
SIMULATION OF ELECTRICAL FAULTS OF

THREE PHASE INDUCTION MOTOR DRIVE

SYSTEM

MUHAMMAD ALIF BIN MOHD NOR

UNIVERSITI MALAYSIA PAHANG

SIMULATION OF ELECTRICAL FAULTS OF THREE PHASE INDUCTION

MOTOR DRIVE SYSTEM

MUHAMMAD ALIF BIN MOHD NOR

A thesis submitted in partial fulfillment of the requirements for the award of the

degree of Bachelor of Electrical Engineering (Power system)

Faculty of Electrical & Electronics Engineering

University Malaysia Pahang

NOVEMBER 2009

DECLARATION

I declare that this thesis entitled “SIMULATION OF ELECTRICAL FAULTS OF

THREE PHASE INDUCTION MOTOR DRIVE SYSTEM” is the result of my own

research except as cited in the references. The thesis has not been accepted for any

degree and is not concurrently submitted in candidature of any other degree.

Signature : ..

Name : Muhammad Alif Bin Mohd Nor

Date : 23 November 2009

DEDICATIONS

Specially dedicated to

My beloved father and mother,

To my siblings and friends,

My supervisor and lecturers,

Thanks for all of the encouragement and support.

ACKNOWLEDGEMENTS

Praise and glory to Allah S.W.T, God of all creation and greetings and

salutations we bring forth to our Prophet Muhammad S.A.W for overseeing this final

year project one and constantly guiding this project towards completion.

I’m as the author of this thesis wishes and express the greatest appreciation to

Dr. Ahmed N Abd Alla as my supervisor of this final year project. Once, nobody

believes the project will manage successfully, but with his dedication and guidance,

the project is able to complete on time. Special thanks for him for the opportunity

given and for the efforts towards the completion of the project

I want to expresses my gratitude to my beloved family for the support given

by them for the commitment and support although indirectly involves in this project,

for fully efforts to help in the completion of this final year project.

Last but not least, to my entire friends, your help and support are really

appreciated and will remember forever, InsyaAllah. Thank you.

ABSTRACT

The title of this project is Simulation of electrical faults of three phase

induction motor drive system. Induction motor or asynchronous motor is a type of

alternating current motor where power is supplied to the rotor by means of

electromagnetic induction. Induction motor is now the preferred choice for industrial

motor due to their rugged construction, absence of brushes (which are required in

most DC motors) and the ability to control the speed of motor. The faults that can

occur in the three-phase induction motor and its driver can be divided into two parts;

internal and external faults. The internal fault of induction motors account for the

proportion almost more than 70% of induction motor failures. This project will cover

and study a few type of internal and external faults, which is the stator inter-turn

short circuit, unbalanced voltage supply and the single phase open circuit fault. The

study of induction motor is crucial and important so that the lifespan of the motor can

be prolonged. In this project MATLAB SIMULINK is used to simulate the induction

motor faults and analyze the condition. The simulation file is then compiled along

with a GUI to simplify the overall process and improves the user friendliness to

users.

ABSTRAK

Tajuk projek ini ialah simulasi kerosakan ke atas motor aruhan tiga fasa dan

sistem pacuannya. Motor aruhan, juga dikenali sebagai enjin tidak segerak, adalah

sejenis motor arus ulang alik dimana kuasanya dibekalkan kepada rotor melalui

proses induksi elektromagnetik. Motor aruhan kini menjadi pilihan utama dalam

industri permotoran kerana ciri-ciri dan kelebihan yang dimilikinya, terutamanya

pembinaan yang kasar, ketiadaan berus (yang mana paling diperlukan dalam DC

motor) dan kelajuan enjin yang boleh dikawal. Kerosakan yang boleh berlaku kepada

motor aruhan tiga fasa boleh dibahagikan kepada dua bahagian, iaitu kerosakan

dalaman dan kerosakan luaran. Kerosakan dalaman motor aruhan adalah

penyumbang utama kepada kegagalan motor aruhan untuk berfungsi, iaitu sebanyak

70%. Projek ini akan mempelajari dan merangkumi beberapa jenis kerosakan

dalaman dan luaran motor aruhan, iaitu litar pintas pemegun antara giliran, bekalan

voltan tidak seimbang dan satu fasa litar terbuka. Kajian terhadap motor aruhan

adalah penting supaya jangka hayat motor dapat dipanjangkan. Untuk projek ini,

MATLAB SIMULINK akan diguna pakai bagi membuat simulasi kerosakan motor

aruhan dan menganalisis kondisi motor tersebut. Fail simulasi kemudiannya akan

dihimpunkan di dalam satu GUI untuk memudahkan keseluruhan proses dan

meningkatkan tahap mesra pengguna utiliti ini.

