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ABSTRACT 

 

 

This project creates and develops an artificial neural network that is capable 

to determine the condition of a motor whether it is in a healthy state or fault state. 

All of the data used to train the artificial neural network is obtained by using the 

result from the simulation of MATLAB Simulink model that represent the real 

motor. The artificial neural network is trained by using radial basis function neural 

network method. MATLAB is used to construct and develop Graphical User 

Interface and interface it with the artificial neural network created. By doing so, the 

user will be able to test the neural network created with ease of using the Graphical 

User Interface  

 

. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

ABSTRAK 

 

Projek ini menghasilkan rangkaian neural yang mampu mengenalpasti 

keadaan motor samada motor yang digunakan sihat atau sebaliknya. Semua data-

data digunakan untuk mencipta rangkaian neural dikumpul dari simulasi MATLAB 

Simulink Model yang mewakili nilai sebenar motor. Setelah mencipta rangkaian 

neural yang dapat mengenalpasti keadaan motor, Perisian MATLAB akan 

digunakan untuk menghasilkan pengantaramuka pengguna dalam bentuk grafik dan 

pengguna dapat mencuba rangkaian neural yang dicipta dengan menggunakan 

pengantaramuka pengguna bagi memudahkan pengguna. 
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CHAPTER 1 
 

 

 

 

INTRODUCTION 
     

 

 

 

1.1 General 

 

 

This project is basically a method or another alternative to monitor the 

condition for single phase squirrel cage induction motors. 

For this project artificial intelligence will be used to identify the state of the 

motor, whether it is in a healthy condition or in a fault condition. Artificial 

intelligence is used because of its abilities to do analysis where formal analysis 

would be difficult or impossible, such as pattern recognition and nonlinear system 

identification and control. 

The experimental data for motor current, voltage, electromechanical torque 

of the motor under running condition was obtained from the simulation in 

MATLAB. From the data obtained, MATLAB and Neural Network tools will be 

used to identify the condition of the motors or machine. 

The neural network that was created based on the data can be used to detect 

fault in single-phase squirrel-cage induction motors by inserting the motor‟s 

parameter to monitoring the machine‟s condition. 



 

1.2 Problem Statement 

 

 

Condition monitoring of electric machinery can significantly reduce the cost 

of maintenance and the risk of unexpected failures by allowing early detection of 

potentially catastrophic faults.  

 

 

 

 

1.3 Objectives 

 

 

The main core objective of the project is to improve and create other 

alternatives for condition monitoring of single phase squirrel cage induction motors 

by developing a Neural Network that is capable of detecting faults in single phase 

squirrel-cage induction motors while gaining knowledge on the use of Neural 

Network in MATLAB. 

 

 

 

 

1.4 Project Scope 

 

 

In order to achieve this project, there are several scopes had been outlined: 

 

i. The Neural Network created based on the data obtained, can only be applied 

to the same motor.   

ii. This project is use to detect faults in single-phase squirrel-cage induction 

motors only. 

iii. Limited to internal faults only(Voltage drop and interturn fault) 

 

 

 

 

 

 



 

1.5 Overview 
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Figure 1.1: The Steps of this Project 

 

     

 

 

 

 



 

 

 

 

 

CHAPTER 2 
 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1  Condition Monitoring 

 

 
During the past twenty years, there has been a substantial amount of research 

into the creation of new condition monitoring techniques for electrical machine 

drives, with new methods being developed and implemented in commercial products 

for this purpose [15]. On-line condition monitoring involves taking measurements 

on a machine while it is operating in order to detect faults with the aim of reducing 

both unexpected failures and maintenance costs. Artificial intelligence is used 

because of its abilities to do analysis where formal analysis would be difficult or 

impossible, such as pattern recognition and nonlinear system identification and 

control. [3] 

 

 

 

 

2.2 Induction Motor Fault 

 

 

Induction motors play an important role in manufacturing environments, 

therefore, this type of machine is mainly considered and many diagnostic procedures 

are proposed both from industry and from academia. [14] 

A fault in a component is usually defined as a condition of reduced 

capability related to specified minimal requirements and is the result of normal 



 

wear, poor specification or design, poor mounting (here also including poor 

alignment), wrong use, or a combination of these. If a fault is not detected or if it is 

allowed to develop further it may lead to a failure [13] 

 

The major faults of electrical machines can broadly be classified as the following 

[14]: 

o stator faults resulting in the opening or shorting of one or more of a 

stator phase winding;  

o abnormal connection of the stator windings; 

o broken rotor bar or cracked rotor end-rings; 

o static and/or dynamic air-gap irregularities; 

o bent shaft (akin to dynamic eccentricity) which can result in a rub 

between the rotor and stator, causing serious damage to stator core 

and windings; 

o shorted rotor field winding; 

o bearing and gearbox failures. 

 

Induction machine failure surveys have found the most common failure 

mechanisms in induction machines[12]. These have been categorized according to 

the main components of a machine–stator related faults, rotor related faults, bearing 

related faults and other faults.  

 

 

Figure 2.1:  Types of induction machine faults. 



 

2.2.1 Voltage Drop 

 

 

When line voltages applied to a uniphase induction motor are not exactly the 

same. The effect on the motor can be severe and the motor may overheat to the point 

of burnout. The voltages should be as closely as can be read on the usually available 

commercial voltmeter. 

 

 

 

 

2.2.2 Stator Winding Fault 

 

 

Almost 40% of all reported induction machine failures fall into this category. 

The stator winding consists of coils of insulated copper wire placed in the stator 

slots. 

 

Stator winding faults are often caused by insulation failure between two 

adjacent turns in a coil. This is called a turn-to-turn fault or shorted turn. The 

resultant induced currents produce extra heating and cause an imbalance in the 

magnetic field in the machine. If undetected, the local heating will cause further 

damage to the stator insulation until catastrophic failure occurs. The unbalanced 

magnetic field can also result in excessive vibration that can cause premature 

bearing failures [10] 

 

Some of the most frequent causes of stator winding failures are [12]: 

o high stator core or winding temperatures, 

o slack core lamination, slot wedges, and joints, 

o loose bracing for end winding, 

o contamination caused by oil, moisture, and dirt, 

o short circuits, 

o starting stresses, 

o electrical discharges, 



 

2.3  Sensor Signal 

 

 

Different types of sensors can be used to measure signals to detect these 

faults. Various signal processing techniques can be applied to these sensor signals to 

extract particular features which are sensitive to the presence of faults. 

 

 

 

 

2.3.1 Vibration 

 

 

Vibration monitoring is one of the oldest condition monitoring techniques 

and is widely used to detect mechanical faults such as bearing failures or mechanical 

imbalance [10]. A piezo-electric transducer providing a voltage signal proportional 

to acceleration is often used.  This acceleration signal can be integrated to give the 

velocity or position.  

 

 

 

 

2.3.2 Stator Current  

 

 

The stator current is usually measured using a clip-on Hall-effect current 

probe. It contains frequency components which can be related to a variety of faults 

such as mechanical and magnetic asymmetries, broken rotor bars and shorted turns 

in the stator windings. [10] 

 

 

 

 

 



 

2.4 Signal Processing Techniques  

 

 

Signal processing techniques are applied to the measured sensor signals in 

order to generate features or parameters (e.g. amplitudes of frequency components 

associated with faults) which are sensitive to the presence or absence of specific 

faults.[10] 

 

 

 

 

2.4.1 Root Mean Squared (RMS)  

 

 

Calculation of simple statistical parameters such as the overall root mean 

squared (RMS) value of a signal can give useful information.  For instance, the RMS 

value of the vibration velocity is a convenient measure of the overall vibration 

severity [4].  In the same way, the RMS value of the stator current provides a rough 

indication of the motor loading.  

 

 

 

 

2.4.2 Frequency Analysis 

 

 

Frequency analysis using the Fourier transform is the most common signal 

processing method used for on-line condition monitoring.  This is because many 

mechanical and electrical faults produce signals whose frequencies can be 

determined from knowledge of motor parameters such as the number of poles. These 

fault signals appear in a variety of sensor signals including vibration, current and 

flux [2].  

Frequency analysis can thus provide information about a number of faults, 

though some faults produce similar fault frequencies and so require other 



 

information to differentiate them.  It also allows the detection of low-level fault 

signals in the presence of large “noise” signals at other frequencies.  

The use of the frequency analysis of vibration and current signals has been 

heavily researched to detect bearing, stator, rotor and eccentricity faults. Frequency 

analysis has also been applied to quantities such as the instantaneous “partial” power 

and instantaneous torque [2] which can be computed from the measured voltage and 

current signals.  

