

DESIGN AND IMPLEMENTATION OF PID CONTROLLER FOR DC MOTOR

USING PIC

MOHD HAFIZ BIN OMAR

UNIVERSITI MALAYSIA PAHANG

 UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS

 JUDUL:

SES I PENGAJIAN:________________

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* in i disimpan d i

 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universit i Malaysia Pahang (UMP).

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.

4. **Sila tandakan ()

 (Mengandungi maklumat yang berdarjah keselamatan

 SULIT atau kepentingan Malaysia seperti yang termaktub

 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan

 oleh organisasi/badan di mana penyelid ikan dijalankan)

 TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________

 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

F-216,LRG TIMAH 4, AHMAD NOR KASRUDDIN BIN NASIR

TAMAN P.K.N.K, (Nama Penyelia)

09000 KULIM ,

KEDAH DARUL AMAN

Tarikh: 24 NOVEMBER 2009 Tarikh: 24 NOVEMBER 2009

CATATAN: * Potong yang tidak berkenaan.

 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak

 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu

 dikelaskan sebagai atau TERHAD.

 Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara

Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan

penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2009/2010

 MOHD HAFIZ BIN OMAR (851105-02-5999)

INTELLIGENT NUMBER RECOGNITION

 i

DESIGN AND IMPLEMENTATION OF PID CONTROLLER FOR DC MOTOR

USING PIC

MOHD HAFIZ BIN OMAR

This Thesis is Part Fulfillment of the Requirement for a Bachelor

Degree of Electrical Engineering (Power System)

Faculty of Electrical & Electronic Engineering

University Malaysia Pahang

NOVEMBER 2009

 ii

DECLARATION

“I declare that this thesis entitled „design and implementation of pid controller for dc

motor using PIC‟ is the result of my own research except as cited in references. The

thesis has not been accepted for any degree and is not concurrently submitted in

candidature of any other degree”,

Signature :…………………………….

Name of candidate : Mohd Hafiz bin Omar

Date : November 24, 2009

 iii

DEDICATION

Special dedicated to my family, my friends, my fellow colleague,

and to all faculty members

For all your care, support, and believe in me.

 Sincerely;

 Mohd Hafiz bin Omar

 iv

ACKNOWLEDGEMENT

Alhamdulillah, the highest thank to God because with His Willingness I possible

to complete the final year project. In preparing this thesis, I was in contact with many

people, researchers, academicians, and practitioners. They have contributed towards my

understanding and thoughts. In particular, I wish to express my sincere appreciation to

my main thesis supervisor, Mr. Ahmad Nor Kasruddin Nasir, for encouragement,

guidance, critics and friendship.

I would also like to thank to all UMP lecturers and electrical technicians whom

had helped directly or indirectly in what so ever manner thus making this project a

reality.

My special thanks for my parents, Mr. Omar bin Saad and Mrs Sariah binti Mat

Ariffin and also the rest of my family, for their financial, spiritual support and pray on

me throughout this project. Their blessing gave me the high-spirit and strength to face

any problem occurred and to overcome them rightly.

The episode of acknowledgement would not be complete without the mention of

my fellow colleagues in BEP, 2005/06 session. Finally, I would like to thank all whose

direct and indirect support helped me completing my thesis in time. Only Allah can

repay your kindness.

 v

ABSTRACT

The purpose of this study is to control the speed of direct current (DC) motor

with PID controller using Proportional Integral Derivative (PID). The PID Controller

will be design and must be tune, so the comparison between simulation result and

experimental result can be made. The scopes includes the simulation and modeling of

direct current (DC) motor, implementation of Proportional Integral Derivative (PID)

Controller into actual DC motor and comparison of MATLAB simulation result with the

experimental result. This research was about introducing the new ability of in

estimating speed and controlling the permanent magnet direct current (PMDC) motor. In

this project, PID Controller will be used to control the speed of DC motor. The PID

Controller will be programmed to control the speed of DC motor at certain speed level.

The sensor will be used to detect the speed of motor. Then, the result from sensor is fed

back to PIC to find the comparison between the desired output and measured output to

get the estimating speed.

 vi

ABSTRAK

 Tujuan utama kajian ini adalah untuk mengawal kelajuan Direct Current (DC)

Motor, di mana Proportional Integral Derivative (PID) akan menjadi pengawal kelajuan

utama dan diaplikasi menggunakan PIC. Proportional Integral Derivative (PID) akan

direka bentuk dan harus disesuaikan nilai komponennya supaya perbezaan di antara

keputusan simulasi dapat dibandingkan dengan keputusan eksperimen. Skop tugasan

kajian ini termasuklah simulasi dan model direct current (DC) motor, perlaksanaan

Proportional Integral Derivative (PID) ke dalam DC motor yang sebenar dan

perbandingan keputusan simulasi MATLAB dengan keputusan eksperimen. Kajian ini

adalah untuk memperkenalkan keupayaan baru dalam menaksir dan mengawal kelajuan

Permanent Magnet Direct Current (PMDC) motor. Di dalam projek ini, PID Controller

akan digunakan untuk mengawal kelajuan DC motor. PID Controller juga akan

diprogramkan untuk mengawal kelajuan motor menggunakan PIC pada kadar kelajuan

yang telah ditetapkan. Alat pengesan (Encoder) akan mengesan tahap kelajuan motor.

Selepas itu, keputusan daripada alat pengesan akan di suap kembali kepada PIC untuk

mencari perbandingan di antara keputusan yang kehendaki dengan keputusan sebenar

untuk mencapai kelajuan yang telah ditetapkan.

 vii

TABLE OF CONTENT

CHAPTER TITLE PAGE

 DECLARATION

DEDICATION

ACKNOWLEDGEMENT

ABSTRACT

ii

iii

iv

v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xi

 LIST OF FIGURES

LIST OF SYMBOLS/ABBREVIATIONS

xii

xiii

1 INTRODUCTION

1

 1.1 Overview 1

 1.2 Objective 2

 1.3 Scope of project 3

 1.4 Problems statement 4

2 LITERATURE REVIEW

5

 2.1 DC Motor Characteristic 5

 2.2 State Space Equation of DC Motor 6

 viii

 2.3 Proportional Integral Derivative (PID) 10

 2.4 PID Implementation on DC Motor Close Loop
Control

11

 2.5 PID Tuning 16

 2.5.1 Manual Tuning 16

 2.6 PIC Microcontroller 17

 2.6.1 Origins 18

 2.6.2 PIC Microcontroller Option 19

 2.6.3 Variant 20

 2.6.4 PIC Basic Pro Compiler 21

 2.6.5 MAX232 22

 2.7 Implementing a PID Controller Using a PIC 16

MCU

23

3 METHODOLOGY 25

 3.1 Introduction 25

 3.2 Methodology 26

 3.3 Hardware part 28

 3.3.1 Hardware Installation 29

 3.4 Encoder configuration 33

 3.4.1Pulse Width-Modulation 35

 3.5 PID Algorithms 36

 3.5.1 Error Calculation 37

3.5.2 Proportional Terms

3.5.3 Integral Terms

3.5.4 Derivative Terms

3.5.5 PID output

37

36

39

 3.6 Build PIC Programming 41

 ix

4 RESULT AND DISCUSSION 44

 4.1 Introduction 44

 4.2 Simulation in MATLAB 44

 4.3 Discussion 49

5 CONCLUSION, FUTURE RECOMMENDATION AND

COSTING and COMMERCIALIZATION

50

 5.1 Conclusion 50

 5.2 Future Recommendation 51

 5.3 Costing and commercialization 52

 REFERENCES 54

 APPENDIX 55

 x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Description of Motor Parameters 6

