

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 85

ABC Algorithm for Combinatorial Testing Problem

AbdulRahman A. Alsewari1,2, Amaar K. Alazzawi1, Taha H. Rassem1, Muhammad N. Kabir1,

Ameen A. Ba Homaid1, Yazan A. Alsariera1, Nasser M. Tairan3, and Kamal Z. Zamli1
Software Engineering Research Group,

1Faculty of Computer Systems and Software Engineering,
2IBM Centre of Excellence, Universiti Malaysia Pahang, Pahang, Malaysia.

3College of Computer Science, King Khaled University.

alsewari@ump.edu.my

Abstract—Computer software is in high demand everywhere

in the world. The high dependence on software makes software

requirements more complicated. As a result, software testing

tasks get costlier and challenging due to a large number of test

cases, coupled with the vast number of the system requirements.

This challenge presents the need for reduction of the system

redundant test cases. A combinatorial testing approach gives an

intended result from the optimization of the system test cases.

Hence, this study implements a combinatorial testing strategy

called Artificial Bee Colony Test Generation (ABC-TG) that

helps to get rid of some of the current combinatorial testing

strategies. Results obtained from the ABC-TG were

benchmarked with the results obtained from existing strategies

in order to determine the efficiency of the ABC-TG. Finally,

ABC-TG shows the efficiency and effectiveness in terms of

generating optimum test cases size of some of the case studies

and a comparable result with the existing combinatorial testing

strategies.

Index Terms—Computational Intelligence; Combinatorial

Optimization Problem; Software Testing; Test Data

Generation.

I. INTRODUCTION

Software systems continue to develop progressively in

complexity and size in this era. Software has become

gradually ubiquitous in tools and methods used for science,

engineering, medicine and human interactions. A software

fault is a mistake in the programmed code which, when faced

may be the reason for the software’s failure. The software

behaves in an unexpected way when it encounters faults in it.

Different methods are implemented to avoid, notice and

rectify the errors throughout the software design life cycle

phases. Thus, software testing is a fundamental activity in

securing the quality assurance of most software products [1-

3]. It is the utmost key in guaranteeing a reliable software

product. In software development life cycle, software testing

acts as an integral and tedious activity [4].

The presence of faults in a software system can result into

unprecedented cost or even life losing [4]. Software testing

takes a vital part in inspecting detects via probable test data

to make sure it's quality. Most of the software systems of

nowadays are produced using components. Most times, the

system bugs or errors are as a result of the unexpected fusion

between the components used [5-7]. For instance, if the

testing of Microsoft's words displays tab is considered in the

dialog as seen in Figure 1.

It has seventeen feasible options (parameters P=17) that

can take two probable values (V=2) 217= 131,072 are to be

analyzed. These are virtually ineffective. Analyzing a test

case requires five minutes, and it will take a whole 15 months

to examine only the display tab completely which is not

probable practically according to the testing standards.

Figure. 1: Microsoft Word, Options, Customize Ribbon

Exhaustive testing is impossible. Thus, there are a lot of

strategies have been designed and developed to minimize the

test cases based on optimization algorithms Genetic

Algorithm (GA) [8], Simulated Annulling (SA) [5, 9], and

Harmony Search Strategy (HSS) [1, 2]. The first approach

that used to minimize the test cases is the Pairwise Testing

approach. Pairwise testing approach is that used to generate

test cases based on all possible pairs of system’s input values.

Pairwise testing is the basic level of combinatorial testing

approach. Combinatorial testing approach is the test suites

generator that covers all combinations of the system

parameters based on the combination degree. Thus, it is much

smaller than exhaustive ones yet still very effective in finding

defects [10, 11]. However, one of the main complications of

Combinatorial is finding a minimal test suite.

To address this issue, many algorithms have been

implemented such as: Automatic Efficient Test Generator

(AETG) [10], GA [8], In Parameter Order (IPO) and its

family (IPOG-D) [12, 13], Test Configuration (TConfig)

[14], Pairwise Independent Combinatorial Testing

(PICT)[15], Classification-Tree Editor eXtended Logics

(CTE-XL)[16], Jenny [17], ITCH[18], Test Vactor Generator

(TVG) [19], SA [5, 9], and HSS [1, 2]. It is observed that most

of them are not efficient and the existing strategies are based

on the optimization algorithms. The current strategies cannot

Journal of Telecommunication, Electronic and Computer Engineering

86 e-ISSN: 2289-8131 Vol. 9 No. 3-3

achieve the optimal balance between exploration and

exploitation. The aims of this paper is to present, design and

implement a new combinatorial testing strategy based on

Artificial Bee Colony, called Artificial Bee Colony Test

Generation (ABC-TG) strategy. Then benchmark the ABC-

TG’s results with the existing combinatorial testing

strategies’ results to evaluate the efficiency of the ABC-TG

strategy.