 

 

 

 

2.5 Artificial Intelligence  

 

 

The essence of an expert system is the ability to manage knowledge-based 

production rules that model the physical system, while it is a main feature of NNs 

that they are general nonlinear function approximators. This function approximation 

is achieved by using an appropriate network built up from artificial neurons, which 

are connected by appropriate weights. However, the exact architecture of a NN is 

not known in advance; it is usually obtained after a trial-and-error procedure. Fuzzy 

logic systems are expert, rule-based systems, but they can also be considered to be 

general nonlinear function approximators. In contrast to NNs, they give a very clear 

physical description of how the function approximation is performed (since the rules 

show clearly the function approximation mechanism). On the other hand, fuzzy-NNs 

are basically NNs with fuzzy features, and it is one main advantage over “pure” NNs 

that their architecture is well defined [11]. Research trends show that AI techniques 

will have a greater role in electrical motor diagnostic system with advance 

practicability, sensitivity, reliability and automation. Diagnostic system based upon 

fuzzy neural will be very extensively used. Self- repairing electrical drives based 

upon genetic-algorithm-assisted neural and fuzzy neural systems will also be widely 

used in the near future [1], [2]. The explored opportunities are to add intelligence to 

motors, providing a level of communication and diagnostic capability [3], [4]. 

 

 



 

2.5.1 Radial Basis Function Network 

 

 

The Basics of Redial Base Function Neural Network and Support vector 

machine have been demonstrated in this chapter which represents the fundamental 

tools used in this work. A radial basis function network is an artificial neural 

network that uses radial basis functions as activation functions. It is a linear 

combination of radial basis functions. They are used in function approximation, time 

series prediction, and control. Up to this point we have considered some methods of 

self-organized learning. Such methods allow a system to organize the data given to it 

into groups, or clusters, that we call classes, from whence comes the term 

classification. On the other hand, another large category of learning methods is 

called supervised learning because the systems must be taught, or tutored. The 

tutoring is done by presenting an input feature vector to the system and then 

presenting the label, codeword, or output vector that designates the class to which 

the input belongs. The system then adjusts its parameters according to some 

algorithm so that it learns the correct output codeword for that input feature vector. 

After training on examplars (input-output sample pairs) that sufficiently represent a 

population, the system can then be put online to recognize novel feature vector 

inputs from the same population. 

 

 

 

Figure 2.2: Radial Basis Function Neural Network 

 



 

The diagram in Figure 2.2 is a radial basis function neural network 

(RBFNN) that uses K radial basis functions as the middle layer (columns) of 

function nodes. The input vector x = (x1,...,xN) is a feature vector that is put to the 

first layer of N nodes, where the n
th

 component of x goes to the n
th

 input node and 

then fans out to each to each radial basis function in the middle layer of nodes. Thus 

each RBF node receives the entire input vector x.  

 

The network contains 3 layers (array) of nodes from bottom to up. In the 

usual artificial neural network terminology, the middle layer is called the hidden 

layer. Radial basis functions (RBFs) are shown as Gaussian (bell-shaped) curves 

inside the nodes in the hidden layer. The input layer of nodes on the bottom is not a 

layer of neurodes (for "neural nodes"), but is only a fanout layer. The hidden and 

output layers consist of neurodes. Each k
th

 hidden neurode fans out its fuzzy truth 

value to each of the J neurodes in the output layer, so each j
th

 output neurode 

receives the entire fuzzy truth vector y. 

 

At the nodes in the output layer we sum up the weighted average of all 

incoming fuzzy truth values with adjustable weights. More complex schemes have 

been tried but they yield similar results. The computed output components c1,...,cJ 

are just real numbers between 0 and 1 if the weights are between 0 and 1 (the fuzzy 

truth values of y = (y1,...,yK) are each between 0 and 1). If we allow any real values 

as weights, then the outputs can be any positive or negative values, but for the sake 

of preventing buildup of numerical errors we prefer output values between 0 and 1 

in magnitude. 

 

. The output, , of the network is thus 

 

 

 

where N is the number of neurons in the hidden layer, is the center vector for 

neuron i, and ai are the weights of the linear output neuron. In the basic form all 



 

inputs are connected to each hidden neuron. The norm is typically taken to be the 

Euclidean Distance and the basis function is taken to be Gaussian 

 

 

 

The Gaussian basis functions are local in the sense that 

 

 

 

i.e. changing parameters of one neuron has only a small effect for input values that 

are far away from the center of that neuron. RBF networks are universal 

approximators on a compact subset of . This means that a RBF network with 

enough hidden neurons can approximate any continuous function with arbitrary 

precision. The weights ai, , and β are determined in a manner that optimizes the fit 

between and the data. 

 

 

 

 

2.5.1.1 Normalized Architecture 

 

 

In addition to the above unnormalized architecture, RBF networks can be 

normalized. In this case the mapping is 

 

 

 

Where 

 

 



 

 

is known as a "normalized radial basis function". 

 

 

 

 

2.5.1.2 Theoretical Motivation for Normalization 

 

 

There is theoretical justification for this architecture in the case of stochastic 

data flow. Assume a stochastic kernel approximation for the joint probability density 

 

 

 

where the weights and ei are exemplars from the data and we require the kernels 

to be normalized 

 

 

 

And 

 

 

 

The probability densities in the input and output spaces are 

 

 

 

and 



 

The expectation of y given an input is 

 

 

 

 

 

Where 

 

 

 

is the conditional probability of y given . The conditional probability is related to 

the joint probability through Bayes Theorem. 

 

 

 

which yields 

 

 

 

This becomes 

 

 

 

when the integrations are performed. 

 

 

 



 

2.5.1.3 Local Linear Models 

 

 

It is sometimes convenient to expand the architecture to include local linear 

models. In that case the architectures become, to first order, 

 

and 

 

in the unnormalized and normalized cases, respectively. Here are weights to be 

determined. Higher order linear terms are also possible. 

This result can be written 

 

where 

 

and 

 

in the unnormalized case and 

 

in the normalized case. 

 

Here δij is a Kronecker delta function defined as 

 



 

 

2.5.1.4 Training the Network 

 

 

In a RBF network there are three types of parameters that need to be chosen 

to adapt the network for a particular task: the center vectors , the output weights 

wi, and the RBF width parameters βi. In the sequential training of the weights are 

updated at each time step as data streams in. 

For some tasks it makes sense to define an objective function and select the 

parameter values that minimize its value. The most common objective function is 

the least squares function 

 

where 

. 

We have explicitly included the dependence on the weights. Minimization of the 

least squares objective function by optimal choice of weights optimizes accuracy of 

fit. 

There are occasions in which multiple objectives, such as smoothness as well as 

accuracy, must be optimized. In that case it is useful to optimize a regularized 

objective function such as 

 

where 

 

and 

 

where optimization of S maximizes smoothness and λ is known as a regularization 

parameter. 

 

 



 

2.5.1.5 Interpolation 

 

RBF networks can be used to interpolate a function when the 

values of that function are known on finite number of points: 

. Taking the known points to be the centers of the 

radial basis functions and evaluating the values of the basis functions at the same 

points the weights can be solved from the equation 

 

It can be shown that the interpolation matrix in the above equation is non-singular, if 

the points are distinct, and thus the weights w can be solved by simple linear 

algebra: 

 

 

 

 

 

2.1.1.6 Function Approximation 

 

If the purpose is not to perform strict interpolation but instead more general 

function approximation or classification the optimization is somewhat more 

complex because there is no obvious choice for the centers. The training is typically 

done in two phases first fixing the width and centers and then the weights. This can 

be justified by considering the different nature of the non-linear hidden neurons 

versus the linear output neuron. 

 



 

2.5.1.7 Training the Basis Function Centres 

 

 

Basis function centres can be randomly sampled among the input instances 

or obtained by Orthogonal Least Square Learning Algorithm or found by clustering 

the samples and choosing the cluster means as the centres. 

The RBF widths are usually all fixed to same value which is proportional to the 

maximum distance between the chosen centres. 

 

 

 

 

2.5.1.8 Pseudo Inverse Solution for the Linear Weights 

 

 

After the centres ci have been fixed, the weights that minimize the error at 

the output are computed with a linear pseudo inverse solution: 

 

, 

where the entries of G are the values of the radial basis functions evaluated at the 

points xi: gji = ρ( | | xj − ci | | ). 

The existence of this linear solution means that unlike Multi-Layer Perceptron 

(MLP) networks the RBF networks have a unique local minimum (when the centers 

are fixed). 

 

 

  

2.5.1.9 Gradient Descent Training of the Linear Weights 

 

 

Another possible training algorithm is gradient dissent. In gradient descent 

training, the weights are adjusted at each time step by moving them in a direction 

opposite from the gradient of the objective function 



 

 

where ν is a "learning parameter." 

For the case of training the linear weights, ai, the algorithm becomes 

 

in the unnormalized case and 

 

in the normalized case. 

For local-linear-architectures gradient-descent training is 

 

 

 

 

 

 

2.5.1.10 Projection operator training of the linear weights 

 

 

For the case of training the linear weights, ai and eij, the algorithm becomes 

 

in the unnormalized case and 

 

in the normalized case and 

 

in the local-linear case. 

