated Ulu Pontian river and b) treated Ulu Pontian river	133
5.5	Effect of DOC on the nominal flux of three pretreated (0.45 μ m) surface waters using PSF membrane at aeration rate of 0 L/(min m ²)	126
56	Effect of DOC DCE	136
J.0	resistance of the three NOM source water	136

xxiii

5.7	Effect of DOC on PSF membrane flux and filtrate flow rate of the three NOM source water	137
5.8	Effect of SUVA on the nominal flux of three pretreated (0.45 μ m) surface waters at equivalent DOC (5 mg/L) using PSF membrane	139
5.9	Effect of SUVA on PSF membrane permeability and hydraulic resistance as a function of filtrate volume within 120 minutes filtration time with identical DOC of 5 mg/L, respectively	ce 139
5.10	Effect of SUVA on PSF membrane operational flux and filtrate flowrate within 120 minutes filtration time and with identical DOC of 5 mg/L, respectively	140
5.11	Fractional components of NOM in the three NOM source waters	142
5.12	SEM images of PSF membrane surface being filtered with	
	diluted pretreated surface waters at equivalent DOC of 5 mg/L	144
5.13	Re-filtration of NOM sources permeate with clean PSF membranes	145
5.14	Flux decline comparison for each diluted surface water	
	(pretreated and modified at equivalent DOC of 5 mg/L) as a	
	function of cumulative delivered DOC mg/m ² after 120 minutes	
	filtration. Filtration was carried out with PSF membrane	146
5.15	Comparison of flux decline (filled symbols) and delivered	
	DOC (open symbols) against filtration time for the three surface	
	waters: Yong Peng	147
5.16	Characterization procedures of feed and permeate of Ulu Pontian,	
	Bekok Dam reservoir and Yong Peng NOM	150
5.17	Comparison of % UV _{254nm} (filled symbols) and % DOC removal	
	(open symbols) for Ulu Pontian river filtered with CA and PSF	
	membranes; PSF (\square •); CA (Δ •)	154
5.18	Comparison of % UV _{254nm} (filled symbols) and % DOC	
	removal (open symbols) for Yong Peng water filtered with CA	