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION

DEDICATION

ACKNOWLEDGMENTS

ABSTRACT

ABSTRAK

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF SYMBOLS

LIST OF APPENDIXES

 I INTRODUCTION

 1.1 Chapter Overview

 1.2 Background

 1.3 Problem Statement

 1.4 Objectives

 1.5 Scopes of Study

 1.6 Thesis Outline

 II LITERATURE REVIEW

 2.1 Chapter Overview

 2.2 Definition of Three Phase Induction Motor

 2.2.1 Stator

ii

iii

iv

v

vi

vii

x

xii

xiv

1

2

2

3

3

4

 6

7

8

 2.2.2 Rotor

 2.3 Simulation of Electrical Faults for

 Induction Motor

 2.3.1 Stator Inter-turn Short Circuit

 2.3.2 Unbalanced Voltage Supply

 2.4 MATLAB

 2.5 Simulink

 2.6 Block Set Power System

 2.6.1 Area of the Power System Block Set

 III METHODOLOGY

 3.1 Chapter Overview

 3.2 Developing the MATLAB Program

 3.3 Developing the Simulation Model

 3.3.1 Stator Inter-turn Short Circuit Model

 3.3.2 Unbalanced Voltage Supply Model

 3.3.3 Single-Phase Open Circuit Fault Model

 3.4 Developing the GUI

 3.4.1 Main Window M-FILE Description

 3.4.2 Main Window M-FILE

 3.4.1.2 Description

 IV RESULT & DISCUSSION

 4.1 Chapter Overview

 4.2 Simulation of Healthy State Motor

 4.3 Simulation of Faulty State Motor

 4.3.1 Simulation for Inter-turn Short Circuit

 4.3.2 Simulation for Unbalanced Voltage Supply

 4.3.3 Simulation for Single Phase Open Circuit

 4.4 Result Analysis

9

11

11

12

16

17

20

20

23

25

26

33

34

36

37

41

41

41

45

45

51

52

56

60

64

 4.4.1 Inter-turn Short Circuit

 4.4.2 Unbalanced voltage supply

 4.4.3 Single phase open circuit

 V CONCLUSION & RECOMMENDATION

 5.1 Conclusion

 5.2 Recommendations

REFERENCES

APPENDIX A

64

65

67

71

72

73

75

 viii

 x

LIST OF TABLES

FIGURE NO. TITLE PAGE

3.1 Description of the Motor Block Parameters

3

 xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Squirrel Cage Rotor

2.2 Wound Rotor

2.3 Balanced Voltage Supply

2.4 Unbalanced Voltage Supply

2.5 Library Browser for Simulink

2.6 Window for Model Using Functional Block

2.7 Library Browser for SimPower System

3.1 Work Flow of the Project

3.2 Opening M-file Window

3.3 New M-file Window

3.4 Three Phase Asynchronous Machine Model

3.5 Three Phase Induction Motor Model

3.6 Block Parameters of AC Voltage Source

3.7 Block Parameters of 1.5HP – 450V 50Hz – 1475rpm

3.8 Step Block

3.9 Three Phase Induction Motor model

3.10 Three Resistors before the Motor (healthy state)

3.11 One of the Resistor were Short Circuited

3.12 Voltage Setting for Healthy State Motor

3.13 Voltage Setting for Faulty State Motor

3.14 Voltage Supply for Healthy Model

3.15 Voltage Supply for Faulty State

3.16 GUI Window

9

10

13

13

19

19

22

24

25

26

27

28

28

29

31

32

33

34

35

35

36

37

38

 xii

3.17 Blank GUI Window

3.18 Example of Created GUI

3.19 Example of the Generated Program

3.20 Display the Program for Opening Function

3.21 Display the Opening Function Position

3.22 Display the Callback Function Line Position

4.1 Main GUI Window

4.2 Display the Confirm Action Window

4.3 Display the Healthy State Simulation Window

4.4 The Three Phase Voltages

4.5 The Three Phase Currents

4.6 Rotor Current

4.7 Stator Current

4.8 Electromagnetic Torque

4.9 Motor Speed

4.10 GUI for Faulty State

4.11 Simulation for Inter-turn Short Circuit

4.12 Three Phase Voltages

4.13 Three Phase Currents

4.14 Rotor Current

4.15 Stator Current

4.16 Electromagnetic Torque

4.17 Motor Speed

 4.18 Simulation for Unbalanced Voltage Supply

4.19 The Three Phase Voltages

4.20 Three Phase Currents

4.21 Rotor Current

4.22 Stator Current

4.23 Electromagnetic Torque

4.24 Motor Speed

4.25 Simulation for Single Phase Open Circuit

4.26 The Three Phase Voltages

4.27 Three Phase Currents

4.28 Rotor Current

38

40

40

41

42

43

46

46

47

48

48

49

49

50

50

51

52

53

53

54

54

55

55

56

57

57

58

58

59

59

60

61

61

62

 xiii

4.29 Stator Current

4.30 Electromagnetic Torque

4.31 Motor Speed

62

63

63

 xiv

LIST OF APPENDIX

APPENDIX TITLE PAGE

 A Program for GUI 77

1

CHAPTER 1

INTRODUCTION

1.1 Chapter Overview

The title of this project is Simulation of electrical faults of three phase induction

motor drive system. The faults that can occur in the three-phase induction motor and

its driver can be divided into two parts; internal and external faults. The internal fault

of induction motors account for the proportion almost more than 70% of induction

motor failures. As example, stator inter-turn short circuit. For external faults, it

happens at voltage supply, such as unbalance voltage supply and one phase open

circuit.

From the faults that might occur, this project will analyze and simulate the

electrical faults of three-phase induction motor and its drive. The modeling of the

induction motor and the simulation of electrical faults in three phase induction motor

drive will be done by using MATLAB tools.

2

This project can be divided into 3 different stages:

 Data extraction

 Develop Simulation

 Develop GUI

1.2 Background

Simulation technique has been proved to have many advantages rather than

just doing a practical attempt. Especially for this project, the faults are

intentionally being created to motor, to study the behavior of the motor when

faulted. If we were doing this project with an actual motor, it will be a waste the

motor gets damaged.

1.3 Problem Statement

The increased in demand has greatly improved the approach of fault detection in

polyphase induction motor. Monitoring the motor condition in an early stage is

crucial to detect any fault to eliminate the hazards of severe motor faults and

preventing damage.

3

Nowadays simulation technique is implemented to improve traditional techniques,

where the results can be obtained instantaneously after it analyzes the input data of

the motor. In fact, some company use simulation technique while designing their new

product.

In this project MATLAB SIMULINK is used to simulate the induction motor

faults and analyze the condition.

1.4 Objectives

Simulation of electrical faults of three phase induction motor drive system is

developed with the listed objectives below:

 To study the features for a various kind of faults of the induction motor and its

drive system.

 To build an induction motor model and to simulate the internal and external

faults using MATLAB tools.

1.5 Scopes of study

There are several scopes for the project:

4

 This project is mainly about a simulation of faults that may occur in three-

phase induction motor and its drive.

 This project is use to detect faults in three phase induction motors only. It is

the most popular poly phase induction motor in industry.

 The modeling and simulation will be done by using MATLAB tools.

 The type of faults which will be studied is limited to a few types of external

and internal faults.

1.6 Thesis Outline

 This thesis consists of five chapters. In the first chapter, this chapter discussed

the overall idea of this project including objectives of project, problem statement, the

scope of this project and summary of this thesis.

 Chapter 2 discussed more on theory and literature review that have been done.

It is well discusses about the MATLAB, basic concept of the fault in induction motor,

SIMULINK and parameters related to this project.

 Chapter 3 described briefly the methodology of the data extraction, simulation

development and GUI development for this project. The figures, tables and extra

information are aided into this chapter to be the benchmark thesis in development of

Simulation of electrical faults of three phase induction motor drive system.

5

 Chapter 4 presents a discussion of the implementation, result and analysis of

the whole project. This chapter also explains the reasons of some failure.

 Chapter 5 provides the conclusions of the project. There are also several

suggestions that can be used for future implementation or upgrading for this project.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Chapter overview

This chapter includes all the paper works and related research as well as the

studies regards to this project. The chapter includes all important studies which have

been done previously by other research work. The related works have been referred

carefully since some of the knowledge and suggestions from the previous work can

be implemented for this project.

 Literature review was an ongoing process throughout the whole process of the

project. It is very essential to refer to the variety of sources in order to gain more

knowledge and skills to complete this project. These sources include reference books,

thesis, journals and also the materials obtained from internet.

7

At the beginning of the project, the basic concept of fault in induction motor

has been well acquired. In addition, the function of all the components used in this

project such as basic operation of MATLAB Simulink, and so on was explored first

before starting the project.

2.2 Definition of three phase induction motor

The AC induction motor is a rotating electric machine designed to operate

from a three-phase source of alternating voltage. The stator is a classic three phase

stator with the winding displaced by 120°. The most common type of induction motor

has a squirrel cage rotor in which aluminum conductors or bars are shorted together at

both ends of the rotor by cast aluminum end rings. When three currents flow through

the three symmetrically placed windings, a sinusoidally distributed air gap flux

generating the rotor current is produced. The interaction of the sinusoidally

distributed air gap flux and induced rotor currents produces a torque on the rotor. The

mechanical angular velocity of the rotor is lower than the angular velocity of the flux

wave by so called slip velocity. [1]

AC induction motors are the most common motors used in industrial motion

control systems, as well as in main powered home appliances. Simple and rugged

design, low-cost, low maintenance and direct connection to an AC power source are

the main advantages of AC induction motors. [6]

8

The induction motor essentially consists of two parts:

1. Stator

2. Rotor

The supply is connected to the stator and the rotor received power by induction

caused by the stator rotating flux, hence the motor obtains its name –induction motor.

