CHAPTER 2

LITERATURE RIVIEW

2.1 INTRODUCTION

The purpose of this chapter is to provide overall a review of product in market. It is also making a comparison of other product in market. Substantial literature has been study on advantages and disadvantages of that product. However, useful information can be found on integrated durability evaluation methods. The example of evaluation to be developed is Pugh analysis and matrix analysis. The above is some product in marketing.

2.1.1 First type



Figure 2.1

Product Description

- a) High quality light-weight all aluminum casting
- b) Easy carry center rail
- c) Pedals will not come off rail during transport
- d) Pedals have threaded spike insert "easy change out"
- e) Include 2-6 spikes for dirt.

Disadvantages

- a) Can't hold over force.
- b) Paddle and rail separate sell.
- c) Paddle angle can't adjustable.

2.1.2 Second type

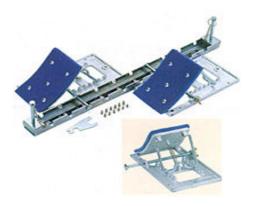


Figure 2.2

Product Description

- a. Adjustable aluminum block
- b. 56 cmL inch plated central bar
- c. Easy pedal angle adjustable
- d. Comfortable for high school

Disadvantages

- a. Limited to use for high school only.
- b. Rail is short.
- c. Can't hold over force.

2.1.3 Third type

Figure 2.3

Product Description

- a) Enameled steel pedal.
- b) Easy twist pedal angle adjustable.
- c) Chromed steel rail 80 cmL.
- d) Quick easy adjustable with no moving part.
- e) Suitable for training university and college.

Disadvantages

- a) Rail is heavy.
- b) Can't hold over force.
- c) Limited to use.

2.2 Basic parts

The basic parts of starting block are dividing by two parts are:

RAIL

The rail forms a link between the left foot pedal assembly and the right foot pedal assembly and enables them to be adjusted relative to each other along the length of the rail. The rail generally has a length of about one to four feet, preferably about two feet, and rests upon the track surface. The rail has two outwardly-positioned rows of teeth, one row running along the left side and one row running along the right side. The rail has two upwardly-projecting guides and that run parallel to and between the rows of teeth

PADDLE

The preferred right foot pedal assembly also contains a reclining foot pedal. The foot pedal is preferably contoured to more accurately conform to the shape of the runner's foot. The foot pedal generally has a width of about five to twelve inches, preferably about seven to ten inches, and most preferably about eight inches. It is believed that a wider foot placement enables a runner to more quickly achieve balance.

DESIGN AND FABRICATE MEASURING STARTING BLOCK

MOHD ZAEED BIN MOHD ZIN

A report submitted in partial fulfilment of the requirements for the award of the Diploma of Mechanical Engineering

Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

NOVEMBER 2008

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this project and in our opinion this project is satisfactory in terms of scope and quality for the award Diploma of Mechanical Engineering

Signature:
Name of Supervisor: EN MOHAMMAD KHALID BIN WAHID
Position: SUPERVISOR
Date:

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any diploma and is not concurrently submitted for award of other diploma.

Signature:	
Name: MOHD ZAEED BIN MOHD ZIN	
ID Number: MB06027	

Date:

DEDICATION

To my beloved parents, Mr Mohd zin bin Ujang and Mrs Siti Jamilah binti Ismail, family and friend without whom and his/her lifetime efforts, my pursuit of higher education would not have possible and I would not have had the chance to study for mechanical course.

I would like to thanks to my supervisor, Mr Khalid bin Wahid and Mechanical staff, because of the guidance without whose wise suggestion, helpful guidance and direct assistance, it could have neither got off the ground nor even been complete.

ACKNOWLEDGEMENT

This project was conducted under the supervisor Mr Khalid bin Wahid in the University Malaysia Pahang. I am very grateful for patience and her constructive comments that enriched this research project. Her time and efforts have been grate contribution during the preparation of this thesis that cannot be forgotten for ever. I would like to thank lecturer and technician at faculty of mechanical for their valuable comments and sharing their time and knowledge on this research project during the project to submit was carried out. I also gratefully acknowledge the assistance of every body who helped in the execution of this project in University Malaysia Pahang (UMP). I also thank to mechanical student for their friendship and help when thinking through problem and sharing their knowledge. Finally, I would like to thanks my family for their continuous support and confidence in my efforts.