II. TEST CASES GENERATION ALGORITHM BASED ON ABC-

TG STRATEGY

ABC-TG strategy has been applied to solve numerous test

cases optimization problems. The position of the food

provenance discovered, represents a possible test case of the

optimization problem, and the quality (fitness function) of the

related test case, corresponds with a nectar amount (represent

the combination pairs).

The ABC-TG has three sets of bees; each of them is

working to accomplish a certain task. These sets are

employed, onlookers, and scouts’ bees. In making the

decision of selecting a food provenance, a set of bees must be

waiting on the dance area, this are called onlooker. The other

group which go to visit a food provenance are dubbed

employed bee. The last set of bees are the scout bee, they

execute random work of discovering new province of food.

The discovery of a food provenance represents a possible test

case to the optimization problem, and the nectar amount of a

food provenance corresponds to the quality [11].

The first part of the algorithm consists of a few numbers of

employed artificial bees, while the second part of the

algorithm has the onlooker bees. In each part of the algorithm,

the employed bees and the onlooker bees will represent the

test cases in the population. Pass the ABC-TG strategy in four

phases respectively; initialization, employed, onlooker and

scout bee’s phases (see Figure 2).

Figure 2.ABC-TG Pseudo-Code

A. Initialization Phase

Initially, the ABC-TG algorithm starts producing randomly

distributed population of Solutions size (SN) of test cases

(food provenance positions). Where SN shows the size of an

onlooker or employed bees [20]. Assuming D is the

optimization parameter number (System configuration

parameters), then every single solution test case () (i =1, 2...

SN) basically will exist as a D-dimensional vector. By using

the Equation (1) produces all the initial test cases for

employed bees.

𝑥𝑖𝑗 = 𝑥𝑚𝑖𝑛,𝑗 + rand(0,1)(𝑥𝑚𝑎𝑥,𝑗 - 𝑥𝑚𝑖𝑛,𝑗) (1)

where the value of xmin and xmax are sequentially upper &

lower limits for the test case variable xi in dimension j (j=1,

2… D), and rand is a random digit number scaling factor

which is between the number [0, 1]. D-dimensional test cases

(food provenance positions) created during the initialization

stage (C=0) are subject to the cycles of Iterative (C=1, 2…,

MCN), till a termination condition is satisfied and are

implemented locally and also as a global probabilistic

selection/search in a one cycle ABC-TG. Each cycle depicts

a total number of tasks made by the different types of bee.

Thus, these whole methods are principally independent which

can be explicated in a separate form as follows, to have a

better understanding of the ABC-TG methodology.

B. Employed Bee Phase

Firstly, the phase of employed bees where creates a new

candidate solutions (test cases) by evaluating the capability

of the test cases and interchanges the data with the onlooker

bees’ stage. And the employed bee creates (food position) a

candidate test case by the removal of the former (xij) test case

solution in its memory, by utilizing Equation (2) test case

only is updated [21].

𝑣𝑖𝑗= 𝑥𝑖,𝑗 + 𝑟𝑎𝑛𝑑[−1,1](𝑥𝑖𝑗− 𝑥𝑘𝑗) (2)

Here j{1,2,...,D} and k{1,2,..., SN} (k≠i) are randomly-

selected indexes, & rand exists as a random number of [-1,

1], which works as a scaling factor. It is clear that the

optimum test case is reached in the search area, this gets

reduced because of the disorder in the solution. It evaluates

the fitness of the new solution by the employed bee, and it

updated the fitness values that is found, and replaces with the

new test case instead of the former one in the employed bee’s

memory (a greedy-selection).

C. Onlooker Bee Phase

In ABC-TG algorithm, the principal task of every single

onlooker bee is to indicate a food provenance (test case value)

according to probability value, and depending on the fitness

value related to the food provenance Pi. This can be

calculated using Equation (3).