xxiv

 5.19 Comparison of % UV_{254nm} (filled symbols) and % DOC removal (open symbols) for Bekok Dam water filtered with CA and PSF membranes; PSF (□•); CA (Δ▲) 155 5.20 Apparent molecular weight distribution (AMWD) comparison between the hydrophobic DOC (DAX-8 isolate) of Bekok Dam reservoir and the feed sample of Bekok Dam reservoir after 120 minutes filtration time (by PSF membrane) 158 5.21 Relationship between the percentage of UV_{254nm} and DOC rejection for the three surface waters by the CA and PSF membrane. (filled symbols); Bekok Dam (□•); Yong Peng water (Δ▲); Ulu Pontian (○•) 160 5.22 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 5.23 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSF membrane device and after being filtered with PSF membrane 		and PSF membranes; PSF (\Box •); CA (Δ •)	155
 removal (open symbols) for Bekok Dam water filtered with CA and PSF membranes; PSF (□•); CA (Δ▲) 155 5.20 Apparent molecular weight distribution (AMWD) comparison between the hydrophobic DOC (DAX-8 isolate) of Bekok Dam reservoir and the feed sample of Bekok Dam reservoir after 120 minutes filtration time (by PSF membrane) 5.21 Relationship between the percentage of UV_{254nm} and DOC rejection for the three surface waters by the CA and PSF membrane. CA membrane (open symbols); PSF membrane (filled symbols); Bekok Dam (□•); Yong Peng water (Δ▲); Ulu Pontian (○•) 5.22 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng with PSF membrane 5.23 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSF membrane distribution 	5.19	Comparison of % UV _{254nm} (filled symbols) and % DOC	
and PSF membranes; PSF (□•); CA (△▲) 155 5.20 Apparent molecular weight distribution (AMWD) comparison between the hydrophobic DÔC (DAX-8 isolate) of Bekok Dam reservoir and the feed sample of Bekok Dam reservoir after 120 minutes filtration time (by PSF membrane) 158 5.21 Relationship between the percentage of UV _{254nm} and DOC rejection for the three surface waters by the CA and PSF membranes. CA membrane (open symbols); PSF membrane (filled symbols); Bekok Dam (□•); Yong Peng water (△▲); Ulu Pontian (○•) 160 5.22 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng with PSF membrane 162 5.23 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 163 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 163 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 163 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 164 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSF membrane 164 <		removal (open symbols) for Bekok Dam water filtered with CA	
 5.20 Apparent molecular weight distribution (AMWD) comparison between the hydrophobic DOC (DAX-8 isolate) of Bekok Dam reservoir and the feed sample of Bekok Dam reservoir after 120 minutes filtration time (by PSF membrane) 5.21 Relationship between the percentage of UV_{254nm} and DOC rejection for the three surface waters by the CA and PSF membranes. CA membrane (open symbols); PSF membrane (filled symbols); Bekok Dam (□●); Yong Peng water (△▲); Ulu Pontian (○●) 5.22 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng with PSF membrane 5.23 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSF membrane denictions 		and PSF membranes; PSF ($\Box \blacksquare$); CA ($\Delta \blacktriangle$)	155
between the hydrophobic DOC (DAX-8 isolate) of Bekok Dam reservoir and the feed sample of Bekok Dam reservoir after 120 minutes filtration time (by PSF membrane) 158 5.21 Relationship between the percentage of UV _{254mm} and DOC rejection for the three surface waters by the CA and PSF membranes. CA membrane (open symbols); PSF membrane (filled symbols); Bekok Dam (□■); Yong Peng water (Δ▲); Ulu Pontian (○●) 160 5.22 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng with PSF membrane 162 5.23 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 163 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 163 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 163 5.26 Contents comparison between hydrophobic (HPO) and <td>5.20</td> <td>Apparent molecular weight distribution (AMWD) comparison</td> <td></td>	5.20	Apparent molecular weight distribution (AMWD) comparison	
reservoir and the feed sample of Bekok Dam reservoir after 120 158 5.21 Relationship between the percentage of UV254nm and DOC 158 5.21 Relationship between the percentage of UV254nm and DOC 158 rejection for the three surface waters by the CA and PSF membrane membranes. CA membrane (open symbols); PSF membrane (filled symbols); Bekok Dam (□=); Yong Peng water (Δ▲); 160 5.22 Contents comparison between hydrophobic (HPO) and 162 5.23 Contents comparison between hydrophobic (HPO) and 163 5.24 Contents comparison between hydrophobic (HPO) and 163 5.25 Contents comparison between hydrophobic (HPO) and 163 5.24 Contents comparison between hydrophobic (HPO) and 163 5.25 Contents comparison between hydrophobic (HPO) and 163 5.26 Contents comparison between hydrophobic (HPO) and 163 5.25 Contents comparison between hydrophobic (HPO) and 164 5.26 Relative fraction of hydrophobic and hydrophilic NOM 164 5.26 Relative fraction of hydrophobic and hydrophilic NOM 164		between the hydrophobic DOC (DAX-8 isolate) of Bekok Dam	
minutes filtration time (by PSF membrane) 158 5.21 Relationship between the percentage of UV254nm and DOC rejection for the three surface waters by the CA and PSF membranes. CA membrane (open symbols); PSF membrane (filled symbols); Bekok Dam (□●); Yong Peng water (△▲); Ulu Pontian (○●) 160 5.22 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng with PSF membrane 162 5.23 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 163 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Uhu Pontian river with PSF membrane 163 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Uhu Pontian river with PSF membrane 163 5.26 Relative fraction of hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Uhu Pontian river with CA membrane 164 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSF membrane deniation 164		reservoir and the feed sample of Bekok Dam reservoir after 120	
 5.21 Relationship between the percentage of UV_{254nm} and DOC rejection for the three surface waters by the CA and PSF membranes. CA membrane (open symbols); PSF membrane (filled symbols); Bekok Dam (□●); Yong Peng water (△▲); Ulu Pontian (○●) 5.22 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng with PSF membrane 5.23 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSF membrane desirting 		minutes filtration time (by PSF membrane)	158
 rejection for the three surface waters by the CA and PSF membranes. CA membrane (open symbols); PSF membrane (filled symbols); Bekok Dam (□●); Yong Peng water (△▲); Ulu Pontian (○●) 5.22 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng with PSF membrane 5.23 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSF membrane desirting 	5.21	Relationship between the percentage of UV_{254nm} and DOC	
membranes. CA membrane (open symbols); PSF membrane (filled symbols); Bekok Dam (□•); Yong Peng water (△▲); Ulu Pontian (○•)1605.22Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng with PSF membrane1625.23Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane1635.24Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane1635.25Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane1635.26Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane1635.25Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane1645.26Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSE membrane164		rejection for the three surface waters by the CA and PSF	
 (filled symbols); Bekok Dam (□•); Yong Peng water (△▲); Ulu Pontian (○•) 160 5.22 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng with PSF membrane 5.23 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSF membrane: denisting. 		membranes. CA membrane (open symbols); PSF membrane	
 Ulu Pontian (o•) 160 5.22 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng with PSF membrane 162 5.23 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 163 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 163 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 163 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 163 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSF membrane deniating. 		(filled symbols); Bekok Dam ($\Box \blacksquare$); Yong Peng water ($\Delta \blacktriangle$);	
 5.22 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng with PSF membrane 5.23 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSF membrane: denicting 		Ulu Pontian (○●)	160
hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng with PSF membrane1625.23Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane1635.24Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane1635.25Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane1635.25Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane1645.26Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSF membrane164	5.22	Contents comparison between hydrophobic (HPO) and	
distribution of Yong Peng with PSF membrane1625.23Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane1635.24Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane1635.25Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane1635.26Relative fraction of between hydrophobic (HPO) and 		hydrophilic (HPI) NOM fractions. NOM fractional	
 5.23 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSE membrane: denisting 		distribution of Yong Peng with PSF membrane	162
 hydrophilic (HPI) NOM fractions. NOM fractional distribution of Yong Peng water with CA membrane 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSE membrane: deniating 	5.23	Contents comparison between hydrophobic (HPO) and	
of Yong Peng water with CA membrane1635.24Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane1635.25Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane1645.26Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSE membrane: denisting164		hydrophilic (HPI) NOM fractions. NOM fractional distribution	
 5.24 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 163 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 164 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSF membrane: domination 		of Yong Peng water with CA membrane	163
 hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with PSF membrane 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSF membrane: dominating 	5.24	Contents comparison between hydrophobic (HPO) and	
of Ulu Pontian river with PSF membrane1635.25Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane1645.26Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSE membrane: depicting163		hydrophilic (HPI) NOM fractions. NOM fractional distribution	
 5.25 Contents comparison between hydrophobic (HPO) and hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSE membrane: depicting 		of Ulu Pontian river with PSF membrane	163
 hydrophilic (HPI) NOM fractions. NOM fractional distribution of Ulu Pontian river with CA membrane 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSE membrane: depicting 	5.25	Contents comparison between hydrophobic (HPO) and	
 of Ulu Pontian river with CA membrane 5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSE membrane: depicting 		hydrophilic (HPI) NOM fractions. NOM fractional distribution	
5.26 Relative fraction of hydrophobic and hydrophilic NOM fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSE membrane: depicting		of Ulu Pontian river with CA membrane	164
fractions in Bekok Dam water and Ulu Pontian river before and after being filtered with PSF membrane: depicting	5.26	Relative fraction of hydrophobic and hydrophilic NOM	
and after being filtered with PSF membrane: denisting		fractions in Bekok Dam water and Ulu Pontian river before	
a stand a with i bi memorane, depicting		and after being filtered with PSF membrane: depicting	