2.2 Choosing a Tuning Method 16

2.3 Effect of Increasing Parameters 17

3.1 Serial port pins and signal assignments 31

3.2 Comparison of PICBasic and PICBasic Pro 41

3.3 List of standard baud rate 43

3.4 Modifier support by SERIN2 command 43

5.1 Approximation cost of component 52

 xi

LIST OF FIGURES

FIGURE NO TITLE PAGE

2.1 A Simple Model of DC Motor Driving an Inertial Load 7

2.2 Block diagram of the open-loop permanent-magnet DC motor 9

2.3 Model of DC motor 9

2.4 Step Response of Open Loop System 10

2.5 Step Response with Proportional Control 14

2.6 PID Control with Small Ki and Kd 14

2.7 PID Control with Large Ki 15

2.8 PID Control 15

2.9 PIC 17

2.10 PIC16F877/877A pin 18

2.11 MAX232 connection to DB9 22

2.12 Serial connection with PIC 23

3.1 Flowchart of the project 27

3.2 Hardware Design 28

3.3 Power supply modules 29

3.4 Pins and signal associated with the 9-pin connector 30

3.5 Serial port connection to PIC 32

3.6 Driver circuit using IR 2109 33

3.7 Sample of Output from Encoder 34

3.8 Sample of a PWM Waveform 35

3.9 Flowchart of the Adaptive PID Algorithm Implemented In the

MCU

40

4.1 Block diagram for simulation in MATLAB 44

 xii

4.2 Response in MATLAB – Proportional mode 45

4.3 Response in MATLAB – Proportional + Integral mode 46

4.4 Response in MATLAB – Proportional + Derivative mode 47

4.5 Response in MATLAB – PID mode 48

 xiii

LIST OF SYMBOLS/ABBREVIATIONS

PID - Proportional Integral Derivative

BLDC - Brushless Direct Current

PIC - Peripheral Interface Controller

DC - Direct Current

CHAPTER 1

INTRODUCTION

1.1 Overview

Now a days DC motor plays a vital role in most of the industrial areas, it can be

seen in most of the electronic devices. They are mainly used for the mechanical

movements of physical applications such as rolling the bundle of sheets or CD drives,

lifts etc. Many methods evolved to control the revolution of a motor. DC motors can be

controlled either by software or directly by hardware. Software controlling needs

computers which are bulky and common man cannot afford for it, so hardware controls

are in use. Even in hardware if it is programmable device then it is preferred because it

can be modeled according to the requirements of the user.

There are many different control schemes such as PID, Fuzzy, LQR, Integral

State Feedback and some other more. For this project I implemented a PID

(Proportional, Integral, and Differential) control loop to control the speed of the motors.

A scaled down model of this controlling scenario is created by inducing

disturbances in this scaled down model and by taking feedback from the output, we

 2

will restore the system to a set value by using the Proportional Integral Derivative (PID)

control scheme.

The PID controller calculation involves three separate parameters; the

Proportional(P), the Integral(I) and Derivative(D) values. The Proportional

value determines the reaction to the current error, the Integral determines the reaction

based on the sum of recent errors and the Derivative determines the reaction to the rate

at which the error has been changing. The weighted sum of these three actions is

used to adjust the speed of the dc motor via the microcontroller. The speed of the

motors is manipulated by altering the duty cycle of a PWM signal generated by the

processor. The duty cycle of this signal is known as the control value. In this way, the

control value is continuously updated based on the response of the motors. This ensured

that the motors are moving at the desired speed despite drag, obstacles, or other

unexpected track conditions.

1.2 OBJECTIVE

The objective of this project is to design a PID sub-routine in

microcontroller for motor speed control. The PID algorithm written as a computer

program will be embedded in a hardware device which is the microcontroller. This

designed is to correct some errors on Direct Current (DC) Motor control which are:

 a) DC motor steady-state error correction

 b) DC motor overshoot control

 c) DC motor settling time

 3

1.3 SCOPE OF PROJECT

 For this project, there are two scopes. The scope of project is dividing to

software part and hardware part:

For the software part, we have:

i. Find the mathematical model of the motor

ii. Get the transfer function

iii. Design and tuning the PID controller

iv. Simulating PID control of the mathematical model of DC motor

v. Programming the PIC

For the hardware part, we have:

i. Design and construct the hardware for microcontroller unit, driver motor,

encoder and serial communication.

ii. Implement of PID controller to actual DC motor.

iii. Comparison of the simulation result with the experimental result of

controller performance.

 4

1.4 Problem Statement

The problem encounter when dealing with DC motor is the lag of efficiency and

losses. In order to eliminate this problem, controller is introduce to the system. There’s

few type of controller but in this project, PID controller is chosen as the controller for

the DC motor. This is because PID controller helps get the output, where we want it in a

short time, with minimal overshoot and little error.

5

CHAPTER 2

LITERATURE REVIEW

This chapter will review previous research which concern to dc motor system,

controller algorithm, Proportional Integral Derivative (PID) and microcontroller. There

are numbers of control strategy and methods in controlling the speed for dc motor which

had been implemented by researchers that will be discussed.

2.1 DC Motor Characteristic

DC motors consist of one set of coils, called an armature, inside another set of

coils or a set of permanent magnets, called the stator. Applying a voltage to the coils

produces a torque in the armature, resulting in motion. It design to run on DC electric

power which uses electrical energy and produce mechanical energy.

DC Motor Types is:

Permanent Magnet : No field coils at all.

Series Wound : The field coils are connected in series with the armature coil.

Powerful and efficient at high speed, series wound motors
generate the most torque for a given current. Speed varies
wildly with load, and can run away under no- load conditions.

Shunt Wound : The field coils are connected in parallel with the armature

coil. Shunt wound motors generate the least torque for a given

current, but speed varies very little with load. Will not run

away under no- load, but may if the field windings fail.

 6

Compound Wound: A combination of series and shunt wound. This is an attempt

to make a motor that will not run away under no load or if the

field fails, yet is as efficient and powerful as a series wound

motor.

2.2 State Space Equation of DC Motor:

To derive state space equation of any system, one needs to determine the inputs,

output and state space variable of the system. The output and state space variable of a DC

motor are speed (ω) and load current (IL). The inputs are armature voltage (Va) and load

torque (TL).

Table 2.1: Description of Motor Parameters

Parameter Description

Ua or Va Input Voltage

Ia Armature Current

La Armature Inductance

Ra Armature Resistance

J Rotor Inertia

Bm Friction Co-efficient

Ka Back EMF Constant

KT Torque Constant or Motor Constant

TL Load Torque

Ω or ωr Rotor Speed

Te or Tm Motor Torque

Ea or Vemf Back EMF Voltage

 7

First, find the transfer functions to develop the block diagrams of the open- and

closed- loop systems. These transfer function are obtained using the differential equations

that describe the system dynamics.