[2]

2.2.1 Stator

The stator consists of a cylindrical laminated & slotted core placed in a frame of

rolled or cast steel. The frame provides mechanical protection and carries the terminal

box and the end covers with bearings. In the slots of a 3-phase winding of insulated

copper wire is distributed which can be wound for 2, 4, 6 etc. poles. The rotor

consists of a laminated and slotted core tightly pressed on the shaft [3]

The stator is made up of several thin laminations of aluminum or cast iron.

They are punched and clamped together to form a hollow cylinder (stator core) with

slots as shown in Figure 1. Coils of insulated wires are inserted into these slots. Each

grouping of coils, together with the core it surrounds, forms an electromagnet (a pair

of poles) on the application of AC supply. The number of poles of an AC induction

motor depends on the internal connection of the stator windings. The stator windings

are connected directly to the power source. Internally they are connected in such a

way, that on applying AC supply, a rotating magnetic field is created. [6]

9

2.2.2 Rotor

The rotor consists of a laminated and slotted core tightly pressed on the shaft.

There are two general types of rotors:

1. The squirrel-cage rotor

2. The wound (or slip ring) rotor

Figure 2.1: Squirrel Cage Rotor

In the squirrel-cage rotor, the rotor winding consists of single copper or

aluminum bars placed in the slots and short-circuited by end-rings on both sides of

the rotor. [3]

10

The field windings in the stator of an induction motor set up a rotating

magnetic field around the rotor. The relative motion between this field and the

rotation of the rotor induces electric current in the conductive bars. In turn these

currents lengthwise in the conductors react with the magnetic field of the motor to

produce force acting at a tangent to the rotor, resulting in torque to turn the shaft. In

effect the rotor is carried around with the magnetic field but at a slightly slower rate

of rotation. The difference in speed is called ―slip‖ and increases with load. [4]

Figure 2.2: Wound rotor

A wound rotor induction motor has a stator like the squirrel cage induction

motor, but a rotor with insulated windings brought out via slip rings and brushes.

However, no power is applied to the slip rings. Their sole purpose is to allow

resistance to be placed in series with the rotor windings while starting. This resistance

is shorted out once the motor is started to make the rotor look electrically like the

squirrel cage counterpart. [5]

http://en.wikipedia.org/wiki/Stator
http://en.wikipedia.org/wiki/Rotating_magnetic_field
http://en.wikipedia.org/wiki/Rotating_magnetic_field
http://en.wikipedia.org/wiki/Rotating_magnetic_field
http://en.wikipedia.org/wiki/Rotor_%28electric%29
http://en.wikipedia.org/wiki/Electric_current
http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Tangent
http://en.wikipedia.org/wiki/Torque

11

2.3 Simulation of electrical faults for induction motor

Computer simulation of electric motor operation is particularly useful for

gaining an insight into their dynamic behavior and electro-mechanical interaction. A

suitable model enables motor faults to be simulated and the change in corresponding

parameters to be predicted without physical experimentation. [8]

Modeling of induction motors with shorted turns is the first step in the design

of turn fault detection systems. Simulation of transient and steady state behavior of

motors with these models enable correct evaluation of the measured data by

diagnostics techniques. [7]

This paper will cover few types of electrical faults. The electrical faults can be

divided into two parts, the external and internal faults. An external fault is a fault that

occurs outside the motor, and the internal fault is a fault that occurs inside the motor.

For the external fault, we will cover the unbalance voltage supply and one-phase open

circuit fault. For the internal fault we will cover the stator inter-turn short circuit.

2.3.1 Stator inter-turn short circuit

The stator winding consists of coils of insulated copper wire placed in the

stator slots. Stator winding faults are often caused by insulation failure between two

adjacent turns in a coil. This is called a turn-to-turn fault or shorted turn. The

resultant induced currents produce extra heating and cause an imbalance in the

magnetic field in the machine. If undetected, the local heating will cause further

12

damage to the stator insulation until catastrophic failure occurs. The unbalanced

magnetic field can also result in excessive vibration that can cause premature bearing

failures.

Stator winding faults of synchronous generator are considered serious

problems because of the damage associated with high fault currents and high cost of

maintenance. A high speed bias differential relay is normally used to detect three

phase, phase-phase and double phase to ground faults. In case of inter-turn winding

fault the current on both side of the winding is same. Due to this factor we cannot

adapt the differential scheme of protection for inter-turn winding fault.[10]

When there is an insulation failure in between the winding inter-turns they get

short circuited and the amount of winding involved in generation gets reduced. As the

amount of winding under generating action is reduced the amount of current produced

by induction principle also gets reduced. This reduces the power generated and

affects the life time of the winding. When this problem is left undealt the inter

winding insulation gets affected there by further reducing the amount of winding

involved in generation. This fault will completely damage the winding at the extreme

stage. The cost of winding is very high when compared to the protection methods

which can adapt.[10]

2.3.2 Unbalanced voltage supply

Voltage unbalance is regarded as a power quality problem of significant

concern at the electricity distribution level. Although the voltages are quite well

balanced at the generator and transmission levels the voltages at the utilization level

13

can become unbalanced due to the unequal system impedances and the unequal

distribution of single-phase loads. [11]

An excessive level of voltage unbalance can have serious impacts on mains

connected induction motors. The level of current unbalance that is present is several

times the level of voltage unbalance. Such an unbalance in the line currents can lead

to excessive losses in the stator and rotor that may cause protection systems to operate

causing loss of production. Although induction motors are designed to tolerate a

small level of unbalance they have to be derated if the unbalance is excessive. If

operated at the nameplate rated capacity without derating the useful life of such

induction motors can become quite short. If an induction motor is oversized to a

given application then some level of protection is built into its operation although the

motor does not operate at the best efficiency and power factor. [11]

Figure 2.3 Balanced Voltage Supply Figure 2.4 Unbalanced Voltage Supply

Three phase induction motors are designed and manufactured such that all three

phases of the winding are carefully balanced with respect to the number of turns,

placement of the winding, and winding resistance. When line voltages applied to a

polyphase induction motor are not exactly the same, unbalanced currents will flow in

the stator winding, the magnitude depending upon the amount of unbalance. A small

amount of voltage unbalance may increase the current an excessive amount. The

effect on the motor can be severe and the motor may overheat to the point of burnout.

14

The voltages should be evenly balanced as closely as can be read on the usually

available commercial voltmeter.

 Effect on performance – General

The effect of unbalanced voltages on polyphase induction motors is equivalent

to the introduction of a "negative sequence voltage" having a rotation opposite

to that occurring with balanced voltages. This negative sequence voltage

produces in the air gap a flux rotating against the rotation of the rotor, tending

to produce high currents. A small negative sequence voltage may produce in

the windings currents considerably in excess of those present under balanced

voltage conditions.

 Unbalance Defined

The voltage unbalance (or negative sequence voltage) in percent may be

defined as follows:

Percent

Maximum Voltage Deviation

Voltage = 100 * From Average Voltage

Unbalance

Average Voltage

Example:

With voltages of 220, 215 and 210, the average is 215, the maximum deviation from

the average is 5, and the percent unbalance = 100 X 5/215 = 2.3 percent.

