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Abstract 

An adaptive bats sonar algorithm to solve single objective optimisation problem is presented. The 
proposed algorithm utilised the concept of echolocation of a colony of bats to find prey. The proposed 
algorithm is applied to solve two practical business optimisation problems. The problems are cost 
optimisation of shipping refined oil and profit optimisation of selling television sets. The acquired 
results show that the proposed algorithm suitable to produce the appropriate optimum solution of the 
considered problems. The proposed algorithm can thus be an effective method for solving of single 
objective optimisation problems. 

Keywords: adaptive bats sonar algorithm, swarm intelligence, single objective optimisation, practical 
business optimisation problems. 
 
 
1. Introduction  
 
In general, optimisation is the process of obtaining either the best minimum or maximum result under 
specific circumstance (Yang and Deb, 2014). Nowadays, a vast range of business, management and 
engineering applications utilise the optimisation approach to save time, cost and resources while 
gaining better profit, output, performance and efficiency (Yang and Deb, 2014). Optimisation can be 
divided into single objective optimisation and multi objective optimisation (Rao, 2009). Naturally, 
solving a single objective optimisation is about finding an optimised solution to the problem at hand 
based on the single objective (Yang, 2011). The single objective optimisation can be designated as 
either unconstrained or constrained depending on whether or not the problem contains constraints 
(Rao, 2009). Con et al. (1997) elaborates the unconstrained single objective optimisation problem (or 
widely known as single objective optimisation problem) as a problem that has no constraints specified 
on the variables and usually is less complicated. 
 
For the past decades, swarm intelligence algorithms raised a lot of attention from the research 
community to deal with the complexity of a wide variety of single optimisation problems (Yang and 
Hossien, 2012). Swarm intelligence algorithms are inspired by the collective behaviour of swarms 
through a complex interaction between individuals and their neighbourhood with nature such as a 
colony of ants, bacteria, bees, bats, birds and fishes (Hashmi et al., 2013). In general, swarms have 
self-organisation and decentralised control features and all the swarm follows the same system where 
a population of swarm cooperates and interacts with each other in the group and the environment 
under certain rules during foraging or socialising (Hashmi et al., 2013). The most remarkable features 
of any swarm intelligence algorithms are that is has advantages of memory, diverse multi-characters 
capability, rapid solution improvement mechanism and is adaptable to internal and external changes 
(Garg, 2014). 
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Particle swarm optimisation (PSO), artificial bee colony (ABC), ant colony optimisation (ACO), bat 
algorithm (BA) and bacterial foraging optimisation (BFO) for instance are some example of 
swarm intelligence algorithms that already captured the attention from the researchers today. This 
article applies an adaptive bats sonar algorithm (ABSA) as proposed by Yahya et al. (2016) for 
solving real-world single objective optimisation problems. The problems are cost optimisation of 
shipping refined oil and profit optimisation of selling television sets. 
 
The remainder of the paper is organised as follows. Section 2 discusses the single objective 
optimisation problem. Section 3 describes the real bat echolocation behaviours and the ABSA. The 
results obtained from the computer simulation of the ABSA to solve two single objective of practical 
business optimisation problems are presented and discussed in Section 4. The conclusion is finally 
drawn in Section 5. 
 
 
2. Single objective optimisation problem  
 
A single objective optimisation is an objective function of n numbers of variables (x) that tie to lower 
bound and upper bound variables as: 
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variables respectively. 

 
Bandyopadhyay and Saha (2013) have identified three major techniques available to solve the single 
objective optimisation problem. The techniques are calculus-based techniques or numerical methods; 
enumerative techniques; and guided random techniques. According to Bandyopadhyay and Saha 
(2013), the guided random techniques are enumerative methods-improved where additional 
information about the search space is used to lead to potential solution points. The randomly guided 
techniques are further classified into single-point search and multi-point search. Swarm intelligence 
algorithms as part of evolutionary algorithms utilise the multi-point search where a highly explorative 
searching process with a random choice of parameters are adopted to search for several points at a 
time (Bandyopadhyay and Saha, 2013). These robust techniques have advantages to find acceptable 
near-optimum solution of the problems that have large search space, and are multimodal and 
discontinuous. 
 