From permanent-magnet DC motor, get equation:

a

a

r

a

a

a

a

aa u
LL

k
i

L

r

dt

di 1
……….……………..(1.1)

Newtonian mechanics is applied to find the differential equation for mechanical system.

dt

d
JJT

……..…..…………………..(1.2)

Where J is equivalent to moment inertia, is found as sum of the moment of inertia of

rotor, coupling, gear and rotating platform. The electromagnetic torque develop by

permanent-magnet DC motors is found as

aae ikT ……………………………………(1.3)

Denoting the viscous friction coefficient as Bm, the viscous friction torque is

rmviscous BT ……….………………………(1.4)

The load torque is denoted as TL. Then, making use of Newton’s second law, we have

)(
1

)(
1

LrmaaLviscouse
r TBik

J
TTT

Jdt

d
………………(1.5)

Figure 2.1 : A Simple Model of DC Motor Driving an Inertial Load

 8

The dynamics of rotor angular displacement is [5]

r
r

dt

d
..(1.6)

To find the transfer function, the derived three first-order differential equations [5]

a

a

r

a

a

a

a

ai u
LL

k
i

L

r

dt

di 1
……….………………..(1.7)

)(
1

Lrmaa
r TBik

Jdt

d
……………….…………(1.8)

and

r
r

dt

d
………………………..(1.9)

must be rewritten in the s-domain.

Using the Laplace operator
dt

d
s , one immediately obtains

)(
1

)()(su
L

s
L

k
si

L

r
s a

a

r

a

a

a

a

a ………..………(1.10)

)(
1

)(
1

)(sT
J

sik
J

s
J

B
s Laar

m ……..…………..(1.11)

)()(sss rr ………………….……………..(1.12)

From equation (1.7) and (1.8), the state space equations of DC Motor are,

…………………(1.13)

 …………….………….(1.14)

 …………………….………….(1.15)
Thus,

The block diagram of the permanent-magnet DC motor, as a single- input

(applied armature voltage)/ single-output (rotor angular displacement) system is

illustrated by Figure 2.2:

 9

Figure 2.2 : Block diagram of the open-loop permanent-magnet DC motor

The parameters of the permanent-magnet JDH-2250 Clifton Precision motor are:

7.2ar

HLa 004.0

10000093.0 AmNBm

1105.0 radsVka

20001.0 mkgJ

Figure 2.3 : Model of DC motor

+ + -

aa rsL

1

ak

au
ai

mBJs

1

aT
r

LT

ak

-

 10

2.3 Proportional Integral Derivative (PID)

PID controller consists of 3 sub-systems: Proportional controller, Integral (I)

controller and Derivative (D) controller. These controllers can be used in different

combination according to the purpose and the combinations are P, PI, PD and PID

controllers. Proportional integral and derivative constant depend on each other. If we

change the value of one, it will effect on other two values. So while designing PID

Controllers care must be taken to get required output.

To meet with the design requirements, first the motor can only rotate at

0.1 rad/sec with an input voltage of 1 Volt. Since the most basic requirement of a

motor is that it should rotate at the desired speed, the steady-state error of the motor

speed should be less than 1%. The other performance requirement is that the motor must

accelerate to its steady-state speed as soon as it turns on. In this case, the motor should

have a settling time of 2 seconds. Since a speed faster than the reference may damage

the equipment, it also need to have an overshoot of less than 5%.Using MATLAB, the

original open- loop performances can be plotted as figure below.

Figure 2.4 Step Response of Open Loop System

 11

If the reference input is simulated by an unit step input, then the motor

speed output should have:

1. Settling time less than 2 seconds

2. Overshoot less than 5%

3. Steady-state error less than 1% [1]

2.4 PID Implementation on DC Motor Close Loop Control

The closed-loop controller is a very common means of keeping motor speed at

the required set point under varying load conditions. It is also able to keep the speed at

the set point value where for example, the set point is ramping up or down at a defined

rate.

In the closed loop speed controller, a signal proportional to the motor speed

is fed back into the input where it is subtracted from the set point to produce an error

signal. This error signal is then used to work out what the magnitude of controller output

should be to make the motor run at the required set point speed. For example, if the error

speed is positive, the motor is running too fast so that the controller output should be

reduced and vice-versa.

If a load is applied, the motor slows down so that a positive error speed

is produced. The output increases by a proportional amount to try and restore the

speed. However, as the motor speed recovers, the error reduces and so therefore does the

drive level. The result is that the motor speed will stabilize at some speed below the set

point at which the load is balanced by the error speed times the gain. If the gain is very

high so that even the smallest change in motor speed causes a significant change in drive

level, the motor speed may oscillate. This basic strategy is known as ―proportional

control‖ and on its own has only limited use as it can never force the motor to run

exactly at the set point speed.

 12

The next improvement is to introduce a correction to the output which will keep

adding or subtracting a small amount to the output until the motor reaches the set point,

at which point no further changes are made. In fact a similar effect can be had by

keeping a running total of the error speed speeds observed for instance, every 25ms and

multiplying this by another gain before adding the result the proportional correction

found above. This new term is based on what is effectively the integral of the error

speed.

The proportional term is a fast-acting correction which will make a change in the

output as quickly as the error arises. The integral takes a finite time to act but has

the ability to remove all the steady-state speed error.

A further refinement uses the rate of change of error speed to apply an additional

correction to the output drive. This means that a rapid motor deceleration would be

counteracted by an increase in drive level for as long as the fall in speed continues.

This final component is the ―derivative‖ term and it is a useful means of increasing

the short-term stability of the motor speed. A controller incorporating all three

strategies is the well-known Proportional-Integral-Derivative, or ―PID‖ controller.

Creating PID algorithm involves lots of concern in terms of the programming.

The main issue on implementing PID control system is on how to program the algorithm

and correctly functioning as true PID behavior. For the error calculation results, the plant

variables might be bigger than Set point value and gives negative Error result.

As a solution, the program must have conversion subroutine to ensure the Error

result is in positive value. Another aspect to consider is the Integral Windup. Integral

term is based on the sum of all previous observed error speeds. However the integral can

continuous to integrate indefinitely, thus the microcontroller program must check for

overflow on the resulting integral term.

For best performance, the proportional and integral gains need careful

tuning. For example, too much integral gain and the control will tend to over-

correct for any speed error resulting in oscillation about the set point speed.

 13

Integral gains ensure that under steady state conditions that the motor speed almost

exactly matches the set point speed. A low gain can make the controller slow to

push the speed to the set point but excessive gain can cause hunting around the set

point speed. In less extreme cases, it can cause overshoot where by the speed passes

through the set point and then approaches the required speed from the opposite direction.

Unfortunately, sufficient gain to quickly achieve the set point speed can cause overshoot

and even oscillation but the other terms can be used to damp this out. Proportional

gains gives fast response to sudden load changes and can reduce instability

caused by high integral gain. This gain is typically many times higher than the

integral gain so that relatively small deviations in speed are corrected while the

integral gain slowly moves the speed to the set point. Like integral gain, when set

too high, proportional gain can cause an oscillation of a few Hertz in motor speed.

