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ABSTRACT 

 

 

 

 

The title of this project is Simulation of electrical faults of three phase 

induction motor drive system. Induction motor or asynchronous motor is a type of 

alternating current motor where power is supplied to the rotor by means of 

electromagnetic induction. Induction motor is now the preferred choice for industrial 

motor due to their rugged construction, absence of brushes (which are required in 

most DC motors) and the ability to control the speed of motor. The faults that can 

occur in the three-phase induction motor and its driver can be divided into two parts; 

internal and external faults. The internal fault of induction motors account for the 

proportion almost more than 70% of induction motor failures. This project will cover 

and study a few type of internal and external faults, which is the stator inter-turn 

short circuit, unbalanced voltage supply and the single phase open circuit fault. The 

study of induction motor is crucial and important so that the lifespan of the motor can 

be prolonged. In this project MATLAB SIMULINK is used to simulate the induction 

motor faults and analyze the condition. The simulation file is then compiled along 

with a GUI to simplify the overall process and improves the user friendliness to 

users. 

 

 

 

 

 

 

 

 

 



ABSTRAK 

 

 

 

 

Tajuk projek ini ialah simulasi kerosakan ke atas motor aruhan tiga fasa dan 

sistem pacuannya. Motor aruhan, juga dikenali sebagai enjin tidak segerak, adalah 

sejenis motor arus ulang alik dimana kuasanya dibekalkan kepada rotor melalui 

proses induksi elektromagnetik. Motor aruhan kini menjadi pilihan utama dalam 

industri permotoran kerana ciri-ciri dan kelebihan yang dimilikinya, terutamanya 

pembinaan yang kasar, ketiadaan berus (yang mana paling diperlukan dalam DC 

motor) dan kelajuan enjin yang boleh dikawal. Kerosakan yang boleh berlaku kepada 

motor aruhan tiga fasa boleh dibahagikan kepada dua bahagian, iaitu kerosakan 

dalaman dan kerosakan luaran. Kerosakan dalaman motor aruhan adalah 

penyumbang utama kepada kegagalan motor aruhan untuk berfungsi, iaitu sebanyak 

70%. Projek ini akan mempelajari dan merangkumi beberapa jenis kerosakan 

dalaman dan luaran motor aruhan, iaitu litar pintas pemegun antara giliran, bekalan 

voltan tidak seimbang dan satu fasa litar terbuka. Kajian terhadap motor aruhan 

adalah penting supaya jangka hayat motor dapat dipanjangkan. Untuk projek ini, 

MATLAB SIMULINK akan diguna pakai bagi membuat simulasi kerosakan motor 

aruhan dan menganalisis kondisi motor tersebut. Fail simulasi kemudiannya akan 

dihimpunkan di dalam satu GUI untuk memudahkan keseluruhan proses dan 

meningkatkan tahap mesra pengguna utiliti ini. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Chapter Overview 

 

 

The title of this project is Simulation of electrical faults of three phase induction 

motor drive system. The faults that can occur in the three-phase induction motor and 

its driver can be divided into two parts; internal and external faults. The internal fault 

of induction motors account for the proportion almost more than 70% of induction 

motor failures. As example, stator inter-turn short circuit. For external faults, it 

happens at voltage supply, such as unbalance voltage supply and one phase open 

circuit. 

 

 

From the faults that might occur, this project will analyze and simulate the 

electrical faults of three-phase induction motor and its drive. The modeling of the 

induction motor and the simulation of electrical faults in three phase induction motor 

drive will be done by using MATLAB tools. 
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This project can be divided into 3 different stages: 

 

 Data extraction 

 Develop Simulation 

 Develop GUI 

 

 

 

 

1.2 Background 

 

 

Simulation technique has been proved to have many advantages rather than 

just doing a practical attempt. Especially for this project, the faults are 

intentionally being created to motor, to study the behavior of the motor when 

faulted. If we were doing this project with an actual motor, it will be a waste the 

motor gets damaged. 

 

 

 

 

1.3 Problem Statement 

 

 

The increased in demand has greatly improved the approach of fault detection in 

polyphase induction motor. Monitoring the motor condition in an early stage is 

crucial to detect any fault to eliminate the hazards of severe motor faults and 

preventing damage. 
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Nowadays simulation technique is implemented to improve traditional techniques, 

where the results can be obtained instantaneously after it analyzes the input data of 

the motor. In fact, some company use simulation technique while designing their new 

product.  

 

 

In this project MATLAB SIMULINK is used to simulate the induction motor 

faults and analyze the condition. 

 

 

 

 

1.4 Objectives 

 

 

Simulation of electrical faults of three phase induction motor drive system is 

developed with the listed objectives below: 

 

 To study the features for a various kind of faults of the induction motor and its 

drive system. 

 To build an induction motor model and to simulate the internal and external 

faults using MATLAB tools. 