For one basis function, projection operator training reduces to Newton‟s Method. 

 

 



 

2.5.2 Artificial Intelligence Technique 

  

 

Filippetti et al. (2005) report an induction machine rotor fault diagnosis 

based on a neural network approach. After the neural network was trained using data 

achieved through experimental tests on healthy machines and through simulation in 

case of faulted machines, the diagnostic system was found able to discern between 

“healthy” and “faulty” machines. 

   

Tallam et al. (2000), present an on-line neural network based diagnostic 

scheme, for induction machine stator winding turn fault detection. This scheme is 

claimed to be insensitive to unbalanced supply voltages or asymmetries in the 

machine and instrumentation. In addition, it is claimed that a turn fault can be 

detected in the early stage of development.  

 

Huang et al. (2004) propose a scheme to monitor voltage and current space 

vectors simultaneously in order to monitor the level of air gap eccentricity in an 

induction motor. For the amplitudes of eccentricity related components that change 

non-monotonically with the operating conditions, an artificial neural network is used 

to learn the complicated relationship and estimate corresponding signature 

amplitudes over a wide range of operating conditions.  

 

Li et al. (2000) use neural networks to perform motor bearing fault diagnosis 

based on the extracted bearing vibration features. Computer-simulated data were 

first used to study and design the neural network motor bearing fault diagnosis 

algorithm. Actual bearing vibration data collected in real-time were then applied to 

perform initial testing and validation of the approach. The results show that neural 

networks can be effectively used in the diagnosis of various motor bearing faults 

through appropriate measurement and interpretation of motor bearing vibration 

signals  

  

 

 

 

 



 

 

 

 

 

CHAPTER 3 

 

 

 

 

METHODOLOGY 

 

 

 

 

3.1 Introduction 

  

 

Methodology is several numbers of tasks involved in carry-out the project. 

Methodology is referred as to job steps or procedure in arranging manner with 

discipline and smart in making a project successful. This chapter describes the 

overall methodology in developing On-line incipient fault detection in single-phase 

squirrel-cage induction motors using AI. This chapter contains three major sections. 

 

The first section is to collect the data by creating and simulating a Simulink 

model using MATLAB. Three Simulink model will be created where each of the 

model represent the motor condition. The result of the simulation will then be the 

data used to create an ANN. 

 

The second sections create and train an ANN. From the data obtained during 

the first section, a target output will determine the motor condition whether the 

motor is in a healthy state or fault occurred.   

 



 

In the third section, the development Graphical User Interface (GUI) is 

carried out this system. The GUI is developed by using MATLAB for the purpose of 

evaluating and testing the ANN. 

 . 
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Figure 3.1: The Flow Chart of the Three Stages of this Project 

 



 

3.1.1 SOFTWARE 

 

 

For this project a neural network will be created to identify the state of the 

motor, whether it is in a healthy condition or in a fault condition. Artificial Neural 

Network is used because of its abilities to do analysis where formal analysis would 

be difficult or impossible, such as pattern recognition and nonlinear system 

identification and control. 

 

The MATLAB software is use for this project because it allows one to 

perform numerical calculations and visualize the result without need for complicated 

and time consuming programming. This software provides an easy way to go 

directly from collecting data to deriving informative result. It also accurately solves 

the problem, to produce graphics easily and create the code efficiently.  

 

A GUI will also be created by using MATLAB. The table shows the 

different between Matlab GUI and others software that have the same function and 

the problem with the GUI. The comparison between Matlab GUI and others 

software like Visual Basic, Labview, and C++ can be the reason why Matlab GUI 

was selected for this project. In the table also state the problem with the software 

and can be a guidance to avoid making mistake while working with the software. [5] 

 

 

Matlab GUI versus others Problems with GUI 

 

Similar to RAD such as C++ builder and 

VB 

Not as flexible 

 

Can perform most functions as 

traditional GUI through tricks 

Often must use tricks and unfriendly 

techniques 

Can link platform dependent code using 

MEX programs 

 

MEX code GUI eliminates cross 

platform operation 

 

Table 3.1: Comparison of Matlab GUI with others software and its problem. 



 

3.2 Collecting Data 

  

 

 For this project, Simulink model will be created and simulated to obtained 

the data for the three condition of the motor where the data will be used to create a 

neural network that are able to determine the state of the motor. Artificial fault will 

be created by altering the Simulink model‟s parameters.   

 

 

 

 

3.2.1 Creating a Simulink Model 

 

 

 This procedure explains how to create a simple Simulink model. This model 

is used to obtain data for three motor conditions. The three motor conditions are 

motor in healthy state, motor with interturn-fault and motor with voltage drop fault. 

For each condition, a model will be created and simulated to obtain the data. The 

Simulink model will be based on a single-phase asynchronous machine in 

Capacitor-Start modes. The machine is rated 1/4 HP, 110 V, 60 Hz, 1800 rpm and 

fed by a 110V single phase power supply.  

 

For the basic procedure to create a Simulink model for this project is shown below: 

                

1. Simulink is typed in the MATLAB Command Window. The Simulink 

Library Browser window is opened as shown in Figure 3.2. 

 

2. From the toolbar, the Create a new model button is clicked. 



 

 

 

Figure 3.2: Create a new model 

 

3. An empty Simulink window is opened. With the toolbar and status    bar 

disabled, the window looks like following figure 3.3  

 

 

Figure 3.3: Empty Simulink model 

 

 

 

 

 

 



 

4. In the Simulink Library Browser window, select the following: 

 

Block Set Function 

AC Voltage Source Ideal sinusoidal AC Voltage source 

Step Output a step 

Bus Selector This block accepts a bus as input which can be 

created from a Bus Creator, Bus Selector or a block 

that defines its output using a bus object. The left 

listbox shows the signals in the input bus. Use the 

Select button to select the output signals. The right 

listbox shows the selections. Use the Up, Down, or 

Remove button to reorder the selections. Check 

'Output as bus' to output a single bus signal. 

Gain Element-wise gain (y = K.*u) or matrix gain 

 (y = K*u or y = u*K). 

Single Phase 

Asynchronous 

Machine 

 a single phase asynchronous machine (split-phase, 

capacitor-start, capacitor-start-run,  main and 

auxiliary windings accessible) modeled in the dq 

stator reference frame. Main and auxiliary windings 

are in quadrature. 

Display Numeric display of input values. 

Voltage Measurement Ideal voltage measurement. 

 

Table 3.2: The block set required to build the Simulink model and the description 

for each block set. 

 

 

 

 

 

 

 

 



 

 

Figure 3.4: Single Phase Asynchronous Machines Simulink Model (Healthy State) 



 

5. After creating the Single Phase Asynchronous Machines Simulink Model 

(Healthy State), the parameters for each block must be set.  

 

 

Figure 3.5: Block Parameters: Single Phase Asynchronous Machine 

 

6. For the second motor condition where the motor is in interturn fault, Rsa 

which represent the stator resistance is not included.  



 

Figure 3.6Single Phase Asynchronous Machines Simulink Model (Interturn Fault State) 



 

 

Figure 3.7 :Single Phase Asynchronous Machines Simulink Model (Voltage Drop Fault) 

 



 

 

Figure 3.8: Block Parameters for voltage drop fault Simulink Model. 

 

For the voltage drop fault, the voltage source is drop by 5% from 110 V. This fault 

is artificially created by reducing the voltage supply from 110V to 104.5V. 

 

 

 

 

3.2.2 Simulation of The Single Phase Asynchronous Machine Model 

 

 

For each motor condition, there are five condition of loads will be used to 

obtain the simulation result. The five conditions is motor running in 0% (No load), 

25% (quarter load), 50 % (half load), 75% (three-quarter load) and 100% (full load). 



 

 

Figure 3.9: Source Block Parameters: Step which represent the load condition of the 

machine runs at 25% (quarter load) 

 

The Step block provides a step between two definable levels at a specified 

time. If the simulation time is less than the Step time parameter value, the block's 

output is the Initial value parameter value. For simulation time greater than or equal 

to the Step time, the output is the Final value parameter value. To change the load 

condition, the final value of the step properties is changed. For no load = 0.0, quarter 

load = 0.25, half load = 0.50, three-quarter load = 0.75 and full load = 1.00. 

 

 

 



 

 

Figure 3.10 : Single Phase Asynchronous Machines Simulink Model (after simulation) 

 



 

After keying in the load condition, run each machine model will five load 

conditions to obtain the data. The display will show the RMS value for each 

parameter. From the data obtained a matrix 6x 15 will be constructed which will be 

the input for the neural network that will be trained.  

