

Check for updates

Scratch adhesion and wear failure characteristics of PVD multilayer CrTi/CrTiN thin film ceramic coating deposited on AA7075-T6 aerospace alloy

M. M. Quazi^{a,b} (b), M. Ishak^a, A. Arslan^b (b), M. Nasir Bashir^b and Imran Ali^b

^aFaculty of Mechanical Engineering, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia; ^bDepartment of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia

ABSTRACT

This study highlights the scratch adhesion failure characterization and tribo-mechanical properties of physical vapor deposited (Cr, Ti) N coating on AA7075-T6 by using magnetron-sputtering technique. The surface morphology, microstructure and chemical composition of CrTi/CrTiN film were inspected by an optical microscope, scanning electron microscope (SEM) incorporated with energy dispersive X-ray spectroscopy (EDX) in addition to focused ion beam milling. The coating to substrate critical load of about 1261 mN was obtained, by employing coating deposition parameters of; DC power (300 W, RF power (200 W)), temperature (300 °C) and nitrogen flow rate (6%). Failure adhesion characteristics exhibited initial arc-tensile cracking followed by chipping and spallation that led to complete coating failure at L₁₃. The tribo-mechanical aspects were evaluated by a pinon-plate reciprocating testing unit, which showed a lower friction coefficient of 0.36 for CrTiN as compared with 0.43 for AA7075-T6. Subsequently, the wear depth was also reduced from 9.5 to 5.9 µm. It was revealed that the wear mechanism for AA7075-T6 was extensive deformation, abrasion and delamination, while the CrTiN exhibited slightly oxidative abrasive wear mode.

ARTICLE HISTORY

Received 11 June 2017 Revised 28 August 2017 Accepted 28 August 2017

KEYWORDS

Magnetron sputtering; multilayered coating; AA7075-T6; CrTiN; scratch adhesion; tribological properties

CONTACT M. M. Quazi A engrmoinquazi@gmail.com, quazimoin@siswa.um.edu.my

© 2017 Informa UK Limited, trading as Taylor & Francis Group