 

 

 

 

1.5 Scopes of study 

 

There are several scopes for the project: 
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 This project is mainly about a simulation of faults that may occur in three-

phase induction motor and its drive. 

 This project is use to detect faults in three phase induction motors only. It is 

the most popular poly phase induction motor in industry. 

 The modeling and simulation will be done by using MATLAB tools. 

 The type of faults which will be studied is limited to a few types of external 

and internal faults. 

 

 

 

 

1.6 Thesis Outline 

 

 

 This thesis consists of five chapters. In the first chapter, this chapter discussed 

the overall idea of this project including objectives of project, problem statement, the 

scope of this project and summary of this thesis. 

 

 

 Chapter 2 discussed more on theory and literature review that have been done. 

It is well discusses about the MATLAB, basic concept of the fault in induction motor, 

SIMULINK and parameters related to this project. 

 

 

 Chapter 3 described briefly the methodology of the data extraction, simulation 

development and GUI development for this project. The figures, tables and extra 

information are aided into this chapter to be the benchmark thesis in development of 

Simulation of electrical faults of three phase induction motor drive system. 
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 Chapter 4 presents a discussion of the implementation, result and analysis of 

the whole project. This chapter also explains the reasons of some failure. 

 

 

 Chapter 5 provides the conclusions of the project. There are also several 

suggestions that can be used for future implementation or upgrading for this project. 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Chapter overview 

 

 

This chapter includes all the paper works and related research as well as the 

studies regards to this project. The chapter includes all important studies which have 

been done previously by other research work. The related works have been referred 

carefully since some of the knowledge and suggestions from the previous work can 

be implemented for this project. 

 

 

 Literature review was an ongoing process throughout the whole process of the 

project. It is very essential to refer to the variety of sources in order to gain more 

knowledge and skills to complete this project. These sources include reference books, 

thesis, journals and also the materials obtained from internet. 
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At the beginning of the project, the basic concept of fault in induction motor 

has been well acquired. In addition, the function of all the components used in this 

project such as basic operation of MATLAB Simulink, and so on was explored first 

before starting the project. 

 

 

 

 

2.2 Definition of three phase induction motor 

 

 

The AC induction motor is a rotating electric machine designed to operate 

from a three-phase source of alternating voltage. The stator is a classic three phase 

stator with the winding displaced by 120°. The most common type of induction motor 

has a squirrel cage rotor in which aluminum conductors or bars are shorted together at 

both ends of the rotor by cast aluminum end rings. When three currents flow through 

the three symmetrically placed windings, a sinusoidally distributed air gap flux 

generating the rotor current is produced. The interaction of the sinusoidally 

distributed air gap flux and induced rotor currents produces a torque on the rotor. The 

mechanical angular velocity of the rotor is lower than the angular velocity of the flux 

wave by so called slip velocity. [1] 

 

 

AC induction motors are the most common motors used in industrial motion 

control systems, as well as in main powered home appliances. Simple and rugged 

design, low-cost, low maintenance and direct connection to an AC power source are 

the main advantages of AC induction motors. [6] 
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The induction motor essentially consists of two parts: 

1. Stator 

2. Rotor 

 

 

The supply is connected to the stator and the rotor received power by induction 

caused by the stator rotating flux, hence the motor obtains its name –induction motor. 

[2] 

 

 

2.2.1 Stator 

 

 

The stator consists of a cylindrical laminated & slotted core placed in a frame of 

rolled or cast steel. The frame provides mechanical protection and carries the terminal 

box and the end covers with bearings. In the slots of a 3-phase winding of insulated 

copper wire is distributed which can be wound for 2, 4, 6 etc. poles. The rotor 

consists of a laminated and slotted core tightly pressed on the shaft [3] 

 

 

The stator is made up of several thin laminations of aluminum or cast iron. 

They are punched and clamped together to form a hollow cylinder (stator core) with 

slots as shown in Figure 1. Coils of insulated wires are inserted into these slots. Each 

grouping of coils, together with the core it surrounds, forms an electromagnet (a pair 

of poles) on the application of AC supply. The number of poles of an AC induction 

motor depends on the internal connection of the stator windings. The stator windings 

are connected directly to the power source. Internally they are connected in such a 

way, that on applying AC supply, a rotating magnetic field is created. [6] 
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2.2.2 Rotor 

 

 

The rotor consists of a laminated and slotted core tightly pressed on the shaft. 