XXV

	preferential rejection of the aromatic or hydrophobic fraction than that of the hydrophilic NOM source	164
5.27	NOM acidities (charge density) of DAX-8 isolate in feed and permeate of Bekok Dam water and Ulu Pontian river	167
5.28	Flux decline profiles of Ulu Pontian river and Bekok Dam water as a function of cumulative delivered DOC (mg/m ²)	170
5.29	Comparison of % UV _{254nm} (filled symbols) and % DOC removal (open symbols) for Bekok Dam water ($\Box \blacksquare$) and Ulu Pontian river ($\Delta \blacktriangle$) filtered with PSF membrane	171
5.30	Relationship between the percentage of UV_{254nm} and DOC rejection for PSF membrane filtered with Bekok Dam water (•) and Yong Peng river (Δ)	172
6.1a	Flux profile of Ulu Pontian NOM fractions by PSF membrane	178
6.1b	Flux decline profiles of NOM fractions of three surface waters at identical DOC of 2.5 mg/L, respectively	179
6.2	Permeability and filtrate volume profiles of Ulu Pontian river NOM fractions by PSF membrane. ($L_{i HPO} = 26.55 LMHBar$; $L_{i HPI}=24.18 LMHBar$; $L_{i TPI}=28.15 LMHBar$)	179
6.3	Flux profile of Ulu Pontian NOM fractions by CA membrane	180
6.4	Permeability and filtrate volume profiles of Ulu Pontian NOM fractions by CA membrane. ($L_{i HPO} = 22.00 LMHBar$; $L_{i HPI}=26.67 LMHBar$; $L_{i TPI}=25.63 LMHBar$)	180
6.5	Comparison of normalized flux and ratio of resistance versus time for three NOM fractions by the CA membrane $(J_{i HPO}= 7.15 LMH; J_{i HPI}= 8.67 LMH; J_{i TPI}= 8.33 LMH)$	181
6.6	Comparison of normalized flux and ratio of resistance versus time for three NOM fractions by the PSF membrane	