There are many ways for an initial setting of the gains. One of it is to set the set

point to maximum speed and with the integral and derivative gains at zero, increase

the proportional gain so that the speed reaches the maximum possible before a

speed oscillation sets in. Reduce the set point to zero. Repeatedly apply a step

change in set point to 75% of full speed and increase the integral gain gradually until

the speed starts to overshoot.

The speed should rise quickly with the step change and settle at the set

point without significant overshoot. The integral gain setting will be particularly

influenced by the moment of inertia of the load and some experimentation will be

required. The controller is configured as a proportional- integral controller which should

quickly correct speed errors without oscillation. [3]

A simulation of how PID controller works can be done through MATLAB. First,

the proportional control was put to the test. By using a gain of 100, and by using

MATLAB m-file, the following plot is generated.

 14

Figure 2.5 Step Response with Proportional Control

From the plot above, the steady-state error and the overshoot are too

large. Adding an integral term will eliminate the steady-state error and a derivative

term will reduce the overshoot. Inserting a small Ki and Kd to the system and the

plot as figure below is obtained.

Figure 2.6 PID Control with Small Ki and Kd

 15

From the figure above, it is seen that the settling time is too long. Increasing

Ki will reduce the settling time as the figure below.

Figure 2.7 PID Control with Large Ki

 From the figure above, it is seen that the response is much faster than before, b ut
the large Ki has worsened the transient response and result in big overshoot. Increasing

Kd will reduce the overshoot and figure as below is obtained. From the figure above, the
design requirements has been achieved. [4]

Figure 2.8 PID Control

 16

2.5 PID Tuning

Tuning a PID is the adjustment of its control parameters to the optimum values

for the desired control response. The optimum behavior of a process varies depending on

the application. There are several methods for tuning a PID. The most e ffective methods

generally involve the development of some form of process model, then choosing P, I

and D based on the dynamic model parameters.

Table 2.2: Choosing a Tuning Method

Choosing a Tuning Method

Method Advantages Disadavantages

Manual Tuning No math required. Online Method Requires experienced
personnel

Ziegler-

Nichols

Proven method. Online method Process upset, some trial-

and-error, very aggressive
tuning

Software
Tools

Consistent tuning. Online or offline
method. May include valve and sensor

analysis. Allow simulation before
downloading

Some cost and training
involved

Cohen-

Coon

Good process model Some math. Offline

method. Only good for
first-order processes.

2.5.1 Manual Tuning

If the system must remain online, one tuning method is to first set the I and

D values to zero. Increase P until the output of the loop oscillates, and then the P should

be left set to be approximately half of that value. Then increase D until any offset is

correct insufficient time for the process. However, too much D will cause instability.

Finally, increase I, if required, until the loop is acceptably quick to reach its reference

after a load disturbance. However, too much I will cause excessive response and

overshoot. A fast PID tuning usually overshoots slightly to reach the set point more

 17

quickly; however, some systems cannot accept overshoot, in which case an over-

damped closed- loop system is required, which will require a P setting significantly

less than half of that of the P setting causing oscillation.[6]

Effects of increasing parameters

Parameter Rise Time Overshoot Settling Time Steady-state

error

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase Eliminate

Kd Small Decrease Decrease Decrease None

Table 2.3: Effect of Increasing Parameters

2.6 PIC Microcontroller

PIC is a family of Harvard architecture microcontrollers made by Microchip

Technology, derived from the PIC1640 originally developed by General Instrument's

Microelectronics Division. The name PIC initially referred to "Programmable Interface

Controller", but shortly thereafter was renamed "Programmable Intelligent Computer "

[5].

Figure 2.9: PIC

 18

2.6.1 Origins

The original PIC was built to be used with GI's new 16-bit CPU, the CP1600.

While generally a good CPU, the CP1600 had poor I/O performance, and the 8-bit PIC

was developed in 1975 to improve performance of the overall system by offloading I/O

tasks from the CPU. The PIC used simple microcode stored in ROM to perform its tasks,

and although the term wasn't used at the time, it shares some common features with

RISC designs.

Figure 2.10: PIC16F877/877A pin

In 1985 General Instruments spun off their microelectronics division, and the

new ownership cancelled almost everything — which by this time was mostly out-of-

date. The PIC, however, was upgraded with EPROM to produce a programmable

 19

channel controller, and today a huge variety of PICs are available with various on-board

peripherals (serial communication modules, UARTs, motor control kernels, etc.) and

program memory from 512 words to 64k words and more (a "word" is one assembly

language instruction, varying from 12, 14 or 16 bits depending on the specific PIC micro

family).

Microchip Technology does not use PIC as an acronym; in fact the brand name is

PICmicro. It is generally regarded that PIC stands for Peripheral Interface Controller,

although General Instruments' original acronym for the initial PIC1640 and PIC1650

devices was "Programmable Interface Controller". The acronym was quickly replaced

with "Programmable Intelligent Computer".

The Microchip 16C84 (PIC16x84), introduced in 1993[6] was the first CPU with

on-board EEPROM memory. This electrically-erasable memory made it cost less than

CPUs that required a quartz "erase window" for erasing EPROM.[5]

2.6.2 PIC Microcontroller Option

 A microcontroller (also MCU or µC) is a functional computer system-on-a-chip.

It contains a processor core, memory, and programmable input/output peripherals. While

the PIC controller chips are the combination the function of microprocessor, ROM

program memory, same RAM memory and input-output interface in one single package

which is economical and easy to use.

 The PIC – Logicator system is design to be used to program a range of 8, 18, 28

pin reprogrammable PIC microcontroller which provide a variety of input-output, digital

input and analogue input options to suit students project uses [11].

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Chip
http://en.wikipedia.org/wiki/Input/output

 20

 Reprogrammable ―FLASH Memory‖ chips have been selected as the most

economical for student use. If a student needs to amend to control system as the project

is evaluated and developed, the chip can simply be taken out of the product and

reprogrammed with an edited version of the floe sheet [11].

The PIC devices generally feature is sleep mode (power savings), watchdog

timer, various crystal or RC oscillator configurations, or an external clock [5].

2.6.3 Variants

Within a series, there are still many device variants depending on what hardware

resources the chip features.

 General purpose I/O pins.

 Internal clock oscillators.

 8/16 Bit Timers.

 Internal EEPROM Memory.

 Synchronous/Asynchronous Serial Interface USART.

 MSSP Peripheral for I²C and SPI Communications.

 Capture/Compare and PWM modules.

 Analog-to-digital converters (up to ~50 kHz).

 USB, Ethernet, CAN interfacing support.

 External memory interface.

 Integrated analog RF front ends (PIC16F639, and rfPIC).