 

      

 

        Load      Vi       Ia             Im               Nr          Te 

𝐻𝐸𝐴𝐿𝑇𝐻𝑌 

𝑉𝑂𝐿𝑇𝐴𝐺𝐸 𝐷𝑅𝑂𝑃 

𝐼𝑁𝑇𝐸𝑅𝑇𝑈𝑅𝑁 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.00 107.9 2.965
0.25   17.26 5.579
0.50   47.09 4.211
0.75  109.6 3.304
1.00 109.08 3.555
0.00  104.2 2.789
0.25  104.3 2.827
0.50   49.53 4.232
0.75  104.1 3.178

 0.0002305       100.3 0.05529
1.184𝑒 − 9       2.335         3.67
 0.0004339      11.64     2.066
 0.0002092       22.12 0.04742
 0.0002095  0.05377 0.05058
 0.0002106 0.09707 0.03887

 
0.0002082      2.422  0.03571
3.727𝑒 − 5     37.25       1.898
0.0002033     2.348  0.04365

1.00  104.1 3.555
0.00   10.4 5.186
0.25   24.08 2.644
0.50  110.4 3.087
0.75  109.5 3.264
1.00  113.3 3.471

 0.0003083      23.31  0.04951
 0.0008248      7.115       3.546

0      61.94 1.478
   0.0002149    29.15    0.03013
   0.0002153    4.123    0.03934
   0.0002109    69.85    0.09930 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

3.3 Training Artificial Intelligence (Radial Basis Function Neural Network) 

 

 

After obtaining the data from the motor, the neural network will be trained to 

identify the state of the motor, whether it is healthy or in a fault condition.  

By using the data, the input and output of the data will be used to train the 

ANN as shown as the Figure 3.11. 

 

 

 

 

 



 

 

 

 

 

Figure 3.11 : The Neural Network 

 

 

     MOTOR CONDITION                           INPUT                          OUTPUT 

         Load       Vi         Ia      Im               Nr  Te          Target 

 

𝐻𝐸𝐴𝐿𝑇𝐻𝑌 

𝑉𝑂𝐿𝑇𝐴𝐺𝐸 𝐷𝑅𝑂𝑃 

𝐼𝑁𝑇𝐸𝑅𝑇𝑈𝑅𝑁 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.00 107.9 2.965
0.25   17.26 5.579
0.50   47.09 4.211
0.75  109.6 3.304
1.00 109.08 3.555
0.00  104.2 2.789
0.25  104.3 2.827
0.50   49.53 4.232
0.75  104.1 3.178

 0.0002305       100.3 0.05529
1.184𝑒 − 9       2.335         3.67
 0.0004339      11.64     2.066
 0.0002092       22.12 0.04742
 0.0002095  0.05377 0.05058
 0.0002106 0.09707 0.03887

 
0.0002082      2.422  0.03571
3.727𝑒 − 5     37.25       1.898
0.0002033     2.348  0.04365

1.00  104.1 3.555
0.00   10.4 5.186
0.25   24.08 2.644
0.50  110.4 3.087
0.75  109.5 3.264
1.00  113.3 3.471

 0.0003083      23.31  0.04951
 0.0008248      7.115       3.546

0      61.94 1.478
   0.0002149    29.15    0.03013
   0.0002153    4.123    0.03934
   0.0002109    69.85    0.09930 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

=  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.00
0.00
0.00
0.00
0.00
0.50
0.50
0.50
0.50
0.50
1.00
1.00
1.00
1.00
1.00 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

The data obtained from the created Simulink model will be used to train the 

ANN by using MATLAB. The ANN will train a neural network so that it will get 

the output (Target). The targets represent the motor condition where 0.00 represent 

healthy state, 0.5 represent voltage drop fault and 1.0 represent interturn fault.  

 

 

 

 

 



 

3.3.1 Coding for the ANN created 

 

 

Define inputs P from the data collected from the simulation of the Simulink model 

to train the ANN and associated targets T 

 

 

 

From the inputs P and the targets T radial basis network is used to determine 

a function which fits the data points.  A radial basis network is a network with 

layers.  A hidden layer of radial basis neurons and an output layer of linear neurons. 

The weights and biases of each neuron in the hidden layer define the position and 

width of a radial basis function.  Each linear output neuron forms a weighted sum of 

these radial basis functions.  With the correct weight and bias values for each layer, 

and enough hidden neurons, a radial basis network can fit any function with any 

desired accuracy. 

 

The function NEWRB quickly creates a radial basis network which 

approximates the function defined by P and T.  In addition to the training set and 

targets, NEWRB takes two arguments, the sum-squared error goal and the spread 

constant. 

 



 

 

newrb creates a two-layer network. The first layer has radbas neurons, and 

calculates its weighted inputs with dist and its net input with netprod. The second 

layer has purelin neurons, and calculates its weighted input with dotprod and its net 

inputs with netsum. Both layers have biases. 

 

Initially the radbas layer has no neurons. The following steps are repeated 

until the network's mean squared error falls below goal. 

1. The network is simulated. 

2. The input vector with the greatest error is found. 

3. A radbas neuron is added with weights equal to that vector. 

4. The purelin layer weights are redesigned to minimize error. 

 

The function newrb iteratively creates a radial basis network one neuron at a 

time. Neurons are added to the network until the sum-squared error falls beneath an 

error goal or a maximum number of neurons has been reached. The call for this 

function is 

 

net = newrb(P,T,GOAL,SPREAD) 

 

The function newrb takes matrices of input and target vectors P and T, and 

design parameters GOAL and SPREAD, and returns the desired network. 

The design method of newrb is similar to that of newrbe. The difference is 

that newrb creates neurons one at a time. At each iteration the input vector that 

results in lowering the network error the most is used to create a radbas neuron. The 

error of the new network is checked, and if low enough newrb is finished. Otherwise 

the next neuron is added. This procedure is repeated until the error goal is met or the 

maximum number of neurons is reached. 

 

 

 

 

 



 

3.4 Creating Graphical User Interface 

 

 

Graphical User Interface (GUI) is the essential part of this project. A 

graphical user interface (GUI) is a pictorial interface to a program. A good GUI can 

make programs easier to use by providing them with a consistent appearance and 

with intuitive controls like pushbuttons, list boxes, sliders, menus, and so forth. The 

GUI should behave in an understandable and predictable manner, so that a user 

knows what to expect when he or she performs an action. For example, when a 

mouse click occurs on a pushbutton, the GUI should initiate the action described on 

the label of the button.  MATLAB is used to develop this GUI. All of these tasks are 

simplified by GUIDE, MATLAB‟s graphical user interface development 

environment.  

 

 

 

 

3.4.1 GUI Development Environment 

 

 

The process of implementing a GUI involves two basic tasks: 

 

(i) Laying out the GUI components 

(ii) Programming the GUI components 

 

GUIDE primarily is a set of layout tools. However, GUIDE also generates an 

M-file that contains code to handle the initialization and launching of the GUI. This 

M-file provides a framework for the implementation of the callbacks – the functions 

that execute when users activate components in the GUI. 

 

While it is possible to write an M-file that contains all the commands to lay 

out a GUI, it is easier to use GUIDE to lay out the components interactively and to  

 

 



 

generate two files that save and launch the GUI: 

 

(i) A FIG-file – contains a complete description of the GUI figure and 

all of its   children (uicontrols and axes), as well as the values of all 

object properties. 

 

(ii) An M-file – contains the functions that launch and control the GUI 

and the callbacks, which are defined as subfunctions. This M-file is 

referred to as the application M-file in this documentation. 

 

 

 

 

3.4.2 Starting Guide 

 

 

MATLAB GUIs are created using a tool called guide, the GUI Development 

Environment. This tool allows a programmer to layout the GUI, selecting and 

aligning the GUI components to be placed in it. Once the components are in place, 

the programmer can edit their properties: name, color, size, font, text to display, and 

so forth. When guide saves the GUI, it creates working program including skeleton 

functions that the programmer can modify to implement the behavior of the GUI. 

When guide is executed, it creates the Layout Editor, shown in Figure 3.13. The 

large white area with grid lines is the layout area, where a programmer can layout 

the GUI. The Layout Editor window has a palate of GUI components along the left 

side of the layout area. A user can create any number of GUI components by first 

clicking on the desired component, and then dragging its outline in the layout area. 

The top of the window has a toolbar with a series of useful tools that allow the user 

to distribute and align GUI components, modify the properties of GUI components, 

add menus to GUIs, and so on.  

 

Start GUIDE by typing guide at the MATLAB command prompt. This 

displays the GUIDE Quick Start dialog, as shown in the following Figure 3.12. 

 



 

 

Figure 3.12: GUIDE Quick Start 

 

From the Quick Start dialog, the user can: 

 

(i) Create a new GUI from one of the GUIDE templates. 

(ii) Open an existing GUI. 

 

 

 

 

3.4.3 The Layout Editor 

 

 

When the user opened a GUI in GUIDE, it is displayed in the Layout Editor, 

which is the control panel for all of the GUIDE tools. The following Figure 3.24 

shows the Layout Editor with a blank GUI template. 