xxvi

$(J_{i HPO} = 8.63 LMH; J_{i HPI} = 7.86 LMH; J_{i TPI} = 9.15 LMH)$	181
Flux decline rate for the three Ulu Pontian NOM fractions filtered with PSF membrane	182
	102
Comparison of fouling coefficient (c) or fouling constant for the	
three fractional of Ulu Pontian NOM by PSF membrane	183
Flux decline rate for the three Ulu Pontian NOM fractions	
filtered with CA membrane	184
Comparison of fouling coefficient (c) or fouling constant for the	
three fractional of Ulu Pontian NOMs by CA membrane	184
UV_{254} and DOC removal (%) of hydrophobic, transphilic and	
hydrophilic fractions by PSF membrane	185
Comparison of DOC removal (%) between MRUTM55 (PSF)	
and MRUTM66 (CA) membranes on Ulu Pontian river	
components	186
Resistance in series characteristics of different NOM fractions	190
Adsorption resistance (R _a) characteristics of different NOM	
fractions	191
Flux recovery after physical and chemical cleaning procedures	
for PSF membrane fouled with Ulu Pontian River	196
Summary of flux decline and relative flux recovery for PSF	
fouled with Ulu Pontian River	196
Apparent molecular weight distribution of Aldrich-Sigma humic	
acids by UF fractionation using a series of Ultracel Millipore	
membranes (YM1, YM5, YM10 and YM30).	201
SEM depicting polydispersity/uniformity and shape (micellar) of	
the model kaolin colloids; magnification a) 1000x b) 25000x	201
	 (J₁HPO⁼ 8.63 LMH; J₁HPJ⁼ 7.86 LMH; J₁TPJ⁼ 9.15 LMH) Flux decline rate for the three Ulu Pontian NOM fractions filtered with PSF membrane Comparison of fouling coefficient (c) or fouling constant for the three fractional of Ulu Pontian NOM by PSF membrane Flux decline rate for the three Ulu Pontian NOM fractions filtered with CA membrane Comparison of fouling coefficient (c) or fouling constant for the three fractional of Ulu Pontian NOMs by CA membrane Comparison of fouling coefficient (c) or fouling constant for the three fractional of Ulu Pontian NOMs by CA membrane UV₂₅₄ and DOC removal (%) of hydrophobic, transphilic and hydrophilic fractions by PSF membrane Comparison of DOC removal (%) between MRUTM55 (PSF) and MRUTM66 (CA) membranes on Ulu Pontian river components Resistance in series characteristics of different NOM fractions Adsorption resistance (R_a) characteristics of different NOM fractions Flux recovery after physical and chemical cleaning procedures for PSF membrane fouled with Ulu Pontian River Summary of flux decline and relative flux recovery for PSF fouled with Ulu Pontian River Apparent molecular weight distribution of Aldrich-Sigma humic acids by UF fractionation using a series of Ultracel Millipore membranes (YM1, YM5, YM10 and YM30). SEM depicting polydispersity/uniformity and shape (micellar) of the model kaolin colloids; magnification a) 1000x b) 25000x

xxvii

7.3	Normalized membrane flux as a function of feed solutes during colloidal, dextran and humic acid fouling experiments. Total ionic strength of feed solution is 10.0 mM, pH is 7.2 and with 0.1 mM Ca ²⁺	206
7.4	Specific membrane flux and hydraulic resistance as a function of feed solutes during colloidal, dextran and humic acid fouling experiments. Total ionic strength of feed solution is 10.0 mM, pH is 7.2. and with 0.1 mM Ca ²⁺ ($L_0 = 43 \pm 5$ LMHBar; L_i Humic acid = 33.29 LMHBar; L_i Dextran = 31.10 LMHBar, L_i colloidal = 35.26 LMHBar)	207
7.5	Flux and filtrate flowrate profiles of NOM surrogates as a function of filtration time	207
7.6	Comparison of fouling coefficient (c) or fouling constant for the three NOM models foulant in individual fouling experiment	208
7.7	Comparison of membrane flux observed during combined fouling experiments. Total ionic strength of feed solution is 10.0 mM, pH is 7.2 and with 0.1 mM Ca^{2+}	210
7.8	Comparison of flux and permeate volume for combined fouling experiments. Total ionic strength of feed solution is 10.0 mM, pH is 7.2 with 0.1 mM Ca ²⁺	211
7.9	Comparison of specific flux and resistance for combined fouling experiments. Total ionic strength of feed solution is 10.0 mM, pH is 7.2 and with 0.1 mM Ca ²⁺	211
7.10	Comparison of fouling coefficient (c) or fouling constant for the three NOM foulant models in combination fouling experiment	212
7.11	Conceptual model which explains the different fouling mechanisms between colloids, dextran, HA and in the combined fouling experiments	213
7.12	SEM images of UF membrane in combined fouling of kaolin colloidal and organic foulants	214