 
3. Bat echolocation 
 
3.1. Real behaviour of bat echolocation 
 
As one of the diverse and most extraordinary mammalian order, bats have more than 900 species 
distributed all around the world (Altringham et al., 1996). According to Voigt-Heucke et al. (2010), 
bats live in a large colony with 700-1000 individuals under sharing roosts. 
 
The social calls and echolocation calls are two types of acoustic communication used by a colony of 
bats (Voigt-Heucke et al., 2010). A colony of bats can construct good communication and sharing 
information between each other about roost site or foraging area (Altringham et al., 1996). According 
to Altringham et al. (1996), there are four basic information transfer mechanisms in a colony of bats: 

1. Intentional signalling: in the form of mating calls, territorial calls, alarm calls or food calls 
(advertisement of food and also to attract bats into foraging groups as they leave their cave 
roosts). 
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2. Local enhancement: involves unintentionally directing another bat to a specific part of the 
habitat. 

3. Social facilitation: an increase in individual foraging success brought about by group foraging 
behaviour. 

4. Imitative learning: bats can learn foraging techniques from other bats. 
 
In echolocation, a bat emits ultrasonic pulses in short burst through mouth Altringham et al. (1996) as 
shown in Figure 1. The sound reflects back as echoes bump into an object in the bat’s path. 
Altringham et al. (1996) and Suga (1990) agreed that by computing the time of reflection of 
modulates echoes, the bat is able to recognise the object and its distance. 
 

 
Figure 1: Sonar signal of a bat (Suga, 1990) 

 
The echolocation process of bats involves three phases to search and capture prey: search phase, 
approach phase and terminal phase (Altringham et al., 1996). During the search phase, the bat will 
start to hunt for prey by emitting the pulse at the low rate with frequency around 10 Hz. Then, the 
pulses have to get shorter as the time between the pulse and echo is decreased to avoid overlap when 
the bat spots and gets nearer to the specific prey during the approach phase (Altringham et al., 1996; 
Suga, 1990). In this phase too, pulse emission rate gets steadily increased up to 200 per second since 
the bat keeps updating the position of the prey (Altringham et al., 1996; Suga, 1990). In the terminal 
phase, the frequency of emitted pulses upsurges more than 200 Hz as the pulse emission rate also 
starts to accelerate at only fraction of a millisecond long just before the prey is netted (Altringham et 
al., 1996). 
 
A colony of bats has two special features during echolocation process to avoid them from colliding 
with one another. According to Vogler and Neuweiler (1983), the pulse characteristic (frequency 
range, the time course of sweep and sound type) emitted by each of bat differ from those of others. 
Second, every bat marks its emitting pulse with a unique time structure so that they only retrieve 
echoes caused by their pulses. The concept of reciprocal altruism of food sharing also exists during 
the echolocation process in a colony of bats (Altringham et al., 1996; DeNault and McFarlane, 1995; 
Wilkinson, 1988). This social behaviour is based on bats returning favours to their mutual benefits 
(Altringham et al., 1996). For instance, vampire bats species share the blood-meals between the 
individuals in a colony as a response to balance energy budget amongst in a colony (Altringham et al., 
1996; DeNault and McFarlane, 1995). The bats successfully establish an individual survivorship in a 
colony after implementing this behaviour such that the fitness of the recipient is allocated 
comparatively to a non-recipient (Wilkinson, 1988). 
 
3.2. An adaptive bats sonar algorithm 
 
An adaptive bats sonar algorithm (ABSA) was proposed by Yahya et al. (2016). The purpose of 
ABSA is to solve single objective optimisation problems.  In ABSA, the number of iterations 
(MaxIter) or generations used is 100. Hundred generations are favourably enough for the bats to 

explore fully the d numbers of search space dimension (Dim) for the best prey or global best fitness, 
(FGB). The chosen value is in line with maximum MaxIter which was used in the particle swarm 
optimisation (PSO) algorithm when the algorithm was first introduced by Kennedy and Eberhart 
(1995). 
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Inspired by a description of the number of bats in a colony by biologists, the number of bats (Bats) or 
population in ABSA was selected in the range 700-1000 bats. By having a larger number of bats, a 
discovery of the FGB value becomes more resourceful such that there will be a pool of solutions (prey) 
that can be evaluated to obtain the best ones. 
 