There are two general types of rotors: 

 

1. The squirrel-cage rotor 

2. The wound (or slip ring) rotor 

 

 

 

Figure 2.1: Squirrel Cage Rotor 

 

 

In the squirrel-cage rotor, the rotor winding consists of single copper or 

aluminum bars placed in the slots and short-circuited by end-rings on both sides of 

the rotor. [3] 
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The field windings in the stator of an induction motor set up a rotating 

magnetic field around the rotor. The relative motion between this field and the 

rotation of the rotor induces electric current in the conductive bars. In turn these 

currents lengthwise in the conductors react with the magnetic field of the motor to 

produce force acting at a tangent to the rotor, resulting in torque to turn the shaft. In 

effect the rotor is carried around with the magnetic field but at a slightly slower rate 

of rotation. The difference in speed is called ―slip‖ and increases with load. [4] 

 

 

 

Figure 2.2: Wound rotor 

 

 

A wound rotor induction motor has a stator like the squirrel cage induction 

motor, but a rotor with insulated windings brought out via slip rings and brushes. 

However, no power is applied to the slip rings. Their sole purpose is to allow 

resistance to be placed in series with the rotor windings while starting. This resistance 

is shorted out once the motor is started to make the rotor look electrically like the 

squirrel cage counterpart. [5] 

 

 

 

 

 

http://en.wikipedia.org/wiki/Stator
http://en.wikipedia.org/wiki/Rotating_magnetic_field
http://en.wikipedia.org/wiki/Rotating_magnetic_field
http://en.wikipedia.org/wiki/Rotating_magnetic_field
http://en.wikipedia.org/wiki/Rotor_%28electric%29
http://en.wikipedia.org/wiki/Electric_current
http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Tangent
http://en.wikipedia.org/wiki/Torque
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2.3 Simulation of electrical faults for induction motor 

 

 

Computer simulation of electric motor operation is particularly useful for 

gaining an insight into their dynamic behavior and electro-mechanical interaction. A 

suitable model enables motor faults to be simulated and the change in corresponding 

parameters to be predicted without physical experimentation. [8] 

 

 

Modeling of induction motors with shorted turns is the first step in the design 

of turn fault detection systems. Simulation of transient and steady state behavior of 

motors with these models enable correct evaluation of the measured data by 

diagnostics techniques. [7] 

 

 

This paper will cover few types of electrical faults. The electrical faults can be 

divided into two parts, the external and internal faults. An external fault is a fault that 

occurs outside the motor, and the internal fault is a fault that occurs inside the motor. 

For the external fault, we will cover the unbalance voltage supply and one-phase open 

circuit fault. For the internal fault we will cover the stator inter-turn short circuit.  

 

 

2.3.1 Stator inter-turn short circuit 

 

 

The stator winding consists of coils of insulated copper wire placed in the 

stator slots. Stator winding faults are often caused by insulation failure between two 

adjacent turns in a coil.  This is called a turn-to-turn fault or shorted turn.  The 

resultant induced currents produce extra heating and cause an imbalance in the 

magnetic field in the machine.  If undetected, the local heating will cause further 
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damage to the stator insulation until catastrophic failure occurs. The unbalanced 

magnetic field can also result in excessive vibration that can cause premature bearing 

failures.  

 

 

Stator winding faults of synchronous generator are considered serious 

problems because of the damage associated with high fault currents and high cost of 

maintenance. A high speed bias differential relay is normally used to detect three 

phase, phase-phase and double phase to ground faults. In case of inter-turn winding 

fault the current on both side of the winding is same. Due to this factor we cannot 

adapt the differential scheme of protection for inter-turn winding fault.[10] 

 

 

When there is an insulation failure in between the winding inter-turns they get 

short circuited and the amount of winding involved in generation gets reduced. As the 

amount of winding under generating action is reduced the amount of current produced 

by induction principle also gets reduced. This reduces the power generated and 

affects the life time of the winding. When this problem is left undealt the inter 

winding insulation gets affected there by further reducing the amount of winding 

involved in generation. This fault will completely damage the winding at the extreme 

stage. The cost of winding is very high when compared to the protection methods 

which can adapt.[10] 

 

 

2.3.2 Unbalanced voltage supply 

 

 

Voltage unbalance is regarded as a power quality problem of significant 

concern at the electricity distribution level. Although the voltages are quite well 

balanced at the generator and transmission levels the voltages at the utilization level 
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can become unbalanced due to the unequal system impedances and the unequal 

distribution of single-phase loads. [11] 

 

 

An excessive level of voltage unbalance can have serious impacts on mains 

connected induction motors. The level of current unbalance that is present is several 

times the level of voltage unbalance. Such an unbalance in the line currents can lead 

to excessive losses in the stator and rotor that may cause protection systems to operate 

causing loss of production. Although induction motors are designed to tolerate a 

small level of unbalance they have to be derated if the unbalance is excessive. If 

operated at the nameplate rated capacity without derating the useful life of such 

induction motors can become quite short. If an induction motor is oversized to a 

given application then some level of protection is built into its operation although the 

motor does not operate at the best efficiency and power factor. [11] 

 

 

                                          

Figure 2.3 Balanced Voltage Supply                  Figure 2.4 Unbalanced Voltage Supply 

 

 

Three phase induction motors are designed and manufactured such that all three 

phases of the winding are carefully balanced with respect to the number of turns, 

placement of the winding, and winding resistance. When line voltages applied to a 

polyphase induction motor are not exactly the same, unbalanced currents will flow in 

the stator winding, the magnitude depending upon the amount of unbalance. A small 

amount of voltage unbalance may increase the current an excessive amount. The 

effect on the motor can be severe and the motor may overheat to the point of burnout. 
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The voltages should be evenly balanced as closely as can be read on the usually 

available commercial voltmeter. 