ABSTRACT

Design and fabrication for measuring starting block for sprinter use many stell such as palte bar,u bar and etc.process to fabricate this product start from litereture review from market for easy to design this product. Concept important because smooth planning to fabricate this product.advantages and disadvantages from literature review use to make concept for this project.many process invold to make this product such as drilling, cutting and etc. measuring starting block import to sprinter and coach analysis their starting point.

ABSTRAK

Merekabentuk dan membuat alat pengukuran blok permulaan bagi pelari menggunakan pelbagai jenis besi seperti besi berongga,besi petak dan sebagainya. Proses membuat alat ini bermula dengan pemerhatian di pasaran bagi memudahkan reka bentuk untuk alat ini. Idea awalan penting bagi memastikan proses membuat alat ini berjalan lancar. Kelebihan dan kekurangan dari pemerhatian di pasaran digunakan untuk membuat idea awalan. Proses yang terlibat dalam membuat alat ini seperti pemotongan,membuat lubang dan sebagainya. Alat ini penting bagi memastikan pelari dan jurulatih mendapat maklumat tentang permulaan larian mereka.

TABLE OF CONTENTS

		Page
SUPE	CRVISOR'S DECLARATION	ii
STUD	DENT'S DECLARATION	iii
ACK	NOWLEDGEMENTS	
iv		
DEDI	CATION	
V		
ABST	TRACT	
vi		
ABST	TRAK	
vii		
TABL	LE OF CONTENTS	
viii		
LIST	OF TABLES	xi
LIST	OF FIGURES	
xii		
LIST	OF APPENDICES	xiv
CHAI	PTER 1 INTRODUCTION	
1.1	Introduction	1
1.1		1
1.2	Project synopsis	
	Project objective	1
1.4	Project scope	2
1.5	Project planning	2
1.6	Gantt chart	4

CHAP'	TER 2	LITERATURE REVIEW	
2.1	Introd	luction	5
	2.1.1	First type	6
	2.1.2	• 1	7
	2.1.3	•1	8
2.2	Basic	part	9
CHAP	TER 3	PROJECT METHOLOGY	
3.1	Projec	et flow chart	10
3.2	Flow	chart explaination	10
3.3	Sketcl	hing and design	13
	3.3.1	Design	13
		Drawing	13
	3.3.3	sketching and drawing selection	14
3.4	Evalu	tion	17
3.5	Desig	n in solid work	19
	3.5.1	Isometric part by part	20
3.6	Fabric	eation process	24
	3.6.1	Introduction	24
	3.6.2	Process involved	24
3.7	Summ	nary	29
СНАР	TER 4	RESULTS AND DISCUSSION	
4.1	Final j	product	30
	4.1.1	Product after finishing	31
4.2	Produ	act specification	32
4.3	Bill of	f material	33
4.4	Discu	ssion	33
	4.4.1	Type of defect	34
		4.4.1.1 Not parallel	34
		4.4.1.2 Gap	35
		4.4.1.3 Bead	35

			4.4.1.4 4.4.1.5	Error use grinding machine Not know condition machine	36 37
	4.4.2	Problem prog	gress		37
			4.4.2.1 4.4.2.2 4.4.2.3	Literature review Design problem Fabrication problem	38 38 38
СНАРТЕ	ER 5	CONCLUSIO	ON AND	RECOMMENDATIONS	
5.1	Introd	uction			40
5.2	Recom	nmendation			40
5.3	Future	work			41
5.4	Conclu	ision			41
REFER	ENCES				42
APPEN	DICES				43
A	Dimen	sion project			43
В	Part of	assembly			49
C	Compl	ete product			51