In the ABSA, the solution range (SSsize) is defined as the value between the upper search space 
(SSMax) limit and the lower search space (SSMin) limit as Equation 2: 
 

MinMaxsize SSSSSS                                                                                                     (2) 

 
Then, the ABSA sets the beam length (L) in relation to SSsize as Equation 8: 
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The solution range is divided into micron scale, such as 10% of the overall population of bats in the 
search space. The percentage is marked as possible search space size of each bat to emit sound 
without colliding with one another. The value of L is different for every iteration. A momentum term 
(m) is used in ABSA as Equation 9: 
 

  1oldnew LL                                                                          (4)                                 

 
where 0 < μ < 1. The above has been used by Yahya et al. (2016) to control the risk of convergence 
to a local optimum.  
 
Altringham et al. (1996) and Suga (1990) have reported that the pulse emission rate grows 
bit by bit up to 200 per second as the bat keeps updating the location of the object until it catches the 
prey. This phenomenon is incorporated into the ABSA approach as beam number increment (BNI). 
The BNI is defined in terms of the maximum number of beams (NBeamMax) and minimum number of 
beams (NBeamMin) as Equation 5: 
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where NBeamMax = 200 and NBeamMin = 20. Thus, NBeam is defined as Equation 6: 

 

BNINBeamNBeam Min                                                                                     (6)   

 
The BNI method mimics the original pulse rate emitted by the bat as it increases gradually toward the 
end of the search. As a result, BNI will provide a balance between global exploration and local 
exploitation thus requiring less iteration on average to find a sufficiently optimum solution. 
 

 
Figure 2: Single batch of beams transmitted by a bat (Yahya et al., 2016) 
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Each NBeam with L is emitted from the starting position (posSP) with specific angle location, see 
Figure 2. In ABSA, Yahya et al. (2016) limits the first beam to have θm not more than 45º from 
horizontal axis and the angle between beams (θi) is set as Equation 7 follows: 
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                                                                                                             (7) 

 

where 7854.0 randm . 

 
By setting θi as such, the beams will sweep at random 360º

 around the bats through iterations in such a 
way that the searching process will neither be too aggressive (overlay a circle) nor too slow (underlay 
a circle). 
 
The end point position (posi) for each transmitted beam in ABSA is calculated as Equation 8: 
 

   1cos  iLpospos mSPi                                                                                                             (8)

  

where Ni ,,1  . 
 
In ABSA, there are four stages of best fitness solution found in the algorithm. The duo are mentioned 
before; FLB and FGB, while another two levels are starting position fitness (FSP) and regional best 
fitness (FRB). 
 
During the first iteration of ABSA, posSP of FSP for each bat to transmit the NBeam is randomly 
selected within the designated search space. Next, the posi for each transmitted beam from posSP of 
each bat will be evaluate to produce end point fitness (Fi) where the best Fi is declare as FLB and its 
position as local best position (posLB) of each bat. Later, the FSP and FLB of each bat is compared 
where the best will be FRB and its position as regional best position (posRB). Finally, the best of the 
FRB will be declared as FGB and its position as global best position (posGB). According to Engelbrecht 
(2005), there are three levels of best solution found by the algorithm in PSO. The levels are personal 
best (pb) which is the best solution for every particle, local best (lb) which is the neighbourhoods best 
solution and global best (gb) is the global best solution of among the pb. These three levels are similar 
to FLB, FRB and FGB of ABSA respectively. 
 
In PSO, the lb improve the overall performance of algorithm where the individual lb influenced the 
performance of immediate neighbours (Kennedy, 1999). Ultimately, the neighbourhoods preserve 
swarm diversity by hindering the flow of information through the network (Peer et al., 2003). This 
move prevents the particles from reaching the global best particle immediately or getting trap in a 
local optimum but allows them to explore larger search space (Peer et al., 2003). This beneficial 
element inspired the existence of FRB which is functioning as neighbourhoods best solution-ABSA 
version. In addition, FRB also forms the main link between FLB and FGB values. So FRB acts as a 
leverage instrument to balance finely between exploration (diversification) and exploitation 
(intensification) processes of the algorithm and so to help the algorithm escape from premature 
convergence. 
 