 

 Effect on performance – General 

The effect of unbalanced voltages on polyphase induction motors is equivalent 

to the introduction of a "negative sequence voltage" having a rotation opposite 

to that occurring with balanced voltages. This negative sequence voltage 

produces in the air gap a flux rotating against the rotation of the rotor, tending 

to produce high currents. A small negative sequence voltage may produce in 

the windings currents considerably in excess of those present under balanced 

voltage conditions. 

 Unbalance Defined 

The voltage unbalance (or negative sequence voltage) in percent may be 

defined as follows: 

 

Percent 
 

Maximum Voltage Deviation 

Voltage = 100 *  From Average Voltage 

Unbalance 
 

Average Voltage 

 

Example:  

With voltages of 220, 215 and 210, the average is 215, the maximum deviation from 

the average is 5, and the percent unbalance = 100 X 5/215 = 2.3 percent. 

 

 Temperature rise and load carrying capacity 

A relatively small unbalance in voltage will cause a considerable increase in 

temperature rise. In the phase with the highest current, the percentage increase 

in temperature rise will be approximately two times the square of the 

percentage voltage unbalance. The increase in losses and consequently, the 

increase in average heating of the whole winding will be slightly lower than 

the winding with the highest current. 
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To illustrate the severity of this condition, an approximate 3.5 percent voltage 

unbalance will cause an approximate 25 percent increase in temperature rise. 

 

 Torques 

The locked-rotor torque and breakdown torque are decreased when the voltage 

is unbalanced. If the voltage unbalance should be extremely severe, the torque 

might not be adequate for the application. 

 

 Full-load speed 

The full-load speed is reduced slightly when the motor operates at unbalanced 

voltages. 

 

 Currents 

The locked-rotor current will be unbalanced to the same degree that the 

voltages are unbalanced but the locked-rotor KVA will increase only slightly. 

The currents at normal operating speed with unbalanced voltages will be 

greatly unbalanced in the order of approximately 6 to 10 times the voltage 

unbalance. This introduces a complex problem in selecting the proper 

overload protective devices, particularly since devices selected for one set of 

unbalanced conditions may be inadequate for a different set of unbalanced 

voltages. Increasing the size of the overload protective device is not the 

solution in as much as protection against heating from overload and from 

single phase operation is lost. 
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2.4 MATLAB 

 

 

 MATLAB is a high-performance language for technical computing. It 

integrates computation, visualization, and programming in an easy-to-use 

environment where problems and solutions are expressed in familiar mathematical 

notation. Typical uses include:  

 

 Math and computation 

 Algorithm development 

 Data acquisition 

 Modeling, simulation, and prototyping 

 Data analysis, exploration, and visualization 

 Scientific and engineering graphics 

 Application development, including graphical user interface building 

 

 

MATLAB is an interactive system whose basic data element is an array that 

does not require dimensioning. This allows you to solve many technical computing 

problems, especially those with matrix and vector formulations, in a fraction of the 

time it would take to write a program in a scalar no interactive language such as C or 

Fortran.  

 

 

The name MATLAB stands for matrix laboratory. MATLAB was originally 

written to provide easy access to matrix software developed by the LINPACK and 

EISPACK projects. Today, MATLAB engines incorporate the LAPACK and BLAS 

libraries, embedding the state of the art in software for matrix computation. 

MATLAB has evolved over a period of years with input from many users. In 

university environments, it is the standard instructional tool for introductory and 
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advanced courses in mathematics, engineering, and science. In industry, MATLAB is 

the tool of choice for high-productivity research, development, and analysis. 

MATLAB features a family of add-on application-specific solutions called 

toolboxes. Very important to most users of MATLAB, toolboxes allow you to learn 

and apply specialized technology. Toolboxes are comprehensive collections of 

MATLAB functions (M-files) that extend the MATLAB environment to solve 

particular classes of problems. Areas in which toolboxes are available include signal 

processing, control systems, neural networks, fuzzy logic, wavelets, simulation, and 

many others. 

 

 

 

 

2.5 Simulink 

 

 

 Simulink® is software for modeling, simulating, and analyzing dynamic 

systems. Simulink enables you to pose a question about a system, model it, and see 

what happens. With Simulink, you can easily build models from scratch, or modify 

existing models to meet your needs. Simulink supports linear and nonlinear systems, 

modeled in continuous time, sampled time, or a hybrid of the two. Systems can also 

be multi rate — having different parts that are sampled or updated at different rates. 