 KEELOQ Rolling code encryption peripheral (encode/decode)

 And many more.

http://en.wikipedia.org/wiki/Watchdog_timer
http://en.wikipedia.org/wiki/Watchdog_timer
http://en.wikipedia.org/wiki/RC_circuit
http://en.wikipedia.org/wiki/GPIO
http://en.wikipedia.org/wiki/EEPROM
http://en.wikipedia.org/wiki/USART
http://en.wikipedia.org/wiki/I%C2%B2C
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface
http://en.wikipedia.org/wiki/Pulse-width_modulation
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/Controller_Area_Network
http://en.wikipedia.org/wiki/KeeLoq

 21

2.6.4 PIC Basic Pro Compiler

The PICBASIC PRO™ Compiler (or PBP) is the easiest way to program the fast

and powerful Microchip Technology PICmicro microcontrollers (MCUs). PICBASIC

PRO converts the BASIC programs into files that can be programmed directly into

PICmicro microcontrollers (MCUs). The English- like BASIC language is much easier to

read and write the quirky Microchip assembly language (likes machine language and

assembly language).

The PicBasic Pro Compiler instruction set is upward compatible with the BASIC

Stamp II and Pro uses BS2 syntax. Programs can be compiled and programmed directly

into a PICmicro MCU, eliminating the need for a BASIC Stamp module. These

programs execute much faster and may be longer than their Stamp equivalents. They

may also be protected so no one can copy your code [4].

The PicBasic Pro Compiler also can create programs for any of Microchip’s

PICmicro microcontrollers and works with most PICmicro MCU programmers,

including the elbas Serial Programmer. A printed manual and sample programs are

included to get you started [3].

http://www.grifo.com/SOFT/Pic_Basic/uk_pbpis.htm

 22

2.6.5 MAX232

 The MAX232 is an integrated circuit that converts signals from an RS-232 serial

port to signals suitable for use in TTL compatible digital logic circuits. The MAX232 is

a dual driver/receiver and typically converts the RX, TX, CTS and RTS signals. The

drivers provide RS-232 voltage level outputs (approx. ± 7.5 V) from a single + 5 V

supply via on-chip charge pumps and external capacitors. This makes it useful for

implementing RS-232 in devices that otherwise do not need any voltages outside the 0 V

to + 5 V range, as power supply design does not need to be made more complicated just

for driving the RS-232 in this case. The receivers reduce RS-232 inputs (which may be

as high as ± 25 V), to standard 5 V TTL levels. These receivers have a typical threshold

of 1.3 V, and a typical hysteresis of 0.5 V [18].

Figure 2.11: MAX232 connection to DB9

http://en.wikipedia.org/wiki/Charge_pump
http://en.wikipedia.org/wiki/Power_supply

 23

Figure 2.12: Serial connection with PIC

2.7 Implementing a PID Controller Using a PIC16 MCU

As the controller for the system, the microprocessor is chosen due to its

simplicity in designing and also interfacing with other input or output devices. Below is

the pin diagram of the microprocessor.

The microprocessor consists of 40 pin. At an economical price, with the addition

of high endurance enhanced Flash program memory and a high speed 10-bit A/D

converter. On top of these features, this family introduces design enhancements that

 24

make these microcontrollers a logical choice for many high performance, power

control and motor control applications. These special peripherals include 14-bit

resolution Power Control PWM Module (PCPWM) with programmable dead time

insertion Motion Feedback Module (MFM), including a 3-channel Input Capture

(IC) Module and Quadrature Encoder Interface (QEI) High-speed 10-bit A/D Converter

(HSADC) The PCPWM can generate up to eight complementary PWM outputs

with dead-band time insertion. The MFM Quadrature Encoder Interface provides precise

rotor position feedback and velocity measurement.

The PID routine is configured in a manner that makes it modular. It is intended

to be plugged into an existing piece of firmware, where the PID routine is passed the 8-

bit or 16-bit error value. Therefore, the actual error value is calculated outside of the PID

routine. If necessary, the code could be easily modified to do this calculation within the

PID routine. The PID can be configured to receive the error in one of two ways, either as

a percentage with a range of 0 to 100% (8-bit), or a range of 0 to 4000 (16-bit). PID

source code with the PID’s variable declarations. The gains for proportional, integral

and derivative all have a range of 0 to 15. For resolution purposes, the gains are scaled

by a factor of 16 with an 8-bit maximum of 255. A general flow showing how the PID

routine would be implemented in the main application code is presented in Figure

2. There were two methods considered for handling the signed numbers. The first

method was to use signed math routines to handle all of the PID calculations. The

second was to use unsigned math routines and maintain a sign bit in a status register. [7]

25

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter explains about what is the method that has been used to complete

this project. It describes on how the project is organized and the flow of the steps in

order to complete this project. The methodology is consoled of two parts, which is

software and hardware. MATLAB is use for design the PID controller. In this part, this

software is using for design the controller before implement it into microcontroller.

For hardware part, its start with design and construct the hardware for

microcontroller unit, motor driver, encoder and serial communication. Then implement

of PID controller based from the simulation result into the microcontroller. Serial

communication using serial port is for real-time performance analysis.

26

3.2 Methodology

While doing the research and literature review for this project, relevant and

important information can be obtained via surfing the internet, browsing books and

journals and also with the assistance from supervisor in charge.

Several methods have to be implemented in order to ensure the success of this

project. Experiment is one of the methods. By experimenting, the theories are supported

and project work physically can be the evidence of the theory. Other than that, research

is a good method as it can give some knowledge while doing this project. Through these

researches, a lot of information can be collected and know which method will work and

which will not.

 In the first phase of this project, software analysis must be done to get the PID

controller algorithm. Analysis had been done using MATLAB software. Analysis starts

from find the mathematical model of the motor and gets the transfer function of the

motor. Then design and tune PID controller using MATLAB analysis based on transfer

function.

In the hardware phase of this project, the circuitry of the hardware must been

done. The first stage is designing the circuitry such as, power supply circuit, DC motor

driver circuit, microcontroller circuit and serial port c ircuit. While designing those

circuits, a lot of research has been done. Basically those circuits are provided in the

internet and books. Some adjustment must be done with the circuitry in order to make

sure the objectives and scopes of this project are achieved. After designing the circuitry,

the programs of the PIC have developed. PID algorithm must be put into the PIC. The

program was written using the PICBasic Pro Compiler and it must be downloaded into

the PIC.

27

Figure 3.1: Flowchart of the project

Construct Hardware

Component

OK?

Program the PIC

(PID Algoithm)

OK?

Identify Component

MATLAB simulation

Software
Development

Hardware Design

Literature Review

START

END

28

After the software and hardware part had been done, the communication between

personal computer (PC) and hardware had been create. This communication is for real-

time performance analysis. Figure 3.1 shows the flow chart of the project.

3.3 Hardware part

In this system, the PID controller is designed using PIC microcontroller

16F877. This microcontroller provide motion feedback module that is useful in

designing a close loop control system. Furthermore the microcontroller also provide up

to 4 PWM channels that allow the user to control more motor. To provide feedback to

the microcontroller, a quadrature encoder is used. The quadrature encoder will provide

the actual speed references to allow the microcontroller to calculate the error.

Figure 3.2: Hardware Design

29

 From the figure above, it should not be confused that the computer does not work

as a controller, instead it just a monitoring device that allow the user to monitor

the performance. The computer is connected to the microcontroller using RS-232

serial data communication. The motor driver works as an actuator in providing the

desired duty cycle to the motor.