The initialisation of these levels will help the ABSA to refine the search for the best solution by a 
colony of bats in the search space in each step and leave out bad solutions immediately. As a result, 
the algorithm takes less time to converge to the optimum solution. In point of fact, Kennedy (1999) 
mentioned that many types of research show that communication between individuals within a group 
is important where the overall performance of the group is affected by the structure of the social 
network. Besides, Kennedy and Mendes (2002) argued that the distribution of information via distant 
acquaintances is crucial, such that it possesses information that a colleague might not. In 
conjunction to that, the four levels of the best solution created in ABSA ideally match with the 
information transfer mechanisms practised by a colony of bats as explored by Altringham et al. 
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(1996). These are intentional signalling match to FSP, local enhancement match to FLB, social 
facilitation match to FRB and imitative learning match to FGB. 
 
 

Algorithm 1 Adaptive bats sonar algorithm 

1: Objective function    TdxxxxF ,,, 1   

2: Initialise: Bats, MaxIter, Dim, SSSize, NBeamMAX  and NBeamMIN 

3: for 1n to Bats do 

4:  for 1d  to Dim do 

5:   Generate random posSP 

6:   Evaluate FSP value for F(posSP) 

7:  end for 

8: end for 

9: Assign the most optimum value as FGB and its position as posGB 

10: while MaxItert  do 

11:  Define NBeam to transmit by using BNI (Equation 5 and Equation 6) 

12:  Set L and limit μ (Equation 3 and Equation 4) 

13:  Generate random m  and i  (Equation 7) 

14:  for 1n to Bats do  

15:   Transmit NBeam starting from posSP 

16:    for 1N to NBeam do 

17:    for 1d to Dim do 

18:     Determine posi for each transmitted beam (Equation 8) 

19:    end for 

20:    Evaluate Fi value for F(posi) 

21:    end for 

22:   Assign the optimum value of Fi as FLB and its position as posLB 

23:    if FLB ≤ FSP then 

24:     Assign FLB as FRB and posLB as posRB 

25:    else 

26:     Assign FSP as FRB and posSP as posRB 

27:    end if 

28:  end for 

29:  Select the optimum value among FRB as current FGB and its posRB as current posGB 

30:  if current FGB ≤ previous FGB then 

31:   Update current FGB as new FGB and current posGB as new posGB 

32:  else 

33:   Retain previous FGB and posGB 

34:  end if 

35:  for 1n to Bats do 

36:   Determine new posSP using (Equation 9) 

37:   Evaluate new FSP value for F(x) 

38: end for 

39: end while 

40: Declare FGB as optimum fitness evaluated and posGB as its optimum value(s) 

 
The reciprocal altruism characteristic has further been incorporated into ABSA to strengthen the 
procedure of colony searching for the best solution. This reciprocal altruism behaviour widely runs 
through a colony of bats as reported by many researchers in bats ecology (Altringham et al., 1996; 
DeNault and McFarlane, 1995; Wilkinson, 1988). By inserting this behaviour into the algorithm, a 
member of the colony will disseminate and share the location of the best fitness found so far to other 
bats. As a result, all bats will fly to the best prey ever found when the search process comes to an end. 
The adoption of this real prey hunting behaviour of the colony of bats into the algorithm is 
symbolised by two levels of arithmetic mean. 
 
For every bat, the arithmetic mean evaluates the balancing point between posSP, posLB and posRB in 
current iteration (t) with posGB of the latest FGB to be appoint as a new posSP for next iteration (t+1). 
The first level of arithmetic mean involves measuring of central tendency between posSP, posLB and 
posRB of each bat for current iteration only. Next, the second level of arithmetic mean finds the central 
tendency between the position value resulted from the first level of arithmetic mean and posGB. As a 
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result, during new iteration, every bat will start to transmit a set of new beams from the posSP which 
has been specified after considering (or sharing) the balancing point of the positions of all four level 
of best fitness solutions; FSP, FLB, FRB and FGB. The two levels of arithmetic mean is expressed as 
Equation 9 follows: 
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SP
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tpostpostpos

tpos
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Based on these modifications, the basic steps of the ABSA are represented as the pseudo code in 
Algorithm 1. 
 