 



 

 

Figure 3.13: Layout Editor 

 

 

The user can lay out the GUI by dragging components, such as panels, push 

buttons, pop-up menus, or axes, from the component palette, at the left side of the 

Layout Editor, into the layout area. 

 

 

 

 

 

 

 

 

 

 

 

 



 

3.4.4 Creating the Visual Aspect of the GUI 

 

 

3.4.4.1 Main Menu GUI 

 

 

This GUI determines the next action of the user end. It consist of two static 

text, three push button and one axes. The objective is to make it easy for first time 

user and attractive. 

 

MATLAB tool called guide (GUI Development Environment) to layout the 

Components on a figure. The size of the figure and the alignment and spacing of 

components on the figure can be adjusted using the tools built into guide. 

 

 

Figure 3.14: Creating the Visual Aspect of the Main Menu GUI 

 

After inserting the components the next step is to edit the properties of these 

components. 

For example start with the Push button. Double click one of the Push button 

components. The Property Inspector will pop out and allows user to set each 

component a name (a "tag") and to set the characteristics of each component, such as 



 

its color, the text it displays, and other the properties of a component. Modify the 

properties of the other component the same way. 

 

Figure 3.15: The Property Inspector showing the properties of the push button. 

. 

In Properties Inspector of a component the two most important properties are 

the String property, which contains the text to be displayed, and the Tag property, 

which is the name of the pushbutton. In this case, the String property will be set to 

'START', and the Tag property will be set to Start. This name will be needed by the 

callback function to locate and update the text field. 

 

After setting the Tag property and String property for all of the other 

components, Save the figure to a file. For this the figure is saved as „MAIN‟. When 

the figure is saved, two files will be created on disk with the same name but 

different extents. The MAIN.fig file contains the actual GUI that you have created, 

and the MAIN.m is an M-file contains the code to load the figure and skeleton call 

backs for each GUI element. 

 

 

 



 

 

3.4.4.2 Start Menu GUI 

 

 

This GUI is the most important part of this project. In this GUI the 

parameters for the machine that will be evaluated will be inserted into the edit text 

components. From the data that was inserted in the in the GUI, it will connect with 

the ANN that was trained previously and work as the inputs of the ANN and the 

motor condition can be evaluated from the ANN outputs that will be displayed in the 

GUI.  

This GUI consists of six edit text component, eight static text and three push 

button. 

 

 

Figure 3.16: Creating the Visual Aspect of the Start Menu GUI 

 

 

After setting the Tag property and String property for all of the other 

components, Save the figure to a file. For this the figure is saved as „PSM_GUI‟. 

When the figure is saved, two files will be created on disk with the same name but 

different extents. The PSM_GUI.fig file contains the actual GUI that you have 



 

created, and the PSM_GUI.m is an M-file contains the code to load the figure and 

skeleton call backs for each GUI element. 

 

 

 

 

3.4.4.3 Help Menu GUI 

 

 

This GUI will give step by step instruction to first time user in order to make 

this program a user friendly program.  

 

 

Figure 3.17: Creating the Visual Aspect of the Help GUI 

 

After setting the Tag property and String property for all of the other 

components, Save the figure to a file. For this the figure is saved as „HELP. When 

the figure is saved, two files will be created on disk with the same name but 

different extents. The HELP.fig file contains the actual GUI that you have created, 



 

and the HELP.m is an M-file contains the code to load the figure and skeleton call 

backs for each GUI element  

 

 

 

 

3.4.5 Programming a GUI 

 

 

After laying out the GUI and setting component properties, the next step is to 

program the GUI. The user programs the GUI by coding one or more callbacks for 

each of its components. Callbacks are functions that execute in response to some 

action by the user. A typical action is clicking a push button. 

 

A GUI‟s callbacks are found in an M-file that GUIDE generates 

automatically. GUIDE adds templates for the most commonly used callbacks to this 

M-file, but the user may want to add others. M-file Editor is used to edit this file. 

 

For the entire created GUI, it also uses the dialog box, message box and 

image to make the GUI more attractive for user . All of the coding can be referred 

on the appendix.  

  

 

 

 

3.4.5.1 Programming the Main Menu 

 

 

The Main Menu consists of three push button. Start and Help push button is 

used to call another GUI and Exit push button to close the GUI.   



 

 

Figure 3.18: Show functions button which enable user to select components of the 

GUI 

 

Click on the „Show functions‟ button to which will bring up a list of the 

functions within the .m file. Select any callback function to add appropriate code to 

the callback of each component.  

 

When „Start_Callback‟ is selected, it will show the following code. 

 

% --- Executes on button press in Start. 
function Start_Callback(hObject, eventdata, handles) 
% hObject    handle to Start (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

 

To determine the function of this „START‟ push button, appropriate code is 

added. The code will execute when the „START‟ push button is being push. It will 

close the Main Menu and call the PSM_GUI.fig (Evaluate). 

 

user_response = PSM_GUI, close MAIN; 

 

 

For the „HELP‟ push button uses the same concept. By selecting 

„Help_Callback‟ it will show the generated code. Add the code to call the HELP.fig. 

It will close the Main Menu and call the HELP.fig (HELP). 

 

user_response = HELP, close MAIN; 

 

 



 

3.4.5.2 Programming START GUI  

 

 

For the START GUI, it is a little different from the Main Menu where in this 

GUI, the user is required to insert data. For the edit text component, certain code is 

needed in order to obtain the data that being inserted by the user. 

 

The code below is inserted below the generated „edit_Ia_Callback‟ code to 

get the data that the user inserted. Since are the data variables of String type, and not 

Number type the input must be converted into number . 

   

input = get(handles.edit_Ia,'String'); %get the input from the edit 

text field 
input = str2num(input); %change from string to number 

  

 

Figure 3.19:  The code block for „edit_Ia‟ edit text components 

 

For the rest of the edit text, the same procedures need to be done to get the 

data from the user. 

 



 

For the „Evaluate‟ push button all of the data need to be defined and 

converted into number type because it will be used as the inputs for the ANN 

created. 

 

The code below is inserted below the generated code for the 

„Evaluate_pushbutton_Callback‟ 

 
a = get(handles.edit_Load,'String'); 
b = get(handles.edit_Vi,'String'); 
c = get(handles.edit_Ia,'String'); 
d = get(handles.edit_Im,'String'); 
e = get(handles.edit_Nr,'String'); 
f = get(handles.edit_Te,'String'); 

 

 

Figure.3.20: The code blocks for „Evaluate_pushbutton_Callback‟ edit text 

components 

 

The data from the edit text will then be the inputs for the ANN and placed 

into the following code. Y is the output of the ANN and it is used to determine the 

motor condition of the motor. 

 

 

 

 

 



 

The output will be displayed a static text „answer‟ on the GUI. 

 

X = [str2num(a)  str2num(b) str2num(c) str2num(d)  str2num(e) 

str2num(f)]; 
X=X'; 

  
Y = sim(net,X) 

  
set(handles.answer,'String',Y); 
guidata(hObject, handles); 

 

 

For the „CLEAR‟ push button, it is used to reset the data inserted. The 

following code is inserted below the „Clear_ Callback‟. This will clear all of the 

inserted data and the result of the ANN. New data can be inserted after clearing the 

data to evaluate the machine by using another set of data.  

 

set(handles.edit_Load,'string','0'); 
set(handles.edit_Ia,'string','0'); 
set(handles.edit_Im,'string','0'); 
set(handles.edit_Nr,'string','0'); 
set(handles.edit_Te,'string','0'); 
set(handles.edit_Vi,'string','0'); 
set(handles.answer,'string',''); 

 

 

 
 

Figure.3.21: The code blocks for „clear_Callback‟ push button 

 

 



 

3.4.5.3 Programming HELP GUI  

 

 

This GUI is used to guide first time user on how to use the software created. 

This GUI consists only one push button to go back to the Main Menu. 

 

 

Figure 3.22: The code blocks for „Back_Callback‟ push button 

 

   

For the „Main Menu‟ push button uses the same concept like the Main Menu 

GUI. By selecting „Back_Callback‟ it will show the generated code. Add the code to 

call the MAIN.fig. It will close the HELP.fig and call the MAIN.fig (HELP). 

 

user_response = MAIN, close HELP; 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 4 

 

 

 

 

RESULTS AND DISCUSSION 

 

 

 

4.1 Graphical User Interface (GUI) 

 

 

4.1.1 Main Menu GUI 

 

For this project, On-line incipient fault detection in single-phase squirrel-

cage induction motors using Artificial Intelligence, a GUI has been created by using 

MATLAB. This GUI is consists of three main part START, HELP and EXIT.  Each 

push button will execute its own GUI. For example if the „HELP‟ push button is 

clicked, it will call „HELP.fig‟ which is the GUI for the „HELP‟ push button and for 

the rest will be shown later.  