3.3.1 Hardware Installation

For the hardware design, the first circuit design is power supply circuit. It is to

supply the input voltage to the project; the supply output voltage must fix to 5V to

support the PIC, temperature sensor and MAX232 IC. To achieve the 5V output voltage

the 7805 voltage regulator IC had used in this project, it also to make input supply larger

than the output voltage. This module is important to this project because it can prevent

damage to the PIC and MAX232 IC if users give the higher input supply to device. The

schematic diagram for power supply module is like in Figure 3.2.

Figure 3.3: Power supply modules

30

The second part circuit design is the connection from the communication port, it

is the DB9 connection from the personal computer (PC) to the device. The DB9 pin is

shown in Table 3.1 below and the figure of RS232 communication port is shown in

Figure 3.4. The connection from personal computer (PC) to device is only on pin 2, 3

and pin 5. So in this project only three pin are used for connection in the serial port

communication; one for the signal ground, one for transmitting data and one for

receiving data. The connection between the RS232 with MAX232 and the PIC circuit

has shown in Figure 3.4.

Figure 3.4: Pins and signal associated with the 9-pin connector

31

Table 3.1: Serial port pins and signal assignments

Pin

No.
Name Dir Notes/Description

1 DCD IN Data Carrier Detect. Raised by DCE when modem synchronized.

2 RD IN Receive Data (a.k.a RxD, Rx). Arriving data from DCE.

3 TD OUT Transmit Data (a.k.a TxD, Tx). Sending data from DTE.

4 DTR OUT Data Terminal Ready. Raised by DTE when powered on. In auto-
answer mode raised only when RI arrives from DCE.

5 SGND - Ground

6 DSR IN Data Set Ready. Raised by DCE to indicate ready.

7 RTS OUT Request To Send. Raised by DTE when it wishes to send. Expects

CTS from DCE.

8 CTS IN Clear To Send. Raised by DCE in response to RTS from DTE.

9 RI IN Ring Indicator. Set when incoming ring detected - used for auto-
answer application. DTE raised DTR to answer.

32

Figure 3.5: Serial port connection to PIC

In this project the output data from MAX232 is send directly to PIC at PORTC.7

and the input data from MAX232 is received directly to PIC at PORTC.6. The

connection is depending on the PIC programming that has been developed. The value of

oscillator use in the circuit diagram also must be same with the define one in the PIC

programming to avoid instability.

33

The third circuit design is driver circuit. This circuit directly connects to PIC at

PORTC.1 for PWM, PORTB.0 and PORTB.1 for control the DC motor run in forward

and reverse direction. This driver circuit will injected with PWM from the PIC as input.

The driver circuit connection has shown in Figure 3.5.

Figure 3.6: Driver circuit using IR 2109

3.4 Encoder configuration

The feedback module consists of a quadrature encoder and a flexible

coupling. The quadrature encoder will enable the system to acquire the feedback and

later performing the required operations to effectively use the information coming from

the encoder. The two quadrature encoder output signals channel A and channel B. The

position counter can be used either for position or speed measurement. To measure

motor position, we must know the relationship between the displacement and the

number of phase pulses we get from the encoder. This relation can be known in advance,

or can be measured during initialization by accumulating the total count for the

maximum allowed displacement by using the formula below.

34

Figure 3.7 Sample of Output from Encoder

To calculate the angular velocity under a fixed time interval, the value of encoder

pulses and pulses per revolution of the encoder need to be known. Mathematically, it can

be derived from the formula below. By running the motor at full speed and record the

number of pulses under 1 second sampling time, the value of pulses per revolution can

be obtained. Above is the sample of output from the encoder.

Formula 1 : Velocity formula(RPM)

35

3.4.1 Pulse Width Modulation

Pulse-width modulation (PWM) or duty-cycle variation methods are commonly

used in speed control of DC motors. The duty cycle is defined as the percentage of

digital „high‟ to digital „low‟ plus digital „high‟ pulse-width during a PWM period.

The average DC voltage value for 0% duty cycle is zero; with 25% duty cycle

the average value is 7.5V (25% of 30V). With 50% duty cycle the average value is

15V, and if the duty cycle is 75%, the average voltage is 22.5V and so on. The

maximum duty cycle can be 100%, which is equivalent to a DC waveform. Thus by

varying the pulse-width, we can vary the average voltage across a DC motor and hence

its speed.

Figure 3.8 : Sample of a PWM Waveform

.

36

3.5 PID Algorithms

PID algorithms consist of three parameters which are Proportional, Integral and

Derivative terms. All this three terms later on added to create an output which will be

inserted into the plant or in this case the motor. Previously, it is known that the motor

run on a generated PWM from the microcontroller and this PWM waveform is

controlled through its duty cycle. The duty cycle plays an important role in the whole

system. The PID output itself will be inserted together with the duty cycle to create an

adjustment so that the motor can be brought back to its desired speed. To do this,

the system need to know the rated speed, or the maximum speed the motor can handle.

This rated speed value is used with the desired speed value so that it can be converted

into a duty cycle.

Duty Cycle = (Desired Speed / Rated Speed) x 255

This formula is converted into a PICBasic language as below:

 Once the motor already run on the desired speed, it will be left to the

PID algorithm to correct its speed by adjusting the output of PID into the duty

cycle.

In opening and closing the communication port the command fclose (SerPIC) is

use to disconnect a serial port object from the device. The baud rate from MATLAB

must be set same with the baud rate in PIC before it can transmit and receive the data.

For example if baud rate in MATLAB is 9600bps, so the baud rate in PIC also 9600bps.

37

3.5.1 Error Calculation

The error calculation is basically the difference between the desired speed

or setpoint and the actual speed of the motor. The actual speed from encoder will be

used as Current speed.In the programming, a subroutine is used to calculate the error.

However, under certain condition, the actual speed might be bigger than the set

point. Thus, the controller must be made to ensure that it know the sign of the error. This

can be done by checking the highest bit of the error variable.

Furthermore, it is important to use the absolute value off error in all the

calculations later on.

3.5.2 Proportional Terms

Proportional parameter is simply the multiplication between the

proportional gain, Kp with the Error.

38

3.5.3 Integral Terms

Unlike proportional control, which looks at the present error, integral

control looks at past errors. This is the accumulative error (sum of all past errors) which

is used to calculate the integral term, but at fixed time intervals. By using a

program, the program simply records the value of E at fixed time interval of T

(sampling time). Since Integral terms looks at past errors, the new integral term is

obtained by adding the old integral term with accumulated errors which has been

multiplied by the integral gain. However, to prevent integral windup, a limit must

be used for calculating the accumulated errors to avoid the accumulated errors to keep

on adding.

In the code snippet above, the current error, Ei_2 will be added to accumulated

error, Ei. The accumulated error is then multiplied by Ki. Later on the result of

the multiplication is added with the I terms.

39

3.5.4 Derivative Terms

The derivative term works on the present errors to forecast a future response of

the system. The derivative term makes an adjustment based on the rate at which

the Plant output is changing from its Setpoint. A notable characteristic in this type of

control is when the error is constant, or at the maximum limit, the effect is minimal. To

get the derivative term, the previous error is subtracted from the current error and

multiplied by the derivative gain, Kd. Then the program must save the current error

so that at next time, it will be the old error.