 

 

Simulink provides a graphical user interface (GUI) for building models as 

block diagrams, allowing you to draw models as you would with pencil and paper. 

Simulink also includes a comprehensive block library of sinks, sources, linear and 

nonlinear components, and connectors. If these blocks do not meet your needs, 

however, you can also create your own blocks.  The interactive graphical 
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environment simplifies the modeling process, eliminating the need to formulate 

differential and difference equations in a language or program. 

Models are hierarchical, so you can build models using both top-down and 

bottom-up approaches. You can view the system at a high level, then double-click 

blocks to see increasing levels of model detail. This approach provides insight into 

how a model is organized and how its parts interact. 

 

 

After a model is defined, it can simulate, using a choice of mathematical 

integration methods, either from the Simulink menus or by entering commands in the 

MATLAB‘s Command Window. The menus are convenient for interactive work, 

while the command line is useful for running a batch of simulations. 

 

 

Using scopes and other display blocks, the simulation result can be seen while 

the simulation is running. Many parameters can be changed and immediately see 

what happens for "what if" exploration. The simulation results can be put in the 

MATLAB workspace for post processing and visualization. 

 

 

Model analysis tools include linearization and trimming tools, which can be 

accessed from the MATLAB command line, plus the many tools in MATLAB and its 

application toolboxes. Because MATLAB and Simulink are integrated, you can 

simulate, analyze, and revise your models in either environment at any point. 
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   Figure 2.5: Library Browser for Simulink 

 

 

 

  Figure 2.6: Window for Model Using Functional Block 
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2.6 Block set power system 

 

 

SimPowerSystems is a modern design tool that allows scientists and engineers 

to rapidly and easily build models that simulate power systems. SimPowerSystems 

uses the Simulink environment, allowing you to build a model using simple click and 

drag procedures. Not only can you draw the circuit topology rapidly, but your 

analysis of the circuit can include its interactions with mechanical, thermal, control, 

and other disciplines. This is possible because all the electrical parts of the simulation 

interact with the extensive Simulink modeling library. Since Simulink uses MATLAB 

as its computational engine, designers can also use MATLAB toolboxes and Simulink 

block sets. SimPowerSystems and SimMechanics share a special Physical Modeling 

block and connection line interface. 

 

 

 

 

2.6.1 Area of the power system block set 

 

 

Power system networks 

 

 RLC branches and loads 

 Pi section lines 

 Linear and saturable transformers/td 

 Surge arrester 

 Mutual inductance 

 Distributed parameter lines 

 AC voltage and current source 

 DC voltage sources 
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Electric machinery 

 

 Complete and simplified models of synchronous machines 

 Asynchronous machines 

 Permanent magnet synchronous machines 

 Excitation system 

 Hydraulic turbines 

 Governors 

 

 

Power electronics 

 

 Diodes 

 Simplified and complex thyristors 

 GTOs 

 Switches 

 MOSFETs 

 IGBT 

 

 

Control and measurement blocks  

 

 Voltage and current measurement 

 RMS measurements 

 Active power calculations 

 Synchronized 6-pulse generators 
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Triphase library 

 

 Triphase loads and branches 

 Pi section lines 

 AC voltage sources 

 6-pulse thyristor bridge 

 Diode rectifiers 

 Triphase transformer in Y-delta, Y-Y, and delta-Y configuration 

 

 

 

Figure 2.7: Library Browser for SimPower System 

 

 

 

 

 



23 

 

 

 

 

 

CHAPTER 3 

 

 

 

 

METHODOLOGY 

 

 

 

 

3.1 Chapter overview 

 

 

 In this chapter, the procedures of using software MATLAB will be explained. 

MATLAB R2007b is used for this project. To achieve the objectives of study, all the 

knowledge are applied on the simulation, program building, and GUI building 

process into this incorporated software. The workflow for this project was shown 

with Figure 3.1. The flow chart is important to make sure the work is well organized 

and to keep the project done within the specific time. The flow chart shows that for 

this project MATLAB program, simulation, and GUI were necessary. 
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Figure 3.1: Work Flow of the Project 
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3.2 Developing the MATLAB program 

 

 

 To write a new program, open a new M-file window. All programs must be 

written here. Figure below show how to open the M-file window. The program 

written here must follow the MATLAB rule, especially when using commands and 

syntaxes, to prevent any error when the program is running. It is important to identify 

appropriate commands before writing any programs. 