 Temperature rise and load carrying capacity

A relatively small unbalance in voltage will cause a considerable increase in

temperature rise. In the phase with the highest current, the percentage increase

in temperature rise will be approximately two times the square of the

percentage voltage unbalance. The increase in losses and consequently, the

increase in average heating of the whole winding will be slightly lower than

the winding with the highest current.

15

To illustrate the severity of this condition, an approximate 3.5 percent voltage

unbalance will cause an approximate 25 percent increase in temperature rise.

 Torques

The locked-rotor torque and breakdown torque are decreased when the voltage

is unbalanced. If the voltage unbalance should be extremely severe, the torque

might not be adequate for the application.

 Full-load speed

The full-load speed is reduced slightly when the motor operates at unbalanced

voltages.

 Currents

The locked-rotor current will be unbalanced to the same degree that the

voltages are unbalanced but the locked-rotor KVA will increase only slightly.

The currents at normal operating speed with unbalanced voltages will be

greatly unbalanced in the order of approximately 6 to 10 times the voltage

unbalance. This introduces a complex problem in selecting the proper

overload protective devices, particularly since devices selected for one set of

unbalanced conditions may be inadequate for a different set of unbalanced

voltages. Increasing the size of the overload protective device is not the

solution in as much as protection against heating from overload and from

single phase operation is lost.

16

2.4 MATLAB

 MATLAB is a high-performance language for technical computing. It

integrates computation, visualization, and programming in an easy-to-use

environment where problems and solutions are expressed in familiar mathematical

notation. Typical uses include:

 Math and computation

 Algorithm development

 Data acquisition

 Modeling, simulation, and prototyping

 Data analysis, exploration, and visualization

 Scientific and engineering graphics

 Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that

does not require dimensioning. This allows you to solve many technical computing

problems, especially those with matrix and vector formulations, in a fraction of the

time it would take to write a program in a scalar no interactive language such as C or

Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was originally

written to provide easy access to matrix software developed by the LINPACK and

EISPACK projects. Today, MATLAB engines incorporate the LAPACK and BLAS

libraries, embedding the state of the art in software for matrix computation.

MATLAB has evolved over a period of years with input from many users. In

university environments, it is the standard instructional tool for introductory and

17

advanced courses in mathematics, engineering, and science. In industry, MATLAB is

the tool of choice for high-productivity research, development, and analysis.

MATLAB features a family of add-on application-specific solutions called

toolboxes. Very important to most users of MATLAB, toolboxes allow you to learn

and apply specialized technology. Toolboxes are comprehensive collections of

MATLAB functions (M-files) that extend the MATLAB environment to solve

particular classes of problems. Areas in which toolboxes are available include signal

processing, control systems, neural networks, fuzzy logic, wavelets, simulation, and

many others.

2.5 Simulink

 Simulink® is software for modeling, simulating, and analyzing dynamic

systems. Simulink enables you to pose a question about a system, model it, and see

what happens. With Simulink, you can easily build models from scratch, or modify

existing models to meet your needs. Simulink supports linear and nonlinear systems,

modeled in continuous time, sampled time, or a hybrid of the two. Systems can also

be multi rate — having different parts that are sampled or updated at different rates.

Simulink provides a graphical user interface (GUI) for building models as

block diagrams, allowing you to draw models as you would with pencil and paper.

Simulink also includes a comprehensive block library of sinks, sources, linear and

nonlinear components, and connectors. If these blocks do not meet your needs,

however, you can also create your own blocks. The interactive graphical

18

environment simplifies the modeling process, eliminating the need to formulate

differential and difference equations in a language or program.

Models are hierarchical, so you can build models using both top-down and

bottom-up approaches. You can view the system at a high level, then double-click

blocks to see increasing levels of model detail. This approach provides insight into

how a model is organized and how its parts interact.

After a model is defined, it can simulate, using a choice of mathematical

integration methods, either from the Simulink menus or by entering commands in the

MATLAB‘s Command Window. The menus are convenient for interactive work,

while the command line is useful for running a batch of simulations.

Using scopes and other display blocks, the simulation result can be seen while

the simulation is running. Many parameters can be changed and immediately see

what happens for "what if" exploration. The simulation results can be put in the

MATLAB workspace for post processing and visualization.

Model analysis tools include linearization and trimming tools, which can be

accessed from the MATLAB command line, plus the many tools in MATLAB and its

application toolboxes. Because MATLAB and Simulink are integrated, you can

simulate, analyze, and revise your models in either environment at any point.

19

 Figure 2.5: Library Browser for Simulink

 Figure 2.6: Window for Model Using Functional Block

20

2.6 Block set power system

SimPowerSystems is a modern design tool that allows scientists and engineers

to rapidly and easily build models that simulate power systems. SimPowerSystems

uses the Simulink environment, allowing you to build a model using simple click and

drag procedures. Not only can you draw the circuit topology rapidly, but your

analysis of the circuit can include its interactions with mechanical, thermal, control,

and other disciplines. This is possible because all the electrical parts of the simulation

interact with the extensive Simulink modeling library. Since Simulink uses MATLAB

as its computational engine, designers can also use MATLAB toolboxes and Simulink

block sets. SimPowerSystems and SimMechanics share a special Physical Modeling

block and connection line interface.

2.6.1 Area of the power system block set

Power system networks

 RLC branches and loads

 Pi section lines

 Linear and saturable transformers/td

 Surge arrester

 Mutual inductance

 Distributed parameter lines

 AC voltage and current source

 DC voltage sources

21

Electric machinery

 Complete and simplified models of synchronous machines

 Asynchronous machines

 Permanent magnet synchronous machines

 Excitation system

 Hydraulic turbines

 Governors

Power electronics

 Diodes

 Simplified and complex thyristors

 GTOs

 Switches

 MOSFETs

 IGBT

Control and measurement blocks

 Voltage and current measurement

 RMS measurements

 Active power calculations

 Synchronized 6-pulse generators

22

Triphase library

 Triphase loads and branches

 Pi section lines

 AC voltage sources

 6-pulse thyristor bridge

 Diode rectifiers

 Triphase transformer in Y-delta, Y-Y, and delta-Y configuration

Figure 2.7: Library Browser for SimPower System

23

CHAPTER 3

METHODOLOGY

3.1 Chapter overview

 In this chapter, the procedures of using software MATLAB will be explained.

MATLAB R2007b is used for this project. To achieve the objectives of study, all the

knowledge are applied on the simulation, program building, and GUI building

process into this incorporated software. The workflow for this project was shown

with Figure 3.1. The flow chart is important to make sure the work is well organized

and to keep the project done within the specific time. The flow chart shows that for

this project MATLAB program, simulation, and GUI were necessary.

24

Figure 3.1: Work Flow of the Project

START

Case Study

Building MATLAB

Program

Study & Learn

MATLAB

Identify

Appropriate

Command

Testing

OK?

Simulation & Analysis

Analysis

OK?

Start Building GUI Study & Learn GUI

Testing

OK?

Propose to Supervisor

Report

Submission &

Presentation

YES

NO

NO

NO

YES

YES

25

3.2 Developing the MATLAB program

 To write a new program, open a new M-file window. All programs must be

written here. Figure below show how to open the M-file window. The program

written here must follow the MATLAB rule, especially when using commands and

syntaxes, to prevent any error when the program is running. It is important to identify

appropriate commands before writing any programs.