LIST OF TABLES

Table	e No.	Page
1.1	Gantt chart	4
3.8	Pugh analysis	17
3.9	Matrix analysis	18
4.4	Product specification	32
4.5	Bill of material	33

LIST OF FIGURES

Figure N	No.	Page
2.1	First type	6
2.2	Second type	7
2.3	Third type	8
3.1	Flow chart	12
3.2	Concept one	14
3.3	Concept one	14
3.4	Concept two	15
3.5	Concept two	15
3.6	Concept three	16
3.7	Concept three	16
3.10	Rail	20
3.11	Back spike holder	20
312	Front spike holder	21
3.13	Connection paddle	21
3.14	Paddle	22

3.15	Paddle	22
3.16	Dynometer cover	23
3.17	Assembly	23
3.18	Getting material	25
3.19	Measuring and marking	25
3.20	Cutting material	26
3.21	Milling process	26
3.22	Welding	27
3.23	Grinding	28
3.24	Drilling	29
4.1	Finishing product	31
4.2	Bottom view	31
4.3	Side view	32
4.6	Not parallel	34
4.7	Gap	35
4.8	Bead	36
4.9	Error use drilling machine	36
4.10	Not know condition machine	37

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Detail Drawing of the Part	43
В	Part of Assembly	49
С	Complete Product	51

CHAPTER 1

INTRODUCTION

1.1 Introduction

The project involves with design and fabricate force measuring starting block. This project will be developing based on research from product in market. The analysis will be involves such as matrix analysis and Pugh analysis. As the Diploma final year project allocates the duration of one semester, this project only focused to measure force from the starting point when the athlete start to run .

1.2 Project Synopsis

The project title is "design and fabricate force measuring starting block". The project involves research the example of starting block from via internet also research about starting block. The product can be measure force. When the athlete starts their run they use force at leg to push their run and we use this product measure the force can be produce.

1.3 Project Objective

1.3.1 Specific Project Objective

The project will be following these objectives:

To give information on how to improve starting point technique regarding the force result. Product must be portable, durable and user friendly.

1.4 Project Scope of work

The project scope of work in this project is to develop a force measuring starting block.

- i. The measuring starting block can measure for any type distance runner.
- ii. That material easy gets from laboratory.
- iii. Skill handling machine use in fabrication this starting block.

1.5 Project Planning

This project is beginning with meet supervisor to collect information by research from via internet, books and survey at market, this literature review take about two week, The finding of information not will be stop on a week but continues along the way of this project because to get more detail information.

The Gantt chart (time management) and flow chart (process management) will be developing on second week. This is done using Microsoft Excel using Gantt chart system.

The second and third week, have to make three sketching. These sketching based on the advantages and disadvantage product in marketing.

The Fourth week the Pugh analysis and matrix analysis will be developing. The function of this analysis is to get a final design, from three designs any criteria will be decide choose to get best concept. After get a final design solid work will be start. Only final design will use this software. Every part will be developed and then the assembly part will be begun.

On fifth and sixth week the progress report will be started. Meeting with supervisor on weeks seventh and eight gather data to complete progress report. At seventh week the mid presentations also start.

Process to get material will be start after mid presentation. The process cutting raw materials start will be on week nine. At same time the process fabrication also starts. The planning process of fabrication around week's nine until twelve.

After finish the process fabrication, the final report will be start. To complete the report I will use format thesis 2008. The last presentation will be started on week fourteen.

1.6 Gantt chart

Table 1.1

	ı															
								We	ek							
Project Activities		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Briefing about PTA by the	Plan															
lecturer	Actual															
Choose the Project that	Plan															
listed	Actual															
Project been given and	Plan															
start meet the supervisor	Actual															
Do some literature review	Plan															
and gather information	Actual															
Do the skethcing, gantt	Plan															
chart and solid work	Actual															
Start project	Plan															
	Actual															
Making progress report	Plan															
	Actual															
Show progress report	Plan															
to supervisor	Actual															
Present for work progress	Plan															
	Actual															
Continue project	Plan															
	Actual															
project complete and	Plan															
start final report	Actual															
Present the Final Year	Plan															
Project	Actual															