 

 

   Figure 3.2: Opening M-file Window 
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   Figure 3.3: New M-file window 

 

 

 

 

3.3 Developing the simulation model 

 

 

 To construct a simulation program, which is for this project a simulation of 

induction motor is needed, first we need to open the simulation window. Then the 

block that we need to use can simply be found at simulink library browser. For the 

induction motor model, the three phase asynchronous machine is used. For the 

supply, three phase voltage supply is used, and the parameters for measurement 
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purpose were also added. These are the item that needed to build the initial/healthy 

state of three phase induction motor for this project. 

  

 

  Figure 3.4: Three Phase Asynchronous Machine Model 

 

 

Three phase asynchronous machine model can be obtained from the demos at 

help window. But the demos were different from what were needed for this project. 

So a little adjustment need to be done, especially for the voltage supply, measurement 

parameter, and some assumption were added while doing the model for the faulty 

state. 

 

 

The simulation model in the Figure 3.3 above is a three-phase motor rated 3 

HP, 220 V, 1725 rpm is fed by a sinusoidal PWM inverter. The base frequency of the 
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sinusoidal reference wave is 60 Hz while the triangular carrier wave's frequency is set 

to 1980 Hz. The PWM inverter is built entirely with standard Simulink blocks.  

 

 

As for my project requirement, the voltage supplied must be in three-phase 

voltage, thus the PWM inverter does not necessary for my simulation.  

 

 

 

Figure 3.5: Three Phase Induction Motor Model 

 

 

The model was modified to a three-phase supply by eliminate the PWM 

inverter and replaced it with the AC voltage source from the Library Browser as 

shown in Figure 3.5 

 

. 

Figure 3.6: Block Parameters of AC Voltage Source 
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Figure 3.7: Block Parameters of 1.5HP – 450V 50Hz – 1475rpm 

 

 

 Since the motor is set up to PWM inverter supply, the parameters of the motor 

should be change regarding the supply and the frequency is different. It is done by 

double click at the motor block to obtain its Block Parameters window as shown in 

Figure 3.6. The voltage is changed to 400V as for three-phase and the frequency is set 

up to 50Hz. The motor type now is 1.5HP, 450V 50Hz supply that could generate 

approximately 1475rpm. 
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Table 3.1: Description of the motor Block Parameters 

Preset model 

Provides a set of predetermined electrical and mechanical 

parameters for various asynchronous machine ratings of power 

(HP), phase-to-phase voltage (V), frequency (Hz), and rated speed 

(rpm). 

Mechanical 

input 

Allows the selection of either the torque applied to the shaft or the 

rotor speed as the Simulink signal applied to the block's input. 

Rotor type Specifies the branching for the rotor windings. 

Reference 

frame 

Specifies the reference frame that is used to convert input voltages 

(abc reference frame) to the dq reference frame, and output currents 

(dq reference frame) to the abc reference frame 

Nominal 

power, L-L 

volt, and freq. 

The nominal apparent power Pn (VA), RMS line-to-line voltage Vn 

(V), and frequency fn (Hz). 

Stator 
The stator resistance Rs (Ω or pu) and leakage inductance Lls (H or 

pu). 

Rotor 
The rotor resistance Rr' (Ω or pu) and leakage inductance Llr' (H or 

pu), both referred to the stator. 

Mutual 

inductance 
The magnetizing inductance Lm (H or pu). 

Inertia, 

friction factor, 

and pairs of 

poles 

For the SI units dialog box: the combined machine and load inertia 

coefficient J (kg.m
2
), combined viscous friction coefficient F 

(N.m.s), and pole pairs p. The friction torque Tf is proportional to 

the rotor speed ω (Tf = F.w). 

For the pu units dialog box: the inertia constant H (s), combined 

viscous friction coefficient F (pu), and pole pairs p. 

Initial 

conditions 

Specifies the initial slip s, electrical angle Θe (degrees), stator 

current magnitude (A or pu), and phase angles (degrees) 
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Simulate 

saturation 

Specifies whether magnetic saturation of rotor and stator iron is 

simulated or not. 

Saturation 

parameters 
Specifies the no-load saturation curve parameters. 

 

 

Table 3.1 shows the description of every parameter that appears in the Block 

Parameters of the motor. User can characterized desirably the motor specification 

depends on their purpose of usage.  

 

 

 

Figure 3.8: Step Block 

 

 

Figure 3.7 shows the Step block, represents the external mechanical torque 

which is driven by the motor, considered as load applied. From the step block 

parameter, the final value represents the load condition. In this project, the load 

condition is range from 0 to 1, which are in per unit value. 0 shows the motor is in no 

load. 0.5 shows the motor is in half load. 1.0 shows the motor is in full load. In this 

project, only full load is being used. 
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  Figure 3.9: Three Phase Induction Motor model 
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3.3.1 Stator inter-turn short circuit fault model 

 

 

 For stator inter-turn short circuit model, assumption that was made is for 

initial/ healthy state, 3 resistors were added right before the motor for each phase. To 

create the stator inter-turn short circuit state, one of the resistor will be short circuited, 

and act like the insulation failure in between the winding inter-turns get short 

circuited for actual motor. 