 
4. Computer simulation 
 
4.1. Introduction 
 
This section demonstrates the capability of ABSA algorithm to solve single objective optimisation 
problems. The problems are cost optimisation of shipping refined oil and profit optimisation of selling 
television sets. The chosen problems became the platform to show the capability of the ABSA 
because both problems are the real-world single objective optimisation problems. Yahya et al. (2016) 
proposed the algorithm to solve the engineering optimisation problems only. Even so, the algorithm 
has merely been tested on the single objective optimisation benchmark test functions (Yahya et al., 
2016). So, the application of the ABSA to the said problems will justify the performance of the 
algorithm to the real-world single optimisation problems as well as the non-engineering optimisation 
problems. 
 
The developed algorithm was coded using MATLAB software version MATLAB® R2013a. 
Computer simulations of the ABSA algorithm on the two single objective optimisation problems were 
performed on Intel® Core™ i5 processor of 2400 CPU @ 3.10GHz with 4.00GB RAM. 
 
4.2. Cost optimisation of shipping refined oil 
 
This single objective optimisation problem is taken from Edgar et al. (2001). The problem is about 
finding the minimum cost of refined oil (F) when shipped via the Malacca Straits to Japan in dollar 
per kilolitre ($/kL). The optimum tanker size (x1) in dwt and optimum refinery capacity (x2) in bbl/day 
are variables of the problem. 

The problem has to include the crude oil cost, insurance cost, customs cost, freight cost for the oil, 
loading and unloading cost, sea berth cost, submarine pipe cost, storage cost, tank area cost, refining 
cost and freight cost of products in the linear sum as (note that 1kL = 6.29bbl): 
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The ABSA is applied to find the optimum cost for this problem. The ABSA is capable of finding the 
minimum cost of refined oil (F) in dollar per kilolitre ($/kL). The results of 30 independent runs by 
the ABSA to solve this problem are shown in Table 1. According to the results, the minimum cost 
achieved by using ABSA is $17.8849/kL. The value was similar for all 30 independent runs, so the 
best, worst or mean are equal as well as standard deviation is zero. 
 
The results also recorded that 53.33% out of 30 ABSA independent runs successfully finished in less 
than 10 seconds. 23th run of the algorithm as shown in Figure 3(a) appeared as the fastest among runs 
that are 5.0343 seconds where the ABSA started to converge to optimum value during 19th iteration. 
Meanwhile, the 16th of the ABSA as shown in Figure 3(b) finished the slowest among runs; 99.9512 
seconds where the convergence only occurred during the 100th iteration. Figure 3(c) shows the 8th runs 
of ABSA where the algorithm started to converge to the optimum value in the shortest iteration 
among the all 30 independent runs, which was during 18th iteration. Finally, Figure 4 shows the 
quality of the obtained variables where small ranges of variation for the tanker size and refinery 
capacity were achieved in all 30 independent runs of the ABSA. 
 
 
Table 1: Result for 30 runs of ABSA to optimise the cost of shipping refined oil problem 
 

Run 
no. 

Cost of 
shipping 

refined oil, F 
($/kL) 

Variables 
Time 

to finish 
(seconds) 

Numbers 
of bats 
used 

Iteration 
to 

converge 

Number 
of function 
evaluation 

(NFEs) 

Tanker  
size,  x1 
(dwt) 

Refinery 
capacity, x2 
(bbl/day) 

1 17.8849 446967.4908 179845.3736 5.8591 700 21 70000 

2 17.8849 446967.5156 179845.3803 5.4619 700 20 70000 

3 17.8849 446967.5103 179845.3674 5.7646 700 21 70000 

4 17.8849 446967.4991 179845.3667 13.5368 700 37 70000 

5 17.8849 446967.5089 179845.3761 39.3762 1000 58 100000 

6 17.8849 446967.5251 179845.3873 5.4673 700 20 70000 

7 17.8849 446967.4977 179845.3759 11.4670 1000 26 100000 

8 17.8849 446967.5080 179845.3874 17.8500 700 18 70000 

9 17.8849 446967.5210 179845.3825 6.8512 856 20 85600 

10 17.8849 446967.5104 179845.3894 5.4480 700 20 70000 

11 17.8849 446967.5057 179845.3770 35.6761 983 55 98300 

12 17.8849 446967.5036 179845.3764 38.2098 1000 57 100000 

13 17.8849 446967.4864 179845.3969 7.1871 1000 19 100000 
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14 17.8849 446967.5182 179845.3793 11.3154 1000 26 100000 