3.5.5 PID Output

The PID output is calculated after the proportional, integral and derivative terms

have been determined. It is done by adding the current motor duty cycle with the PID.

This result will later be inserted in the duty cycle variable of the motor.

40

Figure 3.9 Flowchart of the Adaptive PID Algorithm Implemented In the

MCU

41

3.6 Build PIC Programming

There are many way to program the PIC either the user can use LDmicro,

PICBasic, PICBasic Pro or assembly language. The LDmicro use ladder diagram

approach like PLC while PICBasic Pro Compiler is English- like BASIC language and

mush easier to read and write than the quirky Microchip assembly language. Both

PICBasic and PICBasic Pro language are very similar to the standard BASIC language

but they have some modified and some additional instruction specifically for

microcontroller programming. In this project the PICBasic Pro Compiler is used to

create the programming. The Table 3.5 is shown the comparison of PICBasic and

PICBasic Pro language.

Table 3.2: Comparison of PICBasic and PICBasic Pro

PICBasic PICBasic Pro

Low cost Higher cost

Limited to first 2K of program space No program space limit

Interrupt service routine in assembly
language

Interrupt service routine can be in
assembly language or in PICBasic Pro

Peek and Poke used to access register Register can be accessed directly by

specifying

Some commands can be used only for
PORTB, PORTC or GPIO

Commands can be used fir all ports

Clock speed 4MHz Any clock speed up to 20MHz

Most 14 bit PIC microcontroller

supported

All PIC microcontroller, including 12 bit

ones are supported

More code space in memory 5-10% less code space in memory

More difficult to learn and less powerful Easier to learn and more powerful

No LCD commands Special LCD control commands
(LCDOUT, LCDIN)

No hardware serial communication

commands

Special hardware serial communication

commands (HSERIN, HSEROUT)

No PWM commands Special PWM commands for the
microcontrollers that have built in PWM

circuit (HPWM)

No Select-Case command Select-Case command for multi-way

42

selection

No program memory read-write

commands

Commands to read and write program

memory locations (READCODE,
WRITECODE)

No One-wire device interface One-wire device interface commands

(OWIN, OWOUT)

No USB commands USB commands for microcontroller that
have built in USB circuit (USBIN,
USBOUT)

No X-10 remote control commands X-10 remote control commands (XIN,

XOUT)

No A/D commands A/D commands for microcontrollers that
have built in A/D converter (ADCIN)

The data from PIC in decimal form is send to MATLAB, so the MATLAB is

program need to read the data also in decimal form. The communication between

MATLAB and PIC is in standard asynchronous format where the device uses its own

internal clock resulting in bytes that are transferred at arbitrary times. The baud rate is

specifying according to MATLAB. Some standard baud rates are listed in Table 3.6. For

PIC programming, 9600bps is used which same with the MATLAB.

The input data at PIC that transmit from MATLAB GUI is set to PORTC.0

before it run certain program to control the DC motor. Here is the example to program

the stepper motor run in clockwise and anticlockwise direction. If PIC sends data „001‟,

so the MATLAB will perform case 001 according the programming.

43

Table 3.3: List of standard baud rate

To program the PIC, make sure the oscillator that has been defined in

programming is similar to the hardware in order to avoid instability during the

transmitting and receiving data. The SERIN2 command in the program support many

different data modifier which may be mixed and matches freely within single SERIN2

statement to provide various input formatting. The modifier support is shown in Table

3.7. The number 84 on “Serin2 SerI, 84, [dec3 B0]” command is refer to baud rate that

equal to 9600bps according Table 3.6.

Table 3.4: Modifier support by SERIN2 command

44

CHAPTER 4

RESULT AND DISCUSSION

4.1 Introduction

This chapter will discuss all the result obtained and the limitation of this project.

All discussions concentrate on the result and performance from simulation in MATLAB.

The discussions based on the simulation results from the MATLAB analysis by using

MATLAB SIMULINK.

4.2 Simulation in MATLAB

ka2

0.105

ka1

0.105

Wr

To Workspace 1

t

To Workspace

simout

Switch

Step 2

PID

Clock

1/(sLa+ra)

1

0.004 s+2.7

1/(Js+Bm)

1

0.0001 s+0.0000093

Figure 4.1: Block diagram for simulation in MATLAB

 45

 The parameter for step time is 10, then for the initial value is 3. The final value

and sample time is 10 and 0.5. The parameter for all proportional, integral and derivative

is defined by using try and error method. To see the response more clearly, the result

taken is not just the PID mode but also proportional mode, proportional + integral mode

and proportional + derivative mode. From all this response the analysis will became

easier since we can see which response is better.

Figure 4.2: Response in MATLAB – Proportional mode

Figure 4.1 shows the step response if only the P (Proportional) controller is

applied in the SIMULINK in Figure 3.3. A proportional controller allows tighter control

of the process variable because its output can take any value between fully on and fully

off, depending on the magnitude of the error signal [16]. With proportional band, the

controller output is proportional to the error or a change in measurement and offset

(deviation from set-point) is present. This steady state error is the difference between the

attained value of the controller and the required value. In this SIMULINK, the gain for P

is 110 and the set point is 3. As we can see, there is overshoot at 3.8 and it over the

 46

target value which is 3. In the end the system doesn't settle out any quicker than it would

have with lower gain, but there is more overshoot. If we kept increasing the gain we

would eventually reach a point where the system just oscillated around the target and

never settled out-the system would be unstable.

Figure 4.3: Response in MATLAB – Proportional + Integral mode

Figure 4.2 above shows when the P (Proportional) and I (Integral) gain is applied

in the SIMULINK. To eliminate the offset error, the controller needs to change its

output until the process variable error is zero. Integral action gives the controller a large

gain at low frequencies that results in eliminating offset and "beating down" load

disturbances. It also can reduce the final error in a system. Summing even a small error

over time produces a drive signal large enough to move the system toward a smaller

error. In this system, the gain for Integral is 20. In this graph we can see that the steady

state error still occur but it is now at the set point input which is 3. However the

overshoot became greater than before which is at 4.3. The rise time is also faster than

just using the proportional controller.

 47

Figure 4.4: Response in MATLAB – Proportional + Derivative mode

In Figure 4.3 we can see that the response became better than the PI controller.

This SIMULINK is actually the Proportional plus Derivative controlle r. The gain for

Proportional is 110 and for the Derivative is 10. Derivative action can stabilize loops

since it adds phase lead and it act as an anticipator. That is why the settling time now is

near the set point and the steady state error became lesser than the PI controller.

 48

Figure 4.5: Response in MATLAB – PID mode

Lastly, the Figure 4.4 show the step response if the entire element in PID

controller is applied in the system. As the proportional gain is increased, the controller

responds faster. If the proportional gain is too high, the controller may become unstable

and oscillate. The integral gain acts as a stabilizer. It provides power even if the error is

zero. The Derivative controller counteracts the KP and KI terms when the output

changes quickly. This helps reduce overshoot and ringing and it has no effect on final

error. In this SIMULINK, the gain for Proportional is 100, Integral is 20 and the gain for

Derivative is 15. The step response for this system became smooth and the response is

better than if we use P, PI, and PD. There is no overshoot; the rise time is faster and less

error. The settling time is exactly at the set point which is 3.