 

 

 

  Figure 3.10: Three Resistors before the Motor (healthy state) 
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  Figure 3.11: One of the Resistor were Short Circuited 

 

 

3.3.2 Unbalanced voltage supply fault model 

 

 

 For unbalanced voltage supply model, the model is exactly same for the 

initial/healthy state model. What make it differ is one of the voltage supply is lowered 

a bit to create the unbalanced voltage supply faults. The figure below will show how 

to set the voltages. 
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  Figure 3.12: Voltage Setting for Healthy State Motor 

 

 

 

  Figure 3.13: Voltage Setting for Faulty State Motor  
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3.3.3 Single-phase open circuit fault model 

 

 

 For single-phase open circuit model, the model is slightly same like the 

initial/healthy state motor model. The only thing that makes it different is a circuit 

breaker is added right after the voltage supply. When the model is run, the breaker 

will operate and make one phase is open circuit. Figure below will explain the 

process. 

 

 

 

  Figure 3.14: Voltage Supply for Healthy Model 
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  Figure 3.15: Voltage Supply for Faulty State 

 

 

 

 

3.4 Developing the GUI 

 

 

 To create a new GUI, simply write down ―guide‖ at the command window, or 

by choosing to open new GUI window as shown at figure below. Choose blank GUI 

to create a new one, then the GUI made is depend on our creativity. 
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Figure 3.16: GUI Window 

 

 

 

Figure 3.17: Blank GUI Window 
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 There several menu button that can help user to customize their GUI. Each 

one has different usage: 

   for push button 

  for scroll bar 

  for radio button 

  for check box 

  for edit text 

  for textbox 

  for popup menu 

  for list box 

  for toggle button 

  for axes 

  For panel button 

 for group button 

  for active-X 

 

 

After creating the desired GUI, simply press the  button at the top of the GUI 

window. This will generate the program at M-file window. At this point, it is crucial 

to define the program that you want to use at the GUI you created before. 
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Figure 3.18: Example of Created GUI 

 

 

 

Figure 3.19: Example of the Generated Program 
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3.4.1 Main window M-FILE description 

 

 

 All programs must be written at M-file after running the FIG-file, after the 

function line. 

 

 

 

  Figure 3.20:  Display the Program for Opening Function 

 

 

3.4.1.1 Main window M-FILE 

 

 

 See appendix A for Main Window Programming. 
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3.4.1.2 Description 

 

 

 

  Figure 3.21: Display the Opening Function Position 

 

 

Opening Function Syntax: 

 

 

movegui ('center') 

This syntax demonstrates the usefulness of movegui to ensure that saved GUIs appear 

on screen when reloaded, regardless of the target computer‘s screen sizes and 

resolution.  
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  Figure 3.22: Display the Callback Function Line Position 

 

 

Callback Function Syntax: 

 

 

A callback is a function that executes when user perform a specific action 

such as clicking a push button or pressing a keyboard key, or when a component is 

created or deleted. Each component and menu item has properties that specify its 

callback. When you create a GUI, you must program the callbacks you need to 

control operation of the GUI. 

 

 

When a user activates a component of the GUI, the GUI executes the 

corresponding callback. The name of the callback is determined by the component‘s 
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Tag property and the type of the callback. For example, a push button with the Tag 

print_button executes the callback. 

  

 

Syntax:  

user_response = run_healthy; 

Discription: 

This is the command to call a GUI named as run_healthy, where the GUI will then 

will call the simulation of the initial/healthy state motor model. 

 

 

 user_response command interact with user responds, whether  by clicking or 

ticking, to execute the desired program. It is a very useful command because almost 

all the pushbutton callback is using this command to execute. We can relate or 

connect it with other GUI, simulation, and program. 
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CHAPTER 4 

 

 

 

 

RESULT AND ANALYSIS 

 

 

 

 

4.1 Chapter overview 

 

 

 In this chapter, the result obtained from the simulations for the healthy and 

faulty state motor will be discussed. All the results are in graph form, which is from 

the measurement parameter which is created during methodology phase.  