Pi=
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑛
𝑠𝑛
𝑛=1

 (3)

Here, fit represents the value of fitness of a certain test case.

The probabilistic selection is implemented by making a

comparison of Pi against a randomly selected number which

is between [0, 1]. The selection is approved if the created

random value is equal or less than Pi, and if otherwise, it will

be rejected. Thus, the assignment of an onlooker bee to that

particular test case will be approved if the conforming

probabilistic selection is sanctioned. When evaluating the

new solution fitness, the new food provenance (test case) will

1: Generate the initial population test cases (xi) using

Eq(1) , i= 1…SN

2: Evaluate the xi fitness (fi) of the population

3: Set cycle to 1 , and MCN=number

4: Repeat

5: for each employ bee {

Produce new solution vi using Eq(2)

Evaluate vi fitness (fi)

Select the best test case }

6: Calculate the probability (pi) for test case (xi) using Eq(3)

7: for each on looker bee{

Select a test case xi based on pi

Produce new solution vi using Eq(2)

Evaluate vi fitness (fi)

Select the best test case }

8: If there is an abandoned test case for the scout

Then replace it with a new test case produced randomly using

Eq(1)

9: Memorize the best test case

10: cycle=cycle+1;

11 until cycle=MCN

Manuscript Title

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 87

be selected by an onlooker bee in the area of the former one

which is in her memory, utilizing Equation 2. In case the new

test case has a fitness value that is better, then an onlooker

bee will make an update on the new test case that exists in her

memory and let go of the old one. This is related to the

employed bee case.

D. Scout Bee Phase

In this phase, the scout bees work randomly to discover all

the search spaces to be able to get a new test case (enhanced)

to the problem of the global optimization. On the other hand,

unlike the onlooker bees and employed bees (that have a limit

to produce a trial test case around the former test case), scout

bees are indefinite in this sense. They adopt their samples

from a wide range of D-dimensional vectors; so far remains

in the search space limits. Otherwise, cannot improve the

solution (test case) after a determined number of cycles.

Formerly, if it is non-global, then it will abandon this test case

and the employed bee will be employed to that particular

situation which will then be converted to a scout bee with

principally scout-type functionality. The process will

continue until the exit criteria has been meet

III. BENCHMARKING

To evaluate the ABC-TG strategy, there will be several

experiments collected from the publications [1, 2, 5, 9, 12,

13]. ABC-TG strategy has initialized its parameters such as:

the number of the improvisation = 80, number of bees = 50,

and the value of limit = 100 as suggested by the researchers

[21]. The results obtained by ABC-TG strategy based on 20

times of running the experiments in the environment that is

composed of PC with Windows 10 Pro 64-bit, Intel Core i7

3.40 GHz, 4.00 GB of RAM. The time of implementation is

determined in seconds. The ABC-TG strategies are

implemented in Java (JDK 1.8.0.31). The results are

presented in Tables, Table 2 and Table 3 compared with the

best results obtained by other existing strategies. The

darkened cells with bold numbers represent the best results

obtained for the test configuration. The results for some

strategies are not available through the literature

(publications), these cells are marked by NP (not published).

Some strategies do not support certain interaction strength,

these cells are marked by NS (not supported). The

configuration systems used in this evaluation details as:

Covering Array (CA), number of systems parameters (P), the

values for each parameter represent by (V), and N is the

minimum size of test list. For example: CA(16, 2, 45). The

minimum test list that can be produced N=16, interaction

testing degree t=2, system parameters P=5, each parameter

has value V=4.

To clarify the performance in terms of the support

interaction strength (i.e. 2 ≤ t ≤ 6), the following experiments

adopted three configurations system from the published

results in the works by [1, 2, 5, 9, 12, 13].

In cases with high interaction strength within a

configuration system CA (N; t, 37) as shown in Table 1, ABC-

TG mostly provides an optimal result. However, the ABC-

TG does not generate the most optimal results in all cases, but

it generates satisfactory results. TConfig, obtained best result

when interaction strength is 6, ITCH obtained only one

optimum result when the interaction strength is 3.

Table 1.

 CA (N; t, 37), t is variable from 2 to 6.