 Figure 3.2: Opening M-file Window

26

 Figure 3.3: New M-file window

3.3 Developing the simulation model

 To construct a simulation program, which is for this project a simulation of

induction motor is needed, first we need to open the simulation window. Then the

block that we need to use can simply be found at simulink library browser. For the

induction motor model, the three phase asynchronous machine is used. For the

supply, three phase voltage supply is used, and the parameters for measurement

27

purpose were also added. These are the item that needed to build the initial/healthy

state of three phase induction motor for this project.

 Figure 3.4: Three Phase Asynchronous Machine Model

Three phase asynchronous machine model can be obtained from the demos at

help window. But the demos were different from what were needed for this project.

So a little adjustment need to be done, especially for the voltage supply, measurement

parameter, and some assumption were added while doing the model for the faulty

state.

The simulation model in the Figure 3.3 above is a three-phase motor rated 3

HP, 220 V, 1725 rpm is fed by a sinusoidal PWM inverter. The base frequency of the

28

sinusoidal reference wave is 60 Hz while the triangular carrier wave's frequency is set

to 1980 Hz. The PWM inverter is built entirely with standard Simulink blocks.

As for my project requirement, the voltage supplied must be in three-phase

voltage, thus the PWM inverter does not necessary for my simulation.

Figure 3.5: Three Phase Induction Motor Model

The model was modified to a three-phase supply by eliminate the PWM

inverter and replaced it with the AC voltage source from the Library Browser as

shown in Figure 3.5

.

Figure 3.6: Block Parameters of AC Voltage Source

29

Figure 3.7: Block Parameters of 1.5HP – 450V 50Hz – 1475rpm

 Since the motor is set up to PWM inverter supply, the parameters of the motor

should be change regarding the supply and the frequency is different. It is done by

double click at the motor block to obtain its Block Parameters window as shown in

Figure 3.6. The voltage is changed to 400V as for three-phase and the frequency is set

up to 50Hz. The motor type now is 1.5HP, 450V 50Hz supply that could generate

approximately 1475rpm.

30

Table 3.1: Description of the motor Block Parameters

Preset model

Provides a set of predetermined electrical and mechanical

parameters for various asynchronous machine ratings of power

(HP), phase-to-phase voltage (V), frequency (Hz), and rated speed

(rpm).

Mechanical

input

Allows the selection of either the torque applied to the shaft or the

rotor speed as the Simulink signal applied to the block's input.

Rotor type Specifies the branching for the rotor windings.

Reference

frame

Specifies the reference frame that is used to convert input voltages

(abc reference frame) to the dq reference frame, and output currents

(dq reference frame) to the abc reference frame

Nominal

power, L-L

volt, and freq.

The nominal apparent power Pn (VA), RMS line-to-line voltage Vn

(V), and frequency fn (Hz).

Stator
The stator resistance Rs (Ω or pu) and leakage inductance Lls (H or

pu).

Rotor
The rotor resistance Rr' (Ω or pu) and leakage inductance Llr' (H or

pu), both referred to the stator.

Mutual

inductance
The magnetizing inductance Lm (H or pu).

Inertia,

friction factor,

and pairs of

poles

For the SI units dialog box: the combined machine and load inertia

coefficient J (kg.m
2
), combined viscous friction coefficient F

(N.m.s), and pole pairs p. The friction torque Tf is proportional to

the rotor speed ω (Tf = F.w).

For the pu units dialog box: the inertia constant H (s), combined

viscous friction coefficient F (pu), and pole pairs p.

Initial

conditions

Specifies the initial slip s, electrical angle Θe (degrees), stator

current magnitude (A or pu), and phase angles (degrees)

31

Simulate

saturation

Specifies whether magnetic saturation of rotor and stator iron is

simulated or not.

Saturation

parameters
Specifies the no-load saturation curve parameters.

Table 3.1 shows the description of every parameter that appears in the Block

Parameters of the motor. User can characterized desirably the motor specification

depends on their purpose of usage.

Figure 3.8: Step Block

Figure 3.7 shows the Step block, represents the external mechanical torque

which is driven by the motor, considered as load applied. From the step block

parameter, the final value represents the load condition. In this project, the load

condition is range from 0 to 1, which are in per unit value. 0 shows the motor is in no

load. 0.5 shows the motor is in half load. 1.0 shows the motor is in full load. In this

project, only full load is being used.

32

 Figure 3.9: Three Phase Induction Motor model

33

3.3.1 Stator inter-turn short circuit fault model

 For stator inter-turn short circuit model, assumption that was made is for

initial/ healthy state, 3 resistors were added right before the motor for each phase. To

create the stator inter-turn short circuit state, one of the resistor will be short circuited,

and act like the insulation failure in between the winding inter-turns get short

circuited for actual motor.

 Figure 3.10: Three Resistors before the Motor (healthy state)

34

 Figure 3.11: One of the Resistor were Short Circuited

3.3.2 Unbalanced voltage supply fault model

 For unbalanced voltage supply model, the model is exactly same for the

initial/healthy state model. What make it differ is one of the voltage supply is lowered

a bit to create the unbalanced voltage supply faults. The figure below will show how

to set the voltages.

35

 Figure 3.12: Voltage Setting for Healthy State Motor

 Figure 3.13: Voltage Setting for Faulty State Motor

36

3.3.3 Single-phase open circuit fault model

 For single-phase open circuit model, the model is slightly same like the

initial/healthy state motor model. The only thing that makes it different is a circuit

breaker is added right after the voltage supply. When the model is run, the breaker

will operate and make one phase is open circuit. Figure below will explain the

process.

 Figure 3.14: Voltage Supply for Healthy Model

37

 Figure 3.15: Voltage Supply for Faulty State

3.4 Developing the GUI

 To create a new GUI, simply write down ―guide‖ at the command window, or

by choosing to open new GUI window as shown at figure below. Choose blank GUI

to create a new one, then the GUI made is depend on our creativity.

38

Figure 3.16: GUI Window

Figure 3.17: Blank GUI Window

39

 There several menu button that can help user to customize their GUI. Each

one has different usage:

 for push button

 for scroll bar

 for radio button

 for check box

 for edit text

 for textbox

 for popup menu

 for list box

 for toggle button

 for axes

 For panel button

 for group button

 for active-X

After creating the desired GUI, simply press the button at the top of the GUI

window. This will generate the program at M-file window. At this point, it is crucial

to define the program that you want to use at the GUI you created before.

40

Figure 3.18: Example of Created GUI

Figure 3.19: Example of the Generated Program

41

3.4.1 Main window M-FILE description

 All programs must be written at M-file after running the FIG-file, after the

function line.

 Figure 3.20: Display the Program for Opening Function

3.4.1.1 Main window M-FILE

 See appendix A for Main Window Programming.

42

3.4.1.2 Description

 Figure 3.21: Display the Opening Function Position

Opening Function Syntax:

movegui ('center')

This syntax demonstrates the usefulness of movegui to ensure that saved GUIs appear

on screen when reloaded, regardless of the target computer‘s screen sizes and

resolution.