15 17.8849 446967.5110 179845.3752 28.1802 700 59 70000 

16 17.8849 446967.5138 179845.3800 99.9512 1000 100 100000 

17 17.8849 446967.5593 179845.3855 16.5342 876 36 87600 

18 17.8849 446967.5286 179845.3780 27.1227 1000 46 100000 

19 17.8849 446967.5190 179845.3755 8.2677 1000 21 100000 

20 17.8849 446967.5027 179845.3721 5.4758 700 20 70000 

21 17.8849 446967.4913 179845.3769 7.8470 1000 20 100000 

22 17.8849 446967.5320 179845.3843 5.7775 700 21 70000 

23 17.8849 446967.4972 179845.3779 5.0343 700 19 70000 

24 17.8849 446967.4928 179845.3691 7.1951 1000 19 100000 

25 17.8849 446967.5162 179845.3848 5.4591 700 20 70000 

26 17.8849 446967.4817 179845.3711 5.4330 700 20 70000 

27 17.8849 446967.5156 179845.3781 29.7657 1000 49 100000 

28 17.8849 446967.5118 179845.3763 43.6045 898 65 89800 

29 17.8849 446967.5176 179845.3795 16.4321 700 42 70000 

30 17.8849 446967.5428 179845.3875 7.0305 884 20 88400 

 
 
 

 

  
(a) 23rd run of the ABSA (b) 16th run of the ABSA 

 
(c) 8th run of the ABSA 

 
Figure 3: Convergence performances toward optimum fitness function of optimising the cost of 

shipping refined oil problem 
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Figure 4: Tanker size and refinery capacity obtained in 30 independent runs of the ABSA to optimise 

the cost of shipping refined oil problem 
 
 
4.3. Profit optimisation of selling television sets 
 
This single objective optimisation problem is adopted from De Leon (2012). The problem is to 
estimate the maximum yearly profit (F) in $/year will be gained by the manufacturer of colour 
television (TV) sets when two types of TV sets are sold. There are two variables for this problem that 
are a number of 19" flat screen TV sets sell per year (x1) and a number of 22" flat screen TV sets sell 
per year (x2). 
 
The problem has to consider the information such as: 

 A manufacturer’s suggested retail price (MSRP) of a 19" flat screen TV and a 21" flat screen 
TV are $339 and $399 respectively. 

 A company cost to produce a 19" flat screen TV and a 21" flat screen TV are $195 and $225 
respectively. 

 A fixed cost of $400000. 

 An estimation that for each type of TV set, the average selling price drops by $0.01 for each 
additional unit sold. 

 An estimation that average selling price of the 19” flat screen TV will be reduced by an 
additional $0.003 for each 21” flat screen TV and the price of the 21” flat screen TV will be 
reduced by an additional $0.004 for each 19” flat screen TV sold. 

 
The problem is formulated as: 
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The ABSA is adopted to find the optimum profit for this problem. The ABSA is capable of estimating 
the maximum yearly profit (F) in $/year will be gained by a manufacturer of colour TV sets. Table 2 
shows the results of 30 independent runs by the ABSA to solve this problem. All 30 independent runs 
of ABSA achieved a similar maximum profit of $553641.0256 by selling 4735 sets of 19" flat screen 
TV and 7043 sets of 21" flat screen. This mean that the best, worst or mean maximum profits are 
equal as well as standard deviation is zero. 
 