 

 

Figure 4.1: Main Menu which consists of three push button 

 

 

 

4.1.2  Help GUI 

 

This GUI will be called when the „HELP‟ push button from the Main Menu 

GUI is clicked. 

 

 

Figure 4.2: Help Menu which consist of one push button 



 

4.1.3 Start GUI 

 

This GUI will be called when the „START‟ push button from the Main Menu 

GUI is clicked. The Start GUI is the most important part of this project. This is 

where the ANN can be tested by inserting data into the GUI. The data inserted into 

the GUI will be sent into the ANN as the inputs of the ANN. 

 

 

 

Figure 4.3: Start Menu which consist of edit text component for data to be inserted.  

 

 

The data inserted in to the GUI have to meet certain specification for each 

parameter. It would not accept value that are not numbers and value that is not logic 

for the type of machine that is used. For example, a 220V motor will not run under 

100V.  

 



 

 

Figure.4.4: The Message box indicate that the input is not a number 

 

In this GUI, a message box will pop out if the value inserted does not meet 

the specifications. The Figure 4.4 shows when value that is not a number type, it will 

pop out a message box that indicate that the value is not valid. 

 



 

 

Figure 4.5: The Message box indicate that the input is not valid. 

 

In this GUI, a message box will pop out if the value inserted does not meet 

the specifications. The Figure 4.5 shows when value does not make sense, it will 

pop out a message box that indicates that the value is not valid and request so that 

the data is checked. 

 

If the data is properly inserted within the parameter specification, the ANN 

will be able to evaluate the data of the inserted machine and determine the condition 

of the motor whether it is in a healthy state, voltage drop fault or interturn fault. 

 

After inserting the data, click „EVALUATE‟ push button.  Message box will 

pop up and show the condition of the machine evaluated.  

 



 

 

Figure 4.6: The Message box indicate that the motor is in a healthy condition 

 

 

Figure 4.7: The Message box indicate that a voltage drop fault detected 

 

 

Figure 4.8: The Message box indicate that interturn fault detected 

 

 

The message box that pop out is the result of the motor condition. When the 

motor condition is between -0.1 to 0.33 it is in a healthy state, if motor condition is 

between 0.34 to 0.66 a voltage drop detected and if motor condition is between 0.67 

to 1.1 interturn fault detected. 

 

 



 

4.2 Testing the ANN 

  

 

The evaluation of the machine 1 with the parameters below: 

 

Load (per unit)    = 0.75 p.u 

Voltage Input (Vi)   = 109.6 V 

Main Winding Current (Ia)  = 3.304 A 

Auxiliary Winding Current (Im) = 0.0002092 A 

Rotor Speed (Nr )   = 22.12 rad/s 

Electromagnetic Torque (Te)  = 0.04742 Nm 

 

 

Figure 4.9: The result of the testing for machine 1 

 

 



 

The Figure 4.9 shows the result of the evaluation for the machine 1. From the 

message box, it shows that the motor is in a healthy state. The motor condition also 

shows the value 0.00399466 which in the range of -0.1 to 0.33 (Healthy state).  

 

 

The evaluation of the machine 2 with the parameters below: 

 

Load (per unit)    = 0.25 p.u 

Voltage Input (Vi)   = 104.3 V 

Main Winding Current (Ia)  = 2.827 A 

Auxiliary Winding Current (Im) = 0.0002082 A 

Rotor Speed (Nr )   = 2.422 rad/s 

Electromagnetic Torque (Te)  = 0.03887 Nm 

 

 

 

Figure4.10: The result of the testing for machine 2 



 

The Figure 4.10 shows the result of the evaluation for the machine 2. From 

the message box, it shows that ANN detected a voltage drop fault. The motor 

condition also shows the value 0.559629 which in the range of 0.34 to 0.66 (Voltage 

Drop Fault).  

 

 

The evaluation of the machine 3 with the parameters below: 

 

Load (per unit)    = 0.5 p.u 

Voltage Input (Vi)   = 110.4 V 

Main Winding Current (Ia)  = 3.087 A 

Auxiliary Winding Current (Im) = 0.0002149 A 

Rotor Speed (Nr )   = 29.15 rad/s 

Electromagnetic Torque (Te)  = 0.03013 Nm 

 

 

Figure 4.11: : The result of the testing for machine 3 



 

The Figure 4.11 shows the result of the evaluation for the machine 3. From 

the message box, it shows that ANN detected a interturn fault. The motor condition 

also shows the value 1 which in the range of 0.67 to 1.1 (Interturn Fault).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 5 
 

 

 

 

CONCLUSION AND RECOMMENDATION 
 

 

 

 

5.1 Conclusion 

 

 

 For this final year project, which is the development of On-line 

Incipient Fault Detection in Single-Phase Squirrel-Cage Using Artificial 

Intelligence, the objectives has been achieved which are to improve and create other 

alternatives for condition monitoring of single phase squirrel cage induction motors 

by developing a Neural Network that is capable of detecting faults in single phase 

squirrel-cage induction motors while gaining knowledge on the use of Neural 

Network in MATLAB. The Graphical User Interface (GUI) been created is also user 

friendly, low cost and easy to maintain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5.2 Suggestion for Future Work 

 

 

The project is functioning well from the user friendly interface. However, in 

implementing it, need to be improved to a more advanced and better application in 

the future. For future improvement, several suggestions are proposed: 

 
 Experimental data be taken from a real motor. 

By creating a fault in a real motor, the experimental data could be 

more accurate and reliable. 

 Interface the ANN created with real motor. 

Instead of inserting the data into the GUI, interfacing the program 

with real motor could really give more reliability in monitoring the 

motor condition. 
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APPENDIX A 

 

Main Menu GUI coding 

 

function varargout = MAIN(varargin) 
% MAIN M-file for MAIN.fig 
%      MAIN, by itself, creates a new MAIN or raises the existing 
%      singleton*. 
% 
%      H = MAIN returns the handle to a new MAIN or the handle to 
%      the existing singleton*. 
% 
%      MAIN('CALLBACK',hObject,eventData,handles,...) calls the 

local 
%      function named CALLBACK in MAIN.M with the given input 

arguments. 
% 
%      MAIN('Property','Value',...) creates a new MAIN or raises the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before MAIN_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 

application 
%      stop.  All inputs are passed to MAIN_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help MAIN 

  
% Last Modified by GUIDE v2.5 21-Oct-2009 23:47:52 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @MAIN_OpeningFcn, ... 
                   'gui_OutputFcn',  @MAIN_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
% --- Executes during object creation, after setting all properties. 

  



 

  
% --- Executes just before MAIN is made visible. 
function MAIN_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to MAIN (see VARARGIN) 

  
[x,map]=imread('UMP.JPG'); 
image(x) 
colormap(map) 

  
% Choose default command line output for MAIN 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes MAIN wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = MAIN_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  
% --- Executes on button press in Start. 
function Start_Callback(hObject, eventdata, handles) 
% hObject    handle to Start (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
user_response = PSM_GUI, close MAIN; 

  
% --- Executes on button press in Help. 
function Help_Callback(hObject, eventdata, handles) 
% hObject    handle to Help (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
user_response = HELP, close MAIN; 

  
% --- Executes on button press in Exit. 
function Exit_Callback(hObject, eventdata, handles) 
% hObject    handle to Exit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
pos_size = get(handles.figure1,'Position'); 
% Call modaldlg with the argument 'Position'. 
user_response = modaldlg('Title','Confirm Close'); 
switch user_response 
case {'No'} 
    % take no action 



 

case 'Yes' 
    % Prepare to close GUI application window 
    %                  . 
    %                  . 
    %                  . 
    delete(handles.figure1) 
end 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX B 

 

Help GUI coding 

 

function varargout = HELP(varargin) 
% HELP M-file for HELP.fig 
%      HELP, by itself, creates a new HELP or raises the existing 
%      singleton*. 
% 
%      H = HELP returns the handle to a new HELP or the handle to 
%      the existing singleton*. 
% 
%      HELP('CALLBACK',hObject,eventData,handles,...) calls the 

local 
%      function named CALLBACK in HELP.M with the given input 

arguments. 
% 
%      HELP('Property','Value',...) creates a new HELP or raises the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before HELP_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 

application 
%      stop.  All inputs are passed to HELP_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help HELP 

  
% Last Modified by GUIDE v2.5 26-Feb-2006 14:11:20 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @HELP_OpeningFcn, ... 
                   'gui_OutputFcn',  @HELP_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before HELP is made visible. 