43

 Figure 3.22: Display the Callback Function Line Position

Callback Function Syntax:

A callback is a function that executes when user perform a specific action

such as clicking a push button or pressing a keyboard key, or when a component is

created or deleted. Each component and menu item has properties that specify its

callback. When you create a GUI, you must program the callbacks you need to

control operation of the GUI.

When a user activates a component of the GUI, the GUI executes the

corresponding callback. The name of the callback is determined by the component‘s

44

Tag property and the type of the callback. For example, a push button with the Tag

print_button executes the callback.

Syntax:

user_response = run_healthy;

Discription:

This is the command to call a GUI named as run_healthy, where the GUI will then

will call the simulation of the initial/healthy state motor model.

 user_response command interact with user responds, whether by clicking or

ticking, to execute the desired program. It is a very useful command because almost

all the pushbutton callback is using this command to execute. We can relate or

connect it with other GUI, simulation, and program.

45

CHAPTER 4

RESULT AND ANALYSIS

4.1 Chapter overview

 In this chapter, the result obtained from the simulations for the healthy and

faulty state motor will be discussed. All the results are in graph form, which is from

the measurement parameter which is created during methodology phase.

4.2 Simulation of Healthy State Motor

 With the help from GUI, this simulation file can be executed by only clicking

the push button. Figure 4.1 will explain the process.

46

Figure 4.1: Main GUI Window

 Figure 4.2: Display the Confirm Action Window

Figure 4.2 shows the confirm action window will show up after pressing the

‗Healthy State‘ push button. Pressing ‗Yes‘ pushbutton at confirm action window will

open the simulation file for healthy state.

47

 Figure 4.3: Display the Healthy State Simulation Window

 By pressing ‗RUN‘ button, the simulation will run. The result can be obtained

from the ‗SCOPE‘ block. The results for this simulation are as follow:

48

Figure 4.4: The three Phase Voltages

Figure 4.5: The Three Phase Currents

 Figure 4.4 and figure 4.5 show the respected voltages and currents.

49

Figure 4.6: Rotor Current

Figure 4.7: Stator Current

Figure 4.6 and figure 4.7 show the rotor and stator current.

50

Figure 4.8: Electromagnetic Torque

Figure 4.9: Motor Speed

Figure 4.8 and figure 4.9 shows the Electromagnetic torque and motor speed.

51

4.3 Simulation of Faulty State Motor

 By returning to the previous GUI, there is another option can be selected, the

Faulty State. By pressing the button, another GUI will showed up, giving another

option to choose, Inter-turn Short Circuit, Single Phase Open Circuit, and Unbalanced

Voltage supply. Each option will open the different simulation, according to it owns

cases.

Figure 4.10: GUI for Faulty State

 By pressing ‗Interturn Short Circuit‘ button, another confirms action window

will open. Pressing ‗Yes‘ will open the simulation.

52

4.3.1 Simulation for Inter-turn Short Circuit

 Figure 4.11: Simulation for Inter-turn Short Circuit

Run the simulation, the result can be obtained from the scope block.

53

Figure 4.12: Three Phase Voltages

Figure 4.13: Three Phase Currents

Figure 4.12 and figure 4.13 show the respected voltages and currents.

54

Figure 4.14: Rotor Current

Figure 4.15: Stator Current

Figure 4.14 and figure 4.15 show the rotor and stator current.

55

Figure 4.16: Electromagnetic Torque

Figure 4.17: Motor Speed

Figure 4.16 and figure 4.17 shows the Electromagnetic torque and motor speed.

56

4.3.2 Simulation for Unbalanced Voltage Supply

 Figure 4.18: Simulation for Unbalanced Voltage Supply

Run the simulation, the result can be obtained from the scope block.

57

Figure 4.19: Three phase voltages

Figure 4.20: Three phase currents

Figure 4.19 and figure 4.20 show the respected voltages and currents.

58

Figure 4.21: Rotor current

Figure 4.22: stator current

Figure 4.21 and figure 4.22 show the rotor and stator current.

59

Figure 4.23: electromagnetic torque

Figure 4.24: Motor speed

Figure 4.23 and figure 4.24 shows the Electromagnetic torque and motor speed.

60

4.3.3 Simulation for Single Phase Open Circuit

Figure 4.25: Simulation for Single Phase Open Circuit

Run the simulation, the result can be obtained from the scope block.

61

Figure 4.26: Three phase voltages

Figure 4.27: Three phase currents

Figure 4.26 and figure 4.27 show the respected voltages and currents.

62

Figure 4.28: Rotor current

Figure 4.29: Stator current

Figure 4.28 and figure 4.29 show the rotor and stator current.

63

Figure 4.30: Electromagnetic torque

Figure 4.31: Motor speed

Figure 4.30 and figure 4.31 shows the Electromagnetic torque and motor speed.

64

4.4 Result Analysis

 From the results obtained, we can see changes in graph while comparing the

faulty state result and the healthy state results. Some of them were only slightly

different, but there are graphs that show major differences compared to a healthy one.

4.4.1 Inter-turn Short Circuit

 There are not much different between healthy state and inter-turn short

circuit‘s results. But there is a slightly different in rotor current. Refer figure 4.6 and

figure 4.14 for comparison. It looks same during the transient state, but the difference

showed up during the steady state. There is a small ripple at the steady state for the

inter-turn short circuit model.

Figure 4.14: rotor current for interturn short circuit

65

4.4.2 Unbalanced voltage supply

 Since the voltage source for unbalanced voltage supply model has been

manipulated, the graphs for the voltages differ from the healthy state model. The

same goes with the currents, rotor current and electromagnetic torque. Refer figure

4.19, figure 4.20, figure 4.21 and figure 4.23 for comparison.

Figure 4.19: voltages for unbalanced voltage supply

 From the figure above, we can see that the amplitude of the graph is differing

from each other. The same thing happens with the currents graph, which will be

shown at figure 4.20.

66

Figure 4.20: currents for unbalanced voltage supply

Figure 4.21: rotor current for unbalanced voltage supply

For rotor current, it shows a greater scale of ripple during the steady state

phase compared to the rotor current for interturn short circuit model (figure 4.14).

67

Figure 4.23: electromagnetic torque for unbalanced voltage supply

For electromagnetic torque, the ripple also greater at the steady state

compared to the healthy stage.

4.4.3 Single phase open circuit

 The result obtained from the single phase open circuit model show the largest

differences compared to the healthy model. Since one phase is intentionally opened,

the motor model could not work properly, thus affected the result obtained. When one

phase is open circuit, the circuit become incomplete and the current reading become

zero. Figure 4.27 below will show the differences.

68

Figure 4.27: currents for single phase open circuit

Figure 4.28: rotor current for single phase open circuit

69

Figure 4.29: stator current for single phase open circuit

Figure 4.30: electromagnetic torque for single phase open circuit

70

Figure 4.31: Motor speed for single phase open circuit

The rotor current, stator current, electromagnetic field and the motor speed

also show differences from a healthy one. Since one phase is opened, the motor not

operate and the speed becomes zero.

71

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The purpose of this final year project, the Simulation of electrical faults of

three phase induction motor drive system is to study the induction motor when fault

occur. MATLAB tools are used in this project to prevent the motor from being

damaged when the faults are intentionally applied to the motor.