In term of time for the algorithm to finish, the mean time taken by all 30 independent runs of ABSA 
to solve this problem is 11.910748 seconds. From 30 independent runs, 12th run recorded the fastest 
time, 2.158887 seconds and 4th run recorded the slowest time, 44.516322 seconds where the results 
are shown in Figure 5(a) and Figure 5(b) respectively. In addition, the 12th also ran the fastest it 
started to converge to the optimum value during 17th iteration out of 100 total iterations. 25th and 30th  
runs recorded the slowest and they started to converge to the optimum value where both only began 
during 97th iteration respectively. 
 
To solve this problem, the ABSA randomly used 70000 to 100000 number of function evaluations 
(NFEs). As shown in Figure 6, the considered range of NFEs did not much affect the time for the 
algorithm to finish for all 30 independent runs. Except for 4th, 22nd, 25th and 30th runs, other 
independent runs of ABSA consistently recorded time below 25 seconds. 
 
Table 2: Result for 30 runs of ABSA to optimise the profit of selling television sets problem 
 

Run 
no. 

Best fitnesss,  
F  

($/year) 

Variables 
Time 

to finish 
(seconds) 

Numbers 
of bats 
used 

Iteration 
to 

converge 

Number 
of function 
evaluation 

(NFEs) 

19” TV sets, 
x1 

(unit sold/year) 

21” TV sets, 
x2  

(unit sold/year) 

1 553641.0256 4735 7043 5.8904 700 35 70000 

2 553641.0256 4735 7043 3.8427 1000 20 10000 

3 553641.0256 4735 7043 10.8029 854 44 85400 

4 553641.0256 4735 7043 44.5163 1000 96 100000 

5 553641.0256 4735 7043 15.5226 700 65 70000 

6 553641.0256 4735 7043 6.7420 1000 30 100000 

7 553641.0256 4735 7043 5.1212 1000 25 100000 

8 553641.0256 4735 7043 4.5473 1000 23 100000 

9 553641.0256 4735 7043 6.7754 1000 30 100000 

10 553641.0256 4735 7043 3.8550 700 26 70000 

11 553641.0256 4735 7043 4.3521 1000 22 100000 

12 553641.0256 4735 7043 2.1589 700 17 70000 

13 553641.0256 4735 7043 13.8235 1000 49 100000 

14 553641.0256 4735 7043 5.3774 700 33 70000 

15 553641.0256 4735 7043 22.2577 837 70 83700 

16 553641.0256 4735 7043 20.6073 1000 63 100000 

17 553641.0256 4735 7043 7.0210 1000 31 100000 

18 553641.0256 4735 7043 6.3223 1000 29 100000 

19 553641.0256 4735 7043 3.8573 700 26 70000 

20 553641.0256 4735 7043 3.3606 762 21 76200 

21 553641.0256 4735 7043 17.3687 1000 56 100000 

22 553641.0256 4735 7043 28.7085 700 95 70000 

23 553641.0256 4735 7043 4.0104 700 27 70000 

24 553641.0256 4735 7043 3.4784 700 24 70000 

25 553641.0256 4735 7043 39.5317 878 97 87800 

26 553641.0256 4735 7043 12.7783 819 50 81900 

27 553641.0256 4735 7043 6.1315 1000 28 100000 

28 553641.0256 4735 7043 11.0377 1000 42 100000 

29 553641.0256 4735 7043 7.7467 700 42 70000 

30 553641.0256 4735 7043 29.7764 700 97 70000 
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(a) 12th run of the ABSA (b) 4th run of the ABSA 

 
Figure 5: Convergence performances toward optimum fitness function of optimising the profit of 

selling television sets problem 
 

 

 
 

Figure 6: Number of function evaluations and time to finish recorded in 30 independent runs of the 
ABSA to optimise the profit of selling television sets problem 

 
 

5. Conclusion 
 
This paper has introduced an adaptive bats sonar algorithm (ABSA) to solve single objective 
optimisation problems. The single objective optimisation problems has been briefly defined 
respectively. The real echolocation behaviour of a colony of bats has been discussed. Then, ABSA 
was developed inspired from the bat echolocation. The proficiency of the ABSA to solve single 
objective optimisation problems has been examined through two practical business optimisation 
problems. The problems are; cost optimisation of shipping refined oil and profit optimisation of 
selling television sets. The computer simulation results have proved the ability of the ABSA to obtain 
the optimum results for both single objective optimisation problems. 
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