EFFECT OF TEMPERATURE ON TASK PERFORMANCE AND THERMAL COMFORT AMONG UNDERGRADUATES OF UMP

TAN ZHEN SHENG

BACHELOR OF OCCUPATIONAL SAFETY AND HEALTH WITH HONORS
UNIVERSITI MALAYSIA PAHANG
EFFECT OF TEMPERATURE ON TASK PERFORMANCE AND THERMAL COMFORT AMONG UNDERGRADUATES OF UMP

TAN ZHEN SHENG

Report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Occupational Safety and Health

Faculty of Engineering Technology
UNIVERSITI MALAYSIA PAHANG

DECEMBER 2016
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for award of the degree of Bachelor of Occupational Safety and Health.

Signature :
Name of Supervisor : EZRIN HANI BINTI SUKADARIN
Position : LECTURER
Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature :
Name : TAN ZHEN SHENG
ID Number : PA13023
Date :
Dedicated to my beloved supervisor, family and friends.
ACKNOWLEDGEMENTS

Firstly, I would like to take this precious opportunity to acknowledge and express my sincere appreciation to my project supervisor, Madam Ezrin Hani Binti Sukadarin, for her continuous guidance, support, encouragement and advices in my project. She was very active in stimulating discussions and giving out constructive reviews during the preparation of this project. I am very grateful for being able to learn her insights that had helps me to complete my work on time.

Besides that, I also would like to express my deepest gratitude to Dr. Norazura Binti Ismail, who is the coordinator for our Final Year Project. She has been very helpful and understanding to us in this project. Apart from that, my gratitude goes to all lecturers and staffs of Department of Engineering Technology, especially Pn. Mimi Nabilah binti Mohd Noordin, who had contributed directly or indirectly in making this project, a success.

On the other hands, I would like to express my deepest appreciation and gratitude to all the respondents of Universiti Malaysia Pahang for their cooperation. This project is not possible to be completed without their agreement in participating in the experiment.

Finally, I would like thank my family especially my parents for their endless moral support throughout this project. I also have to express my appreciation to all my course mates and friends for their helps and companion. Thank you.
TABLE OF CONTENTS

SUPERVISOR’S DECLARATION ii
STUDENT’S DECLARATION iii
ACKNOWLEDGEMENTS iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi

CHAPTER 1 INTRODUCTION

1.1 Introduction 1
1.2 Background of Study 1
1.3 Problem Statement 2
1.4 Conceptual Framework 3
1.5 Research Objectives 4
1.6 Research Questions 4
1.7 Research Hypothesis 4
1.8 Significance of Study 5
1.9 Scope of Study 5
1.10 Definition of Terms 5
 1.10.1 Conceptual Definition 5
 1.10.2 Operational Definition 6

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 7
2.2 Temperature 7
CHAPTER 3 RESEARCH METHODOLOGY

3.1 Introduction
3.2 Study Location
3.3 Study Design
3.4 Sampling
 3.4.1 Sampling Population
 3.4.2 Sampling Sample
 3.4.4 Sampling Frame
 3.4.4.1 Inclusion Criteria
 3.4.4.2 Exclusion Criteria
 3.4.5 Sampling Method
3.5 Study Instruments
 3.5.1 Questionnaire
 3.5.2 Wet Bulb Globe Temperature (WBGT)
 3.5.3 Ergonomic Chair and Table
 3.5.4 Weight and Height Measuring
3.6 Study Framework
3.7 Data Analysis
 3.7.1 Determination of Data Distribution
3.8 Quality Control
 3.8.1 Pre-test Questionnaire
 3.8.2 Instrumentation

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction
4.2 Descriptive Data
 4.2.1 Response Rate and Socio-demographic Data
4.2.2 Type of Ventilation Devices Used and Respondents’ Thermal Sensation 31
4.3 Comparison of Thermal Comfort under Different Temperature Settings 34
4.4 Comparison of Typing-based Task Performance under Three Different Temperature Settings 41
4.5 Correlation between Thermal Comfort and Task Performance under Three Different Temperature Settings 44
4.6 Correlation between Age, Genders and Ethnicity with the Task Performance under Three Different Temperature Settings 44

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Introduction 47
5.2 Conclusion 47
5.3 Study Limitations 49
5.4 Recommendation 49
5.5 Future Study 49

REFERENCES 50

APPENDICES
A Gantt Chart for Final Year Project 1 & 2 53
B Questionnaire 54
C Respondent Consent Form 58
LIST OF TABLES

Table 3.1 Determination of scoring for typing tasks data distribution by Shapiro-Wilk Test

Table 3.2 Determination of thermal comfort data distribution by Shapiro-Wilk Test

Table 4.1 Demographic Data of Respondents

Table 4.2 Comparison of Thermal Comfort of Respondents under 3 Different Temperature Settings

Table 4.3 Pairwise Comparison (Wilcoxon Signed Rank Test) of Effects of Temperature on Thermal Comfort under 3 Different Temperature Settings

Table 4.4 Mauchly’s Test of Sphericity

Table 4.5 Comparison of Task Performance (Total Words Typed) of Respondents under 3 Different Temperature Settings

Table 4.6 Pairwise comparison of task performance under 3 different temperature settings

Table 4.7 Correlation between Respondents’ Thermal Comfort and Typing-based Task Performance Under Different Temperatures

Table 4.8 Correlation between Task Performance with Socio-demographic Status Across 3 Different Temperature Settings
Figure 1.1	Conceptual Framework of Thermal Environment	3
Figure 1.2	ASHRAE Thermal Sensation Scale	6
Figure 3.1	Workplace Ergonomic Simulator	18
Figure 3.2	ASHRAE Thermal Sensation, Preference and Acceptability Scale	22
Figure 3.3	Wet Bulb Globe Temperature	22
Figure 3.4	Ergonomic Chair and Table	23
Figure 3.5	Weight and Height Measuring Scale	23
Figure 3.6	Procedure for Respondent Sampling	24
Figure 3.7	Procedure for the Trial	25
Figure 4.1	Environment that Most Exposed	31
Figure 4.2	Type of Ventilation Used on The Environment Exposed	32
Figure 4.3	Thermal Sensation on Indoor Environment (Natural Wind)	33
Figure 4.4	Thermal Sensation on Outdoor Environment (Fan)	33
Figure 4.5	Thermal Sensation on Outdoor Environment (Air Conditioner)	34
Figure 4.6	Subjective Responses on Thermal Sensation at Different Temperature Settings	35
Figure 4.7	Subjective Responses on Thermal Comfort at Different Temperature Settings	36
Figure 4.8	Subjective Responses on Thermal Preference at Different Temperature Settings	37
Figure 4.9	Subjective Responses on Thermal Acceptability at Different Temperature Settings	38
Figure 4.10	Comparison of Scoring of the Typing-based Task Performance within 20 minutes under Three Different Temperature Settings	41