The data from the simulation can be as references when monitoring the motor.

The data from actual motor can be compared to the data from simulation, the

differences can be assumed as the motor may have some problem. This is important

to detect any abnormalities in the motor, so that any fault occur can be detect at early

stage.

72

5.2 Recommendation

For future recommendation, several suggestions are proposed:

 Replace the simulation model with actual motor to analyze real time

theoretical data where it is time consuming.

 The data obtained from this project can be used as references to develop fault

detection system.

73

REFERENCES

[1] 24 February 2009, Citing Internet Sources URL

http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=02nQXGrrlPglzQM

szY

[2] 24 February 2009, Citing Internet Sources URL

www.geocities.com/cindulkar/lab41.pdf

[3] 8 March 2009, Citing Internet sources URL http://en.wikipedia.org/wiki/Rotor

[4] 8 March 2009, Citing Internet Sources URL

http://en.wikipedia.org/wiki/Squirrel-cage_rotor

[5] 8 March 2009, Citing Internet Sources URL

http://www.allaboutcircuits.com/vol_2/chpt_13/8.html

[6] Rakesh Parekh. (2003). AC Induction Motor Fundamentals: Microchip

Technology Inc.

[7] M. Arkan, D. Kostic Perovic, P.J. Unsworth. (2005). Modeling and Simulation

of Induction Motor with Inter-turn Faults for Diagnostics

http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=02nQXGrrlPglzQMszY
http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=02nQXGrrlPglzQMszY
http://www.geocities.com/cindulkar/lab41.pdf
http://en.wikipedia.org/wiki/Rotor
http://en.wikipedia.org/wiki/Squirrel-cage_rotor
http://www.allaboutcircuits.com/vol_2/chpt_13/8.html

74

[8] Liang B. Payne B. S. Ball A. D. Iwnicki S. D. (2002). Simulation and fault

detection of three-phase induction motors.

[9] 19 March 2009 , Citing Internet Sources URL

http://www.elec.uow.edu.au/iepqrc/files/technote6.pdf

[10] R. Rajeswari an d N. Kamaraj . Diagnosis of Inter Turn Fault in the Stator of

Synchronous Generator Using Wavelet Based ANFIS. World Academy of Science,

Engineering and Technology 36 2007

[11] Vic Gosbell, Sarath Perera, Vic Smith. Technical Note No. 6. October 2002

[12] H. W. Penrose and J. Jette, ―Static motor circuit analysis: An introduction to

theory and application,‖ IEEE Electr. Insul. Mag., vol. 16, no. 4, pp. 6–10, July /Aug.

2000.

[13] M. A. Cash, H. G. Habetler, and G. B. Kliman, ―Insulation failure prediction in

AC machines using line-neutral voltages,‖ IEEE Trans. Ind. Appl., vol. 34, no. 6, pp.

1234–1239, Nov./Dec. 1998.

[14] H. A. Toliyat and S. Nandi, ―Novel frequency-domain-based technique to detect

stator interturn faults in induction machines using stator-induced voltages after swich-

off,‖ IEEE Trans. Ind. Appl., vol. 38, no. 1, pp. 101–109, Jan./Feb. 2002.

http://www.elec.uow.edu.au/iepqrc/files/technote6.pdf

75

APPENDIXE A

(Program for GUI)

76

Program for main window GUI

function varargout = main(varargin)

% MAIN M-file for main.fig

% MAIN, by itself, creates a new MAIN or raises the existing

% singleton*.

%

% H = MAIN returns the handle to a new MAIN or the handle to

% the existing singleton*.

%

% MAIN('CALLBACK',hObject,eventData,handles,...) calls the

local

% function named CALLBACK in MAIN.M with the given input

arguments.

%

% MAIN('Property','Value',...) creates a new MAIN or raises the

% existing singleton*. Starting from the left, property value

pairs are

% applied to the GUI before main_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property

application

% stop. All inputs are passed to main_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows

only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help main

% Last Modified by GUIDE v2.5 04-Nov-2009 06:51:14

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

77

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @main_OpeningFcn, ...

 'gui_OutputFcn', @main_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before main is made visible.

function main_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to main (see VARARGIN)

movegui ('center')

[c,map]=imread('UMP','JPG');

image(c)

set(gca,'visible','off')

% Choose default command line output for main

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

78

% UIWAIT makes main wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = main_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

user_response = about, close main;

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

user_response = PRE1, close main;

% --- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

79

% handles structure with handles and user data (see GUIDATA)

user_response = modaldlg('Title','Confirm Close');

switch user_response

case {'No'}

 % take no action

case 'Yes'

 % Prepare to close GUI application window

 % .

 % .

 % .

 delete(handles.figure1)

end

80

Program for about window

function varargout = about(varargin)

% ABOUT M-file for about.fig

% ABOUT, by itself, creates a new ABOUT or raises the existing

% singleton*.

%

% H = ABOUT returns the handle to a new ABOUT or the handle to

% the existing singleton*.

%

% ABOUT('CALLBACK',hObject,eventData,handles,...) calls the

local

% function named CALLBACK in ABOUT.M with the given input

arguments.

%

% ABOUT('Property','Value',...) creates a new ABOUT or raises

the

% existing singleton*. Starting from the left, property value

pairs are

% applied to the GUI before about_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property

application

% stop. All inputs are passed to about_OpeningFcn via

varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows

only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help about

% Last Modified by GUIDE v2.5 04-Nov-2009 09:45:41

81

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @about_OpeningFcn, ...

 'gui_OutputFcn', @about_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before about is made visible.

function about_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to about (see VARARGIN)

movegui ('center')

[c,map]=imread('im','JPG');

image(c)

set(gca,'visible','off')

% Choose default command line output for about

handles.output = hObject;

82

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes about wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = about_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

user_response = main, close about;

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

user_response = modaldlg('Title','Confirm Close');

switch user_response

case {'No'}

 % take no action

83

case 'Yes'

 % Prepare to close GUI application window

 % .

 % .

 % .

 delete(handles.figure1)

end

84

Program for PRE1 window

function varargout = PRE1(varargin)

% PRE1 M-file for PRE1.fig

% PRE1, by itself, creates a new PRE1 or raises the existing

% singleton*.

%

% H = PRE1 returns the handle to a new PRE1 or the handle to

% the existing singleton*.

%

% PRE1('CALLBACK',hObject,eventData,handles,...) calls the

local

% function named CALLBACK in PRE1.M with the given input

arguments.

%

% PRE1('Property','Value',...) creates a new PRE1 or raises the

% existing singleton*. Starting from the left, property value

pairs are

% applied to the GUI before PRE1_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property

application

% stop. All inputs are passed to PRE1_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows

only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help PRE1

% Last Modified by GUIDE v2.5 04-Nov-2009 10:51:13

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

85

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @PRE1_OpeningFcn, ...

 'gui_OutputFcn', @PRE1_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before PRE1 is made visible.

function PRE1_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to PRE1 (see VARARGIN)

movegui ('center')

[c,map]=imread('UMP','JPG');

image(c)

set(gca,'visible','off')

% Choose default command line output for PRE1

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

86

% UIWAIT makes PRE1 wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = PRE1_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in pushbutton4.

function pushbutton4_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

user_response = main, close PRE1;

% --- Executes on button press in pushbutton5.

function pushbutton5_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

user_response = modaldlg('Title','Confirm Close');

switch user_response

case {'No'}

 % take no action

case 'Yes'

 % Prepare to close GUI application window

 % .