 49

4.3 Discussion

Before starting a motion-control project, the system's requirements are need to

determine as a whole factor in the cost of both the motor and the control system. Also,

consider the own comfort level with more complex technologies. In this project, the

technology would be the PID controller and PIC. It is possible to mathematically

calculate the PID coefficients and accurately predict the machine performance because

of the PID tuning. However, in order to do this the transfer function of the machine

being controlled must be accurately mathematically modeled.

 In simulation using MATLAB the modeling for motor is actually from reference

book. This is because, there is no information or specifications given from the supplier

about this dc motor. Even though the response from this simulation can be used to

determine which mode has a better response and the parameter from this simulation can

also be applied into the real system.

 For programming in PIC, the first problem that occurred is at the PID algorithm

into the PIC. A few weeks is taken to inserted PID algorithm in the program. After

joining the PIC forum and using try and error method, this project successfully done.

 Another limitation in this project is failed to get interface between hardware and

software (MATLAB). This is necessary for get the real-time performance analysis of the

implemented control system. If the interfacing the hardware with the MATLAB

successful, some improvement can be achieve. As we know MATLAB is language of

technical computing. By using MATLAB, we are easy to make an analysis. If the

interfacing successful, this hardware can be replaced the DAQ card.

50

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The design and implementation of DC motor application in MATLAB GUI has

been presented in this project. The DC motor application is able to control by using GUI

via serial port communication. The development of the hardware and PIC16F877A

programming using Microcode Studio was done after detail studies and analysis.

Through of the development of this project it has concluded that the PID controller can

be implementing using PIC for the DC motor

51

5.2 Future Recommendation

For future recommendations, in order to improve this project, other features such

as GUI control can be added to control the motor speed. Besides that, the other type of

motor such as AC motor can be added to be controlled through MATLAB GUI. For the

interface part, the RS232 cable can be improved by replacing it using universal serial

bus (USB), infrared, Bluetooth or wireless communication. By using universal serial bus

(USB) infrared, Bluetooth or wireless communication the system can be control without

cable and it make the system free to be used anywhere. Furthermore there are many

things that we can develop such as rotation or speed of the motor that can be measured

in MATLAB GUI.

Furthermore, with its simple and user friendly control panel the PID Controller

can meet the demand of such controller in the industry. By coming with its own Control

Panel, the PID Controller can be practically used on any system that needs the

performance of its DC Motor to be monitored and analyzed

5.3 Costing and Commercialization

The design of the PID Controller comes with the approach of simplicity and also

user friendly. The controller uses PIC 16F877 from the 16F family series of

Microchip’s PIC which already widely used in application regarding motor control. By

using Printed Circuit Board (PCB) and also Surface-Mounted technology (SMT),

it gives better performance under shake and vibration conditions and also robust design

by its protective plastic container. Their small and lightweight designs also allow the

controller to be more mobile while offering less work space it its usage. The optional

RS-232 interface feature also can provide full remote operation of the controller.

For commercialization purpose, the price of the unit is created based on the

52

equipment or component used in the controller. This price list of components

used in important if the product need to be commercialized in the future. The

complete list of price is as below.

Table 5.1: Approximation cost of component

No Components Specifications Price / unit Quantity Estimation Cost

1 PIC 16F877 RM 25.00 1 RM 25.00

2 IC base 40 pin RM 0.20 1 RM 0.20

3 MAX 232 RM 4.00 1 RM 4.00

4 DB9 RM 0.60 1 RM 0.60

5 Heat sink RM 0.70 4 RM 0.70

6 Strip board 10” X 4” RM 5.00 1 RM 5.00

7 Wire wrap RM 40.00 1 RM 40.00

8 Regulator 7805 RM 2.00 1 RM 2.00

9 Capacitor 1uF RM 0.24 2 RM 0.48

10 Capacitor 100uF RM 0.48 3 RM 1.44

11 Ribbon cable RM 2.00 1 RM 2.00

12 Capacitor 22pF RM 0.08 3 RM 0.24

13 Reset switch RM 0.60 1 RM 0.60

14 IC base (16 pin) RM 0.16 1 RM 0.16

15 Crystal 20MHz RM 1.90 1 RM 1.90

16 Capacitor 100nF RM 0.40 2 RM 0.40

17 Capacitor 10uF RM 0.48 4 RM 1.92

18 Resistor 470Ω RM 0.04 2 RM 0.08

19 Resistor 10KΩ RM 0.04 1 RM 0.04

20 Resistor 3.3KΩ RM 0.04 2 RM 0.08

21 Resistor 22Ω RM 0.04 5 RM 0.20

22 Resistor 75Ω RM 0.04 1 RM 0.04

23 Diode N4002 RM0.10 2 RM 0.20

24 PCB header 40 ways RM 0.80 10 RM 8.00

25 Diod IN4007 RM0.15 4 RM0.15

26 Mosfet IRF740 RM3.00 4 RM12.00

27 IC mosfet driver IR2109 RM5.00 2 RM10.00

28 Zener Diode 4148 RM0.15 4 RM0.15

29 LED RM 0.05 2 RM 0.10

30 DC motor Litton Clifton Provided 1 Provided

 TOTAL RM 119.72

53

The price above really meets the low-cost approach in the design of the

controller. It will allow the controller to be sold at a cheaper price comparing to most of

the PID Controller in the market. Furthermore, since the controller application is

computer based, it should have a significant advantage over other PID controller in the

market that relies on any other approach. This computer based application also allows

the performance analysis to be made easily.

54

REFERENCES

(i) Articles in internet

[1] http://en.wikipedia.org/wiki/Brushless_DC_electric_motor. (February 18,

2008)

[2] http://en.wikipedia.org/wiki/Neural_network. (February 18, 2008)

[3] http://ai-depot.com/articles/evolutionary-PID-Controller (February 18,

2008)

[4] http://en.wikipedia.org/wiki/PID (February 18, 2008)

[5] http://www.imagesco.com/microcontroller/picbasic-pro-compiler.html(24

February 2009)

[6] http://www.alldatasheet.com (July 29, 2008)

[7] http://www.microchip.com (Mac 2008)

(ii) Books

[7] William Palm III (2005), “Introduction to MATLAB 7 for Engineers”,

McGraw Hill.

[8] Sergey E. Lyshevski (2000), Electromechanical System, Electric

Machines, and Applied Mechatronics, CRC Press LCC.

(iii) Software

[9] Matlab 7.1 software, „PID Toolbox‟, Mathworks

http://en.wikipedia.org/wiki/Brushless_DC_electric_motor
http://en.wikipedia.org/wiki/Neural_network

55

APPENDIX

Snapshots of the Hardware with the DC Motor

	1_COVERPAGE
	2_PENGESAHAN THESIS_Hafiz
	3_Acknowledgement_Hafiz
	4_CHAPTER 1_Hafiz
	5_CHAPTER 2_Hafiz
	6_CHAPTER 3_Hafiz
	7_CHAPTER 4_Hafiz
	8_CHAPTER 5_Hafiz
	9_REFERENCE EDITED

