STUDY OF GROUND SOURCE HEAT PUMP AS COOLING SYSTEM FOR LOCAL APPLICATIONS

NURUL HIDAYAH BTE ABDUL SAMAT

BACHELOR OF ENGINEERING UNIVERSITI MALAYSIA PAHANG

2010

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature: Name of Supervisor: AMIR ABDUL RAZAK Position: Lecturer Date:

STUDENT'S DECLARATION

I hereby declare that the work in this project is my own except for quotations and summaries which have been duly acknowledged. The project has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature: Name: NURUL HIDAYAH BTE ABDUL SAMAT ID Number: MA07091 Date:

TABLE OF CONTENTS

Page

SUPERVISOR'S DECLARATION	i
STUDENT'S DECLARATION	ii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF SYMBOLS	xii
LIST OF ABBREVIATIONS	xiii

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Statement of the problem	1
1.3	Objectives of the study	2
1.4	Scope of study	2

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	3
2.2	History of Ground Source Heat Pump	5
2.3	Types of Ground Source Heat Pump	8
	2.3.1 Opened Loop System	8
	2.3.2 Closed Loop System	9
	2.3.2.1 Vertical Loop	9
	2.3.2.2 Horizontal Loop	10
	2.3.2.3 Slinky Coils	12
	2.3.2.4 Pond Loop	12
2.4	Advantages and Disadvantages of GSHP	13

2.4.1 Opened Loop	13
2.4.2 Vertical Loop	13
2.4.3 Horizontal Loop	14
2.4.4 Slinky Loop	14
2.4.5 Pond Loop	14
Summary	15

CHAPTER 3 METHODOLOGY

2.5

3.1	Background 1	
3.2	Flow Chart	
3.3	Components	18
	3.3.1 Ground Loops	18
	3.3.2 Radiator (heat exchanger)	19
	3.3.3 Heat Pump	19
	3.3.4 Coolant	20
3.4	Schematic circuit of GSHP	22
3.5	System Operations in Heat Pump	23
	3.5.1 Compressor	23
	3.5.2 Condenser	24
	3.5.3 Expansion Valve	24
	3.5.4 Evaporator	24
3.6	Equations of Coils Length and Hole Depth	26
	3.6.1 Coil Length equation	26
	3.6.2 Hole Depth equation	27
3.7	Summary	27

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction	28
4.2	The Influence of Flow Rate R-134A to the HDPE Pipe Diameter	28
4.3	The Influence of Soil Moisture to the Coils Length	30
4.4	The Influence of Soil Moisture to the Hole Depth	34

СНАРТЕ	CONCLUSION AND RECOMMENDATION	
5.1	Conclusion	40
5.2	Recommendation	41

REFERENCES

Summary

4.5

APPENDICES

А	Maximum Recommended Water Flow Rates	44
В	Diameter Pipe According to the Fluid Volume	45
С	Thermal Properties of Rocks	46
D	Thermal Conductivity and Thermal Diffusivity of Soils	47
Е	Properties of Saturated Refrigerant R-134 A	48
F	Properties of Saturated Refrigerant R-134 A (cont.)	49

39

42

LIST OF TABLES

Table No.	Title	Page
2.1	Comparison between Horizontal Loop system and Slinky Loop system in this study	15
3.1	Part and function of main part in heat pump	19
3.2	Properties of R-134 A	21
4.1	HDPE pipes diameter due to the flow rate	29
4.2	Variable to be considered during calculation for flow rate 30 L/min	30
4.3	Variable to be considered during calculation for flow rate 28.5 L/min	31
4.4	Variable to be considered during calculation for flow rate 27 L/min	31
4.5	Result of coils length due to the different soil moisture	32
4.6	Data of coils length and temperature difference that are effect by different soil moisture	33
4.7	Soil temperature with 5 % of soil moisture	35
4.8	Soil temperature with 10 % of soil moisture	35
4.9	Soil temperature with 15 % of soil moisture	36
4.10	Soil thermal diffusivity according to the soil moisture	36
4.11	Result of hole depth	37
4.12	Hole depth following with the soil thermal diffusivity	38

LIST OF FIGURES

Figures No.	Title	Page
2.1	Schematics of different ground source heat pumps	7
2.2	Open loop system	9
2.3	Vertical loop	10
2.4	Horizontal loop (European style)	11
2.5	Horizontal loop (North European and American style)	11
2.6	Pond loop	12
3.1	Flow Chart of the study	17
3.2	HDPE pipe	18
3.3	Typical Heat Pump Unit	20
3.4	Schematic circuit of GSHP	22
3.5	Heat pump diagram	23
3.6	p-h diagram	24
3.7	T-s diagram	25
4.1	HDPE pipes diameter versus flow rate of R-134A	29
4.2	Coils length versus soil moisture	32
4.3	Coils length versus temperature difference	34
4.4	Hole depth versus soil moisture	37
4.5	Hole depth versus soil thermal diffusivity	39

LIST OF SYMBOLS

A _s	Soil temperature amplitude , K
α	Soil thermal diffusivity, W/m.k
Ср	Specific heat, J/kg.k
h	Enthalpy, KJ/kg
Κ	Thermal conductivity, W/m.k
L	Coils length, m
р	Preassure, Pa
$\dot{Q}_{ m cond}$	Heat conduction, kW
S	Enthropy, kJ/kg
Т	Temperature , K
T _{in} -T _{out}	Temperature difference between temperature inlet and temperature
	outlet, K
T _{g max}	Maximum soil temperature, K
X _s	Soil depth, m

LIST OF ABBREAVIATIONS

A/C	Air conditioning
ASHP	Air source heat pump
ASHRAE	American Society of Heating, Refrigerating and Air- conditioning
ASME	American Society of Mechanical Engineering
CF ₃ CH ₂ F	Tetrafluoroethane
CFCs	Chlorofluorocarbon
СОР	Coefficient of performance
EESs	Earth –energy systems
GCHP	Ground-coupled heat pump
GSHP	Ground source heat pump
GWHP	Ground water heat pump
HDPE	High-density polyethylene
SDR	Standard Dimension Ratio
SWHP	Surface water heat pump
USA	United States Of America

STUDY OF GROUND SOURCE HEAT PUMP AS COOLING SYSTEM FOR LOCAL APPLICATIONS

NURUL HIDAYAH BTE ABDUL SAMAT

Report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

DECEMBER 2010