T Jenny TConfig ITCH PICT TVG
CTE-

XL
IPOG-D IPOG

ABC-TG

Best B. time A. size A. time

2 16 15 15 16 15 16 18 17 15 19.3 15.5 19.5
3 51 55 45 51 55 54 63 57 49 266.2 50.8 270.6

4 169 166 216 168 167 NS NP 185 158 1918.2 161.3 1930.7

5 458 477 NS 452 464 NS 735 608 443 5741.0 451.3 5761.2
6 1087 921 NS 1015 1016 NS 1548 1281 945 4950.1 977.5 5119.06

Constrain wise, IPOG-D does not support for only one

configuration CA (N; 4, 37). However, Jenny, PICT, IPOG-D

and IPOG commonly produce the worst results overall. On

the other hand, when interaction strength is equal to 2, ABC-

TG generates the most optimal only once.

As shown in Table 2 with a configuration system CA (N;

3, 3P), ABC-TG generates the most optimal minimum result.

Comparing with the other strategies for only one

configuration is CA (N; 3, 36). While ITCH, and ABC-TG

usually produce the near minimum and comparable results of

the final test cases. However, Jenny, Tconfig, PICT, TVG,

CTE-XL, IPOG-D and IPOG commonly produce the worst

results overall. On the other hand, ABC-TG generated

comparable results for two cases namely CA (N; 3, 39) CA

(N; 3, 310), Contrariwise other strategies that produce the

worst results.

Table 2.

CA (N; 3, 3P), P is variable from 4 to 10.

P Jenny TConfig ITCH PICT TVG
CTE-

XL
IPOG-D IPOG

ABC-TG

B b.time A.size A.time

4 34 32 27 34 34 34 27 39 33 6.82 34.5 7.16

5 40 40 45 43 41 43 49 43 40 28.33 41.9 28.9
6 51 48 45 48 49 52 49 53 43 90.8 46.8 94.9

7 51 55 45 51 55 54 63 57 50 264.2 52.0 268.2

8 58 58 45 59 60 63 63 63 54 654.2 55.8 663.2
9 62 64 75 63 64 66 71 65 58 1452.9 59.8 1470.1

10 65 68 75 65 68 71 71 68 62 3022.3 63.6 3041.5

Regarding to Table 3, ABC-TG generates the minimum test

cases size and the satisfactory results for two configuration

systems namely; CA (N; 3, 27) and CA (N; 3, 67) and

outperforms comparing with other strategies. As well as,

TConfig, ABC-TG, IPOG-D and ITCH generate the near

optimal results in some cases and the competitive results in

Journal of Telecommunication, Electronic and Computer Engineering

88 e-ISSN: 2289-8131 Vol. 9 No. 3-3

the others. Although Jenny, PICT, TVG and CTE-XL does

not generate any most minimum result. But usually produces

comparable results, while IPOG-D generates the most

optimal results only once, and the acceptable results for other

strategies.

Table 3.
CA (N; 3, V7), V is variable from 2 to 6.

V Jenny TConfig ITCH PICT TVG CTE-XL IPOG-D IPOG
ABC-TG

B B.time A.size A. time

2 14 16 13 15 15 15 14 19 12 36.4 14.3 39.6
3 51 55 45 51 55 54 63 57 49 264.07 52 268.7

4 124 112 112 124 134 136 112 208 116 1218.6 120.9 1230.4

5 236 239 225 241 260 267 292 275 228 4315.3 231.4 4360.1
6 400 423 1177 413 464 467 532 455 391 12522.6 394 12588.2

IV. CONCLUSION

This paper proposes a new combinatorial testing strategy

called ABC-TG strategies, based on the ABC algorithm

which generate test list. The main motivation of the ABC-TG

is to reduce the size of final test list. According to different

sets of experiments that have been conducted, ABC-TG has

shown performance and efficiency in term of generating a

near optimal final test list size. As part of our future work, we

are planning to enhance the ABC-TG, introduce a variable

strength and seeding into the current implementation.

ACKNOWLEDGMENT

This research is funded by UMP RDU150369: A new

Hybrid Variable Interaction Strength Test Data Generation

Strategy Based on Harmony Search Algorithm and Cuckoo

Search Algorithm, UMP RDU1603119 Grant: Modified

Greedy Algorithm Strategy for Combinatorial Testing

Problem with Constraints Supports. Also it is partially funded

by FRGS RDU160102: A New Global Optimization

Algorithm based on Stochastic Approach to Minimize

Software Testing Redundancy

REFERENCES

[1] A. A. Alsewari and K. Z. Zamli, “Interaction test data generation using

harmony search algorithm,” in Proceeding of IEEE Symposium on

Industrial Electronics & Applications, Langkawi, Malaysia, 2011, pp.
559-564.