 % .

87

 % .

 delete(handles.figure1)

end

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

user_response = run_healthy;

% --- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

user_response = PRE2, close PRE1;

88

Program for PRE2 window

function varargout = PRE2(varargin)

% PRE2 M-file for PRE2.fig

% PRE2, by itself, creates a new PRE2 or raises the existing

% singleton*.

%

% H = PRE2 returns the handle to a new PRE2 or the handle to

% the existing singleton*.

%

% PRE2('CALLBACK',hObject,eventData,handles,...) calls the

local

% function named CALLBACK in PRE2.M with the given input

arguments.

%

% PRE2('Property','Value',...) creates a new PRE2 or raises the

% existing singleton*. Starting from the left, property value

pairs are

% applied to the GUI before PRE2_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property

application

% stop. All inputs are passed to PRE2_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows

only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help PRE2

% Last Modified by GUIDE v2.5 04-Nov-2009 13:07:18

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

89

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @PRE2_OpeningFcn, ...

 'gui_OutputFcn', @PRE2_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before PRE2 is made visible.

function PRE2_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to PRE2 (see VARARGIN)

movegui ('center')

[c,map]=imread('UMP','JPG');

image(c)

set(gca,'visible','off')

% Choose default command line output for PRE2

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

90

% UIWAIT makes PRE2 wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = PRE2_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in pushbutton4.

function pushbutton4_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

user_response = PRE1, close PRE2;

% --- Executes on button press in pushbutton5.

function pushbutton5_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

user_response = modaldlg('Title','Confirm Close');

switch user_response

case {'No'}

 % take no action

case 'Yes'

 % Prepare to close GUI application window

91

 % .

 % .

 % .

 delete(handles.figure1)

end

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

user_response = run;

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

user_response = run_unbal_a;

% --- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

user_response = run_os_a;

92

Program for closing window

function varargout = modaldlg(varargin)

% MODALDLG M-file for modaldlg.fig

% MODALDLG by itself, creates a new MODALDLG or raises the

% existing singleton*.

%

% H = MODALDLG returns the handle to a new MODALDLG or the

handle to

% the existing singleton*.

%

% MODALDLG('CALLBACK',hObject,eventData,handles,...) calls the

local

% function named CALLBACK in MODALDLG.M with the given input

arguments.

%

% MODALDLG('Property','Value',...) creates a new MODALDLG or

raises the

% existing singleton*. Starting from the left, property value

pairs are

% applied to the GUI before modaldlg_OpeningFcn gets called.

An

% unrecognized property name or invalid value makes property

application

% stop. All inputs are passed to modaldlg_OpeningFcn via

varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows

only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help modaldlg

93

% Last Modified by GUIDE v2.5 10-Oct-2009 23:50:25

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @modaldlg_OpeningFcn, ...

 'gui_OutputFcn', @modaldlg_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before modaldlg is made visible.

function modaldlg_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to modaldlg (see VARARGIN)

% Choose default command line output for modaldlg

handles.output = 'Yes';

% Update handles structure

guidata(hObject, handles);

94

% Insert custom Title and Text if specified by the user

% Hint: when choosing keywords, be sure they are not easily confused

% with existing figure properties. See the output of set(figure)

for

% a list of figure properties.

if(nargin > 3)

 for index = 1:2:(nargin-3),

 if nargin-3==index, break, end

 switch lower(varargin{index})

 case 'title'

 set(hObject, 'Name', varargin{index+1});

 case 'string'

 set(handles.text1, 'String', varargin{index+1});

 end

 end

end

% Determine the position of the dialog - centered on the callback

figure

% if available, else, centered on the screen

FigPos=get(0,'DefaultFigurePosition');

OldUnits = get(hObject, 'Units');

set(hObject, 'Units', 'pixels');

OldPos = get(hObject,'Position');

FigWidth = OldPos(3);

FigHeight = OldPos(4);

if isempty(gcbf)

 ScreenUnits=get(0,'Units');

 set(0,'Units','pixels');

 ScreenSize=get(0,'ScreenSize');

 set(0,'Units',ScreenUnits);

 FigPos(1)=1/2*(ScreenSize(3)-FigWidth);

 FigPos(2)=2/3*(ScreenSize(4)-FigHeight);

else

 GCBFOldUnits = get(gcbf,'Units');

 set(gcbf,'Units','pixels');

95

 GCBFPos = get(gcbf,'Position');

 set(gcbf,'Units',GCBFOldUnits);

 FigPos(1:2) = [(GCBFPos(1) + GCBFPos(3) / 2) - FigWidth / 2, ...

 (GCBFPos(2) + GCBFPos(4) / 2) - FigHeight / 2];

end

FigPos(3:4)=[FigWidth FigHeight];

set(hObject, 'Position', FigPos);

set(hObject, 'Units', OldUnits);

% Show a question icon from dialogicons.mat - variables

questIconData

% and questIconMap

load dialogicons.mat

IconData=questIconData;

questIconMap(256,:) = get(handles.figure1, 'Color');

IconCMap=questIconMap;

Img=image(IconData, 'Parent', handles.axes1);

set(handles.figure1, 'Colormap', IconCMap);

set(handles.axes1, ...

 'Visible', 'off', ...

 'YDir' , 'reverse' , ...

 'XLim' , get(Img,'XData'), ...

 'YLim' , get(Img,'YData') ...

);

% Make the GUI modal

set(handles.figure1,'WindowStyle','modal')

% UIWAIT makes modaldlg wait for user response (see UIRESUME)

uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = modaldlg_OutputFcn(hObject, eventdata, handles)

96

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% The figure can be deleted now

delete(handles.figure1);

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.output = get(hObject,'String');

% Update handles structure

guidata(hObject, handles);

% Use UIRESUME instead of delete because the OutputFcn needs

% to get the updated handles structure.

uiresume(handles.figure1);

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

handles.output = get(hObject,'String');

% Update handles structure

97

guidata(hObject, handles);

% Use UIRESUME instead of delete because the OutputFcn needs

% to get the updated handles structure.

uiresume(handles.figure1);

% --- Executes when user attempts to close figure1.

function figure1_CloseRequestFcn(hObject, eventdata, handles)

% hObject handle to figure1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

if isequal(get(handles.figure1, 'waitstatus'), 'waiting')

 % The GUI is still in UIWAIT, us UIRESUME

 uiresume(handles.figure1);

else

 % The GUI is no longer waiting, just close it

 delete(handles.figure1);

end

% --- Executes on key press over figure1 with no controls selected.

function figure1_KeyPressFcn(hObject, eventdata, handles)

% hObject handle to figure1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Check for "enter" or "escape"

if isequal(get(hObject,'CurrentKey'),'escape')

 % User said no by hitting escape

 handles.output = 'No';

 % Update handles structure

 guidata(hObject, handles);

98

 uiresume(handles.figure1);

end

if isequal(get(hObject,'CurrentKey'),'return')

 uiresume(handles.figure1);

end

