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Abstract 
This poster presents a numerical integration to solutions for the plane-
strain rigid-perfectly plastic deformation of a granular material in a 
container satisfying the stress-equilibrium conditions, the Coulomb yield 
criterion and the double-slip kinematic equations. 

p

The problem of modelling fully developed dense granular flows using 
continuum mechanics is complex and challenging. Stress fields within 
granular flows can be described by coupling the equations of linear 
momentum with the Coulomb–Mohr yield condition. This research is to 
develop a numerical method to find approximations to solutions of the 
double-slip model for the deformation of granular materials.  
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Applications 
In the pharmaceutical and food industries, one major roadblock to 
operational efficiency has been the inability to understand the 
particulars of granular flow. This research will able to account for these 
complicated flow issues that promises to help engineers design 
perfected systems for increased productivity. This could mean some 
major savings to the industry. The model and computer algorithm can 
now predict flow paths of various grain types, which will help engineers 
better design chutes and troughs to prevent blockages and. In 
understanding how grains flow could helped manufacturers optimising 
their production cycles. This research is also importance in geological 
processes, such as plate tectonics, landslides and erosion 

Novelty 
• The double shearing is modelled as a single phase continuum. 
• Using the developed numerical algorithm and programming to the 
model, the stress field in the plastic region for a number of problems 
may be constructed and these have not been previously solved. 

Applications to a variety of plane strain problems 

Conclusion 
The result shows that using the classical method for metal plasticity to 
the double shearing model and using the numerical method to construct 
the stress fields have found to agree well in various plane strain 
problems and made possible to solve the complete boundary value 
problem.  
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Methodology 
We consider a rigid/plastic ideal soil and metal in a state of plane strain. 
The stress components                referred to a rectangular Cartesian 
coordinate system         satisfy the Coulomb yield condition  
 
 
 
 
Where the cohesion c and the angle of internal friction    are constants, 
and the equilibrium equations are 
 
 
 
 
Equations (1) and (2) are hyperbolic, with characteristics  
 
 
 
 

which are termed the       and      lines respectively, where  

                               and    is the angle of inclination of the direction of  

the algebraically greater principal stress to the   -axis. If the 

 denote differentiation along the       and      lines respectively, then the 

relations along the characteristics may be written as  
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