[2] A. R. A. Alsewari and K. Z. Zamli, “Design and implementation of a

harmony-search-based variable-strength t-way testing strategy with
constraints support,” Information and Software Technology, vol. 54,

no. 6, pp. 553-568, 2012.

[3] A. A. Ahmed and C. Xue Li, “Analyzing Data Remnant Remains on
User Devices to Determine Probative Artifacts in Cloud Environment,”

Journal of Forensic Sciences, 2017.

[4] B. Hambling, P. Morgan, A. Samaroo, and P. Williams, Software
Testing: An ISTQB-ISEB Foundation Guide: BCS, The Chartered

Institute, 2010.

[5] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing of highly-
configurable systems in the presence of constraints,” in the 2007

international symposium on Software testing and analysis, 2007, pp.

129-139.
[6] A. A. B. Homaid and A. A. Alsewari, “A variable combinatorial test

suite strategy based on modified greedy algorithm,” in Software

Engineering and Computer Systems (ICSECS), 2015 4th International

Conference on, 2015, pp. 154-159.
[7] K. Z. Zamli, A. R. Alsewari, and B. Al-Kazemi, “Comparative

benchmarking of constraints t-way test generation strategy based on

late acceptance hill climbing algorithm,” International Journal of
Software Engineering & Computer Sciences (IJSECS), vol. 1, pp. 14-

26, 2015.

[8] T. Shiba, T. Tsuchiya, and T. Kikuno, “Using artificial life techniques
to generate test cases for combinatorial testing,” in the 28th Annual

International on Computer Software and Applications Conference,
2004. COMPSAC 2004. , 2004, pp. 72-77.

[9] J. Stardom, Metaheuristics and the Search for Covering and Packing

Arrays. Simon Fraser University, 2001.
[10] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The

AETG system: an approach to testing based on combinatorial design,”

Software Engineering, IEEE Transactions on, vol. 23, no. 7, pp. 437-
444, 1997.

[11] D. V. Reddy and A. R. M. Reddy, “An approach for fault detection in

software testing through optimized test case prioritization,”
International Journal of Applied Engineering Research, vol. 11, no. 1,

pp. 57-63, 2016.

[12] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,

“IPOG/IPOG‐D: efficient test generation for multi‐way combinatorial

testing,” Software Testing, Verification and Reliability, vol. 18, no. 3,
pp. 125-148, 2008.

[13] Y. Lei and K.-C. Tai, “In-parameter-order: a test generation strategy

for pairwise testing,” in the Third IEEE International on High-
Assurance Systems Engineering Symposium, 1998, 1998, pp. 254-261.

[14] A. Williams, J. Lo, and A. Lareau, “TConfig,” ed, 2010.

[15] J. Czerwonka, D. Butt, and C. Gens, “Pairwise testing in real word:
practical extensions to test case generators,” in Proc. of the 24th pacific

northwest software quality conf. 2006, 2006.

[16] E. Lehmann and J. Wegener, “Test case design by means of the CTE
XL,” in Proceedings of the 8th European International Conference on

Software Testing, Analysis & Review (EuroSTAR 2000), Kopenhagen,
Denmark, 2000.

[17] Jenkins, “Test Tool,” 2003. Available at

http://www.burtleburtle.net/bob/math/jenny.html.

[18] A. Hartman, T. Klinger, and L. Raskin, “IBM intelligent test case

handler,” Discrete Mathematics, vol. 284, pp. 149-156, 2010.

[19] P. J. Schroeder, E. Kim, J. Arshem, and P. Bolaki, “Combining
behavior and data modeling in automated test case generation,” in the

Third International Conference on Quality Software, 2003., 2003, pp.

247-254.
[20] B. Nozohour-leilabady and B. Fazelabdolabadi, “On the Application of

Artificial Bee Colony (ABC) Algorithm for Optimization of Well

Placements in Fractured Reservoirs; Efficiency Comparison with the
Particle Swarm Optimization (PSO) methodology,” Petroleum, 2015.

[21] D. Karaboga and B. Akay, “A comparative study of artificial bee

colony algorithm,” Applied mathematics and computation, vol. 214,
no. 1, pp. 108-132, 2009.