 

function HELP_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to HELP (see VARARGIN) 

  
% Choose default command line output for HELP 
handles.output = hObject; 

  
[x,map]=imread('UMP.JPG'); 
image(x) 
colormap(map) 

  
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes HELP wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = HELP_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  
% --- Executes on button press in Back. 
function Back_Callback(hObject, eventdata, handles) 
% hObject    handle to Back (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
user_response = MAIN, close HELP; 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX C 

 

Start GUI coding 

 

function varargout = PSM_GUI(varargin) 

  
% PSM_GUI M-file for PSM_GUI.fig 
%      PSM_GUI, by itself, creates a new PSM_GUI or raises the 

existing 
%      singleton*. 
% 
%      H = PSM_GUI returns the handle to a new PSM_GUI or the handle 

to 
%      the existing singleton*. 
% 
%      PSM_GUI('CALLBACK',hObject,eventData,handles,...) calls the 

local 
%      function named CALLBACK in PSM_GUI.M with the given input 

arguments. 
% 
%      PSM_GUI('Property','Value',...) creates a new PSM_GUI or 

raises the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before PSM_GUI_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 

application 
%      stop.  All inputs are passed to PSM_GUI_OpeningFcn via 

varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help PSM_GUI 

  
% Last Modified by GUIDE v2.5 21-Oct-2009 23:29:13 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @PSM_GUI_OpeningFcn, ... 
                   'gui_OutputFcn',  @PSM_GUI_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 

                

  
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 



 

else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before PSM_GUI is made visible. 
function PSM_GUI_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to PSM_GUI (see VARARGIN) 

  
% Choose default command line output for PSM_GUI 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes PSM_GUI wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = PSM_GUI_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  
% --- Executes on button press in Evaluate_pushbutton. 
function Evaluate_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to Evaluate_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
a = get(handles.edit_Load,'String'); 
b = get(handles.edit_Vi,'String'); 
c = get(handles.edit_Ia,'String'); 
d = get(handles.edit_Im,'String'); 
e = get(handles.edit_Nr,'String'); 
f = get(handles.edit_Te,'String'); 

  

  
% need to convert the answer back into String type to display it 

  
 P = [0.00  107.9   2.965  0.0002305   100.3    0.05529; 
     0.25  17.26   5.579  1.184e-009  2.335    3.67; 
     0.50  47.09   4.211  0.0004339   11.64    2.066; 
     0.75  109.6   3.304  0.0002092   22.12    0.04742; 
     1.00  109.08  3.555  0.0002095   0.05377  0.05058; 
     0.00  104.2   2.789  0.0002106   0.09707  0.03887; 
     0.25  104.3   2.827  0.0002082   2.422    0.03571; 
     0.50  49.53   4.232  3.727e-005  37.25    1.898; 



 

     0.75  104.1   3.178  0.0002033   2.348    0.04365; 
     1.00  104.1   3.555  0.0003083   23.31    0.04951; 
     0.00  10.4    5.186  0.0008248   7.115    3.546; 
     0.25  24.08   2.644  0           61.94    1.478; 
     0.50  110.4   3.087  0.0002149   29.15    0.03013; 
     0.75  109.5   3.264  0.0002153   4.123    0.03934; 
     1.00  113.3   3.471  0.0002109   69.85    0.0993]; 
 T =[0;0;0;0;0;.5;.5;.5;.5;.5;1;1;1;1;1]; 
 P=P'; 
 T=T'; 

  
%Training 
eg = 0.02; % sum-squared error goal 
sc = 1;    % spread constant 
net = newrb(P,T,eg,sc); 

  

  
%3, Test 

  
X = [str2num(a)  str2num(b) str2num(c) str2num(d)  str2num(e) 

str2num(f)]; 
X=X'; 

  
Y = sim(net,X) 

  
set(handles.answer,'String',Y); 
guidata(hObject, handles); 
input = Y; 

  

     
if input <= 0.3333 & input >= -0.1 

  
    %this is the first line of the msgbox 
    msgboxText{1} =  'The Motor Is In Healthy State';  

      
    %notice that msgboxText is a Cell array! 

  
    %this command creates the actual message box 
    msgbox(msgboxText,'Motor Condition', 'help'); 

  
elseif  input <= 0.6666 & input >= 0.3334 
    msgboxText{1} =  'WARNING! Fault Detected'; 
    msgboxText{2} =  'Please Check Voltage Level'; 
    msgbox(msgboxText,'Voltage Drop', 'warn'); 

  
elseif input <= 1.1 & input >= 0.6667 
    msgboxText{1} =  'WARNING! Fault Detected!'; 
    msgboxText{2} =  'Please Check Stator Winding'; 
    msgbox(msgboxText,'Interturn Fault', 'warn'); 
end 

  

  

  
% --- Executes on button press in exit_pushbutton. 
function exit_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to exit_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 



 

user_response = MAIN, close PSM_GUI; 

  

  
function edit_Load_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_Load (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit_Load as text 
%        str2double(get(hObject,'String')) returns contents of 

edit_Load as a double 
input = get(handles.edit_Load,'String'); %get the input from the 

edit text field 
input = str2num(input); %change from string to number 

  
if isempty(input) %if the input is not a number 

  
    %this is the first line of the msgbox 
    msgboxText{1} =  'You have tried to input something that is NOT 

a number.';  
    %this is the second line 
    msgboxText{2} =  'Try an input between 0 and 1 instead.'; 

  
    %notice that msgboxText is a Cell array! 

  
    %this command creates the actual message box 
    msgbox(msgboxText,'Input not a number', 'help'); 

  
elseif input < 0 || input > 1 %if the input is less than 0 or 

greater than 1 
    %this is the first line of the msgbox 
    msgboxText{1} =  'INPUT IS NOT A VALID DATA!'; 
    %this is the second line 
    msgboxText{2} =  'Please check data'; 

     
    msgbox(msgboxText,'Input not allowed', 'error'); 
end 

  
% --- Executes during object creation, after setting all properties. 
function edit_Load_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_Load (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit_Vi_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_Vi (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 



 

  
% Hints: get(hObject,'String') returns contents of edit_Vi as text 
%        str2double(get(hObject,'String')) returns contents of 

edit_Vi as a double 
input = get(handles.edit_Vi,'String'); %get the input from the edit 

text field 
input = str2num(input); %change from string to number 

  
if isempty(input) %if the input is not a number 

  
    %this is the first line of the msgbox 
    msgboxText{1} =  'You have tried to input something that is NOT 

a number.';  
    %this is the second line 
    msgboxText{2} =  'Try an input between 0 and 113.3 instead.'; 

  
    %notice that msgboxText is a Cell array! 

  
    %this command creates the actual message box 
    msgbox(msgboxText,'Input not a number', 'help'); 

  
elseif input < 0 || input > 113.3 %if the input is less than 0 or 

greater than 113.3 
   %this is the first line of the msgbox 
    msgboxText{1} =  'INPUT IS NOT A VALID DATA!'; 
    %this is the second line 
    msgboxText{2} =  'Please check data'; 

     
    msgbox(msgboxText,'Input not allowed', 'error'); 
end 

  
% --- Executes during object creation, after setting all properties. 
function edit_Vi_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_Vi (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit_Ia_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_Ia (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit_Ia as text 
%        str2double(get(hObject,'String')) returns contents of 

edit_Ia as a 
%        double 
input = get(handles.edit_Ia,'String'); %get the input from the edit 

text field 



 

input = str2num(input); %change from string to number 

  
if isempty(input) %if the input is not a number 

  
    %this is the first line of the msgbox 
    msgboxText{1} =  'You have tried to input something that is NOT 

a number.';  
    %this is the second line 
    msgboxText{2} =  'Try an input between 0 and 5.58 instead.'; 

  
    %notice that msgboxText is a Cell array! 

  
    %this command creates the actual message box 
    msgbox(msgboxText,'Input not a number', 'help'); 

  

  
elseif input < 0 || input > 5.58 %if the input is less than 0 or 

greater than 5.58 
    %this is the first line of the msgbox 
    msgboxText{1} =  'INPUT IS NOT A VALID DATA!'; 
    %this is the second line 
    msgboxText{2} =  'Please check data'; 

     
    msgbox(msgboxText,'Input not allowed', 'error'); 
end 

  
% --- Executes during object creation, after setting all properties. 
function edit_Ia_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_Ia (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit_Im_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_Im (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit_Im as text 
%        str2double(get(hObject,'String')) returns contents of 

edit_Im as a double 
input = get(handles.edit_Im,'String'); %get the input from the edit 

text field 
input = str2num(input); %change from string to number 

  
if isempty(input) %if the input is not a number 

  
    %this is the first line of the msgbox 



 

    msgboxText{1} =  'You have tried to input something that is NOT 

a number.';  
    %this is the second line 
    msgboxText{2} =  'Try an input between 0 and 0.000825 instead.'; 

  
    %notice that msgboxText is a Cell array! 

