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ABSTRACT 

This research is conducted to provide quantitative and qualitative integrated 
understandings of natural organic matter (NOM) fouling characteristics regarding to 
mechanisms and factors involved, and as well as to develop an optimization works for 
surface water treatment. In conjunction, a fouling behaviour and autopsy protocol for 
ultrafiltration membrane fouled with natural organic matter source waters were studied. The 
Ulu Pontian river, Bekok Dam water and Yong Peng water were used. Fouling characteristics 
were assessed by filtering the feed water with an immersed ultrafiltration polysulfone and 
cellulose acetate membranes that were spun by a dry-wet phase inversion spinning process. 
Relatively hydrophilic NOM source exhibited greater flux decline (72%) but lesser natural 
organic matter removal (17%) considerably due to pore adsorption, indicating that the low 
molecular weight (7%>30 kDa), aliphatic linear structure and neutral/base organic matter 
contained within the hydrophilic fraction were the prime foulants. In contrast, relatively 
hydrophobic natural organic matter source water that possessed higher charge density (22.63 
meq/gC), greater molecular weight (24%>30 kDa) and bulky aromatic structure has shown 
lesser flux decline (Bekok Dam: 57%) and better NOM rejection (37%) noticeably due to 
cake deposition, despite filtering through a hydrophobic membrane, suggesting that the 
electrostatic repulsion was more influential than the steric hindrance. In comparison, a non-
charged model compound of similar molecular weight was used to quantify the role of charge 
repulsion on NOM rejection. However, hydrophobic organic matter source of Yong Peng 
water has demonstrated the opposite results (flux decline: 77%), presumably due to the 
governing adsorptive fouling which offsett the electrostatic interactions. Analyses of 
permeate characteristics revealed that the hydrophobic NOM was preferentially removed by 
the membrane as opposed to the hydrophilic natural organic matter, hence suggesting that the 
charge interactions, in addition to size exclusion were more crucial to natural organic matter 
removal. These findings were consistent with the surrogated and fractionated natural organic 
matter results, which showed the hydrophilic component exhibiting the highest flux decline 
(52%) despite lesser dissolved organic carbon (14%) and ultraviolet 254 removal (23%) 
compared to hydrophobic (3 5%) and transphilic fractions (20%). Membrane autopsies 
analyses confirmed the flux decline results, resistance-in-series and penhleate analyses as 
membrane was mainly fouled by the hydrophilic natural organic matter rather than humic 
compounds. Adequacy of the present quadratic models were statistically significant to 
represent both the natural organic matter removal (R2=0.966; F=49.36) and membrane 
permeability (R2=O.886; F= 13.33). Alum dose exhibited the most significant factor that 
influenced the natural organic matter removal, followed by the two level interactions of pH 
and specific ultraviolet absorbance, the main effect of pH, the main effect of specific 
ultraviolet absorbance, the two level interaction of specific ultraviolet absorbance and alum, 
the second order effect of specific ultraviolet absorbance and the second order effect of pH. 
In he case of membrane permeability, the main effect of alum dosage and the second order 
effect of pH provided the principal effect, whereas the second order effect of alum, the main 
effect of pH, the two level interaction of pH and specific ultraviolet absorbance provided the 
secondary effect. Permeate quality surpassing the National Drinking Water Standards was 
achieved with removal up to 79.50 % of dissolved organic carbon, 87% ultraviolet 
absorbance, >96% of colour >99% of turbidity and with effective-cost of RM 1.12/M3, 
suggesting it is cost-competitive compared to conventional water treatment.
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