  
    %this command creates the actual message box 
    msgbox(msgboxText,'Input not a number', 'help'); 

  

  

  
elseif input < 0 || input > 0.000825 %if the input is less than 0 or 

greater than 100 
    %this is the first line of the msgbox 
    msgboxText{1} =  'INPUT IS NOT A VALID DATA!'; 
    %this is the second line 
    msgboxText{2} =  'Please check data'; 

     
   msgbox(msgboxText,'Input not allowed', 'error'); 
end 

  
% --- Executes during object creation, after setting all properties. 
function edit_Im_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_Im (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit_Nr_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_Nr (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit_Nr as text 
%        str2double(get(hObject,'String')) returns contents of 

edit_Nr as a double 
input = get(handles.edit_Nr,'String'); %get the input from the edit 

text field 
input = str2num(input); %change from string to number 

  
if isempty(input) %if the input is not a number 

  
    %this is the first line of the msgbox 
    msgboxText{1} =  'You have tried to input something that is NOT 

a number.';  
    %this is the second line 
    msgboxText{2} =  'Try an input between 0 and 100.3 instead.'; 

  



 

    %notice that msgboxText is a Cell array! 

  
    %this command creates the actual message box 
    msgbox(msgboxText,'Input not a number', 'help'); 

  

  

  
elseif input < 0 || input > 100.3 %if the input is less than 0 or 

greater than 100.3 
    %this is the first line of the msgbox 
    msgboxText{1} =  'INPUT IS NOT A VALID DATA!'; 
    %this is the second line 
    msgboxText{2} =  'Please check data'; 

     
    msgbox(msgboxText,'Input not allowed', 'error'); 
end 

  
% --- Executes during object creation, after setting all properties. 
function edit_Nr_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_Nr (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function edit_Te_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_Te (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of edit_Te as text 
%        str2double(get(hObject,'String')) returns contents of 

edit_Te as a double 
input = get(handles.edit_Te,'String'); %get the input from the edit 

text field 
input = str2num(input); %change from string to number 

  
if isempty(input) %if the input is not a number 

  
    %this is the first line of the msgbox 
    msgboxText{1} =  'You have tried to input something that is NOT 

a number.';  
    %this is the second line 
    msgboxText{2} =  'Try an input between 0 and 3.627 instead.'; 

  
    %notice that msgboxText is a Cell array! 

  
    %this command creates the actual message box 
    msgbox(msgboxText,'Input not a number', 'help'); 

  



 

  
elseif input < 0 || input > 3.627 %if the input is less than 0 or 

greater than 3.627 
    %this is the first line of the msgbox 
    msgboxText{1} =  'INPUT IS NOT A VALID DATA!'; 
    %this is the second line 
    msgboxText{2} =  'Please check data'; 

     
    msgbox(msgboxText,'Input not allowed', 'error'); 
end 

  
% --- Executes during object creation, after setting all properties. 
function edit_Te_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_Te (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in pushbutton8. 
function pushbutton8_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.edit_Load,'string','0'); 
set(handles.edit_Ia,'string','0'); 
set(handles.edit_Im,'string','0'); 
set(handles.edit_Nr,'string','0'); 
set(handles.edit_Te,'string','0'); 
set(handles.edit_Vi,'string','0'); 
set(handles.answer,'string',''); 

  
% --- Executes during object creation, after setting all properties. 
function ump_logo_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to axes2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: place code in OpeningFcn to populate axes 
[c,map]=imread('UMP','JPG'); 
image(c) 
set(gca,'visible','off') 

 

 

 

 

 

 

 

 



 

APPENDIX D 

 

Close Dialog Box coding 

 

function varargout = modaldlg(varargin) 
% MODALDLG M-file for modaldlg.fig 
%      MODALDLG by itself, creates a new MODALDLG or raises the 
%      existing singleton*. 
% 
%      H = MODALDLG returns the handle to a new MODALDLG or the 

handle to 
%      the existing singleton*. 
% 
%      MODALDLG('CALLBACK',hObject,eventData,handles,...) calls the 

local 
%      function named CALLBACK in MODALDLG.M with the given input 

arguments. 
% 
%      MODALDLG('Property','Value',...) creates a new MODALDLG or 

raises the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before modaldlg_OpeningFcn gets called.  

An 
%      unrecognized property name or invalid value makes property 

application 
%      stop.  All inputs are passed to modaldlg_OpeningFcn via 

varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help modaldlg 

  
% Last Modified by GUIDE v2.5 10-Oct-2009 23:50:25 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @modaldlg_OpeningFcn, ... 
                   'gui_OutputFcn',  @modaldlg_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 



 

  
% --- Executes just before modaldlg is made visible. 
function modaldlg_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to modaldlg (see VARARGIN) 

  
% Choose default command line output for modaldlg 
handles.output = 'Yes'; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% Insert custom Title and Text if specified by the user 
% Hint: when choosing keywords, be sure they are not easily confused  
% with existing figure properties.  See the output of set(figure) 

for 
% a list of figure properties. 
if(nargin > 3) 
    for index = 1:2:(nargin-3), 
        if nargin-3==index, break, end 
        switch lower(varargin{index}) 
         case 'title' 
          set(hObject, 'Name', varargin{index+1}); 
         case 'string' 
          set(handles.text1, 'String', varargin{index+1}); 
        end 
    end 
end 

  
% Determine the position of the dialog - centered on the callback 

figure 
% if available, else, centered on the screen 
FigPos=get(0,'DefaultFigurePosition'); 
OldUnits = get(hObject, 'Units'); 
set(hObject, 'Units', 'pixels'); 
OldPos = get(hObject,'Position'); 
FigWidth = OldPos(3); 
FigHeight = OldPos(4); 
if isempty(gcbf) 
    ScreenUnits=get(0,'Units'); 
    set(0,'Units','pixels'); 
    ScreenSize=get(0,'ScreenSize'); 
    set(0,'Units',ScreenUnits); 

  
    FigPos(1)=1/2*(ScreenSize(3)-FigWidth); 
    FigPos(2)=2/3*(ScreenSize(4)-FigHeight); 
else 
    GCBFOldUnits = get(gcbf,'Units'); 
    set(gcbf,'Units','pixels'); 
    GCBFPos = get(gcbf,'Position'); 
    set(gcbf,'Units',GCBFOldUnits); 
    FigPos(1:2) = [(GCBFPos(1) + GCBFPos(3) / 2) - FigWidth / 2, ... 
                   (GCBFPos(2) + GCBFPos(4) / 2) - FigHeight / 2]; 
end 
FigPos(3:4)=[FigWidth FigHeight]; 
set(hObject, 'Position', FigPos); 
set(hObject, 'Units', OldUnits); 



 

  
% Show a question icon from dialogicons.mat - variables 

questIconData 
% and questIconMap 
load dialogicons.mat 

  
IconData=questIconData; 
questIconMap(256,:) = get(handles.figure1, 'Color'); 
IconCMap=questIconMap; 

  
Img=image(IconData, 'Parent', handles.axes1); 
set(handles.figure1, 'Colormap', IconCMap); 

  
set(handles.axes1, ... 
    'Visible', 'off', ... 
    'YDir'   , 'reverse'       , ... 
    'XLim'   , get(Img,'XData'), ... 
    'YLim'   , get(Img,'YData')  ... 
    ); 

  
% Make the GUI modal 
set(handles.figure1,'WindowStyle','modal') 

  
% UIWAIT makes modaldlg wait for user response (see UIRESUME) 
uiwait(handles.figure1); 

  
% --- Outputs from this function are returned to the command line. 
function varargout = modaldlg_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  
% The figure can be deleted now 
delete(handles.figure1); 

  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
handles.output = get(hObject,'String'); 

  
% Update handles structure 
guidata(hObject, handles); 

  
% Use UIRESUME instead of delete because the OutputFcn needs 
% to get the updated handles structure. 
uiresume(handles.figure1); 

  
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 



 

% handles    structure with handles and user data (see GUIDATA) 

  
handles.output = get(hObject,'String'); 

  
% Update handles structure 
guidata(hObject, handles); 

  
% Use UIRESUME instead of delete because the OutputFcn needs 
% to get the updated handles structure. 
uiresume(handles.figure1); 

  

  
% --- Executes when user attempts to close figure1. 
function figure1_CloseRequestFcn(hObject, eventdata, handles) 
% hObject    handle to figure1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
if isequal(get(handles.figure1, 'waitstatus'), 'waiting') 
    % The GUI is still in UIWAIT, us UIRESUME 
    uiresume(handles.figure1); 
else 
    % The GUI is no longer waiting, just close it 
    delete(handles.figure1); 
end 

  

  
% --- Executes on key press over figure1 with no controls selected. 
function figure1_KeyPressFcn(hObject, eventdata, handles) 
% hObject    handle to figure1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Check for "enter" or "escape" 
if isequal(get(hObject,'CurrentKey'),'escape') 
    % User said no by hitting escape 
    handles.output = 'No'; 

     
    % Update handles structure 
    guidata(hObject, handles); 

     
    uiresume(handles.figure1); 
end     

     
if isequal(get(hObject,'CurrentKey'),'return') 
    uiresume(handles.figure1); 
end     

    