 

 

 

 

4.2 Simulation of Healthy State Motor  

 

 

 With the help from GUI, this simulation file can be executed by only clicking 

the push button. Figure 4.1 will explain the process. 
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Figure 4.1: Main GUI Window 

 

 

 

  Figure 4.2: Display the Confirm Action Window 

 

 

Figure 4.2 shows the confirm action window will show up after pressing the 

‗Healthy State‘ push button. Pressing ‗Yes‘ pushbutton at confirm action window will 

open the simulation file for healthy state. 
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  Figure 4.3: Display the Healthy State Simulation Window 

 

 

 By pressing ‗RUN‘ button, the simulation will run. The result can be obtained 

from the ‗SCOPE‘ block. The results for this simulation are as follow: 
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Figure 4.4: The three Phase Voltages 

 

 

 

Figure 4.5: The Three Phase Currents 

 

 

 Figure 4.4 and figure 4.5 show the respected voltages and currents. 
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Figure 4.6: Rotor Current 

 

 

 

Figure 4.7: Stator Current 

 

 

Figure 4.6 and figure 4.7 show the rotor and stator current. 
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Figure 4.8: Electromagnetic Torque 

 

 

 

Figure 4.9: Motor Speed 

 

 

Figure 4.8 and figure 4.9 shows the Electromagnetic torque and motor speed. 
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4.3 Simulation of Faulty State Motor 

 

 

 By returning to the previous GUI, there is another option can be selected, the 

Faulty State. By pressing the button, another GUI will showed up, giving another 

option to choose, Inter-turn Short Circuit, Single Phase Open Circuit, and Unbalanced 

Voltage supply. Each option will open the different simulation, according to it owns 

cases. 

 

 

 

Figure 4.10: GUI for Faulty State 

 

 

 By pressing ‗Interturn Short Circuit‘ button, another confirms action window 

will open. Pressing ‗Yes‘ will open the simulation. 
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4.3.1 Simulation for Inter-turn Short Circuit 

 

 

 

  Figure 4.11: Simulation for Inter-turn Short Circuit 

 

 

Run the simulation, the result can be obtained from the scope block. 
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Figure 4.12: Three Phase Voltages 

 

 

 

Figure 4.13: Three Phase Currents 

 

 

Figure 4.12 and figure 4.13 show the respected voltages and currents. 
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Figure 4.14: Rotor Current 

 

 

 

Figure 4.15: Stator Current 

 

 

Figure 4.14 and figure 4.15 show the rotor and stator current. 
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Figure 4.16: Electromagnetic Torque 

 

 

 

Figure 4.17: Motor Speed 

 

 

Figure 4.16 and figure 4.17 shows the Electromagnetic torque and motor speed. 
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4.3.2 Simulation for Unbalanced Voltage Supply 

 

 

 

  Figure 4.18: Simulation for Unbalanced Voltage Supply 

 

 

Run the simulation, the result can be obtained from the scope block. 
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Figure 4.19: Three phase voltages 

 

 

 

Figure 4.20: Three phase currents 

 

 

Figure 4.19 and figure 4.20 show the respected voltages and currents. 
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Figure 4.21: Rotor current 

 

 

 

Figure 4.22: stator current 

 

 

Figure 4.21 and figure 4.22 show the rotor and stator current. 
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Figure 4.23: electromagnetic torque 

 

 

 

Figure 4.24: Motor speed 

 

 

Figure 4.23 and figure 4.24 shows the Electromagnetic torque and motor speed. 
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4.3.3 Simulation for Single Phase Open Circuit 

 

 

 

Figure 4.25: Simulation for Single Phase Open Circuit 

 

 

Run the simulation, the result can be obtained from the scope block. 
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Figure 4.26: Three phase voltages 

 

 

 

Figure 4.27: Three phase currents 

 

 

Figure 4.26 and figure 4.27 show the respected voltages and currents. 
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Figure 4.28: Rotor current 

 

 

 

Figure 4.29: Stator current 

 

 

Figure 4.28 and figure 4.29 show the rotor and stator current. 
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Figure 4.30: Electromagnetic torque 

 

 

 

Figure 4.31: Motor speed 

 

 

Figure 4.30 and figure 4.31 shows the Electromagnetic torque and motor speed. 
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4.4 Result Analysis 

 

 

 From the results obtained, we can see changes in graph while comparing the 

faulty state result and the healthy state results. Some of them were only slightly 

different, but there are graphs that show major differences compared to a healthy one.  

 

 

4.4.1 Inter-turn Short Circuit 

 

 

 There are not much different between healthy state and inter-turn short 

circuit‘s results. But there is a slightly different in rotor current. Refer figure 4.6 and 

figure 4.14 for comparison. It looks same during the transient state, but the difference 

showed up during the steady state. There is a small ripple at the steady state for the 

inter-turn short circuit model. 

 

 

 

Figure 4.14: rotor current for interturn short circuit 
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4.4.2 Unbalanced voltage supply 

 

 

 Since the voltage source for unbalanced voltage supply model has been 

manipulated, the graphs for the voltages differ from the healthy state model. The 

same goes with the currents, rotor current and electromagnetic torque. Refer figure 

4.19, figure 4.20, figure 4.21 and figure 4.23 for comparison. 

 

 

 

Figure 4.19: voltages for unbalanced voltage supply 

 

 

 From the figure above, we can see that the amplitude of the graph is differing 

from each other. The same thing happens with the currents graph, which will be 

shown at figure 4.20.  
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Figure 4.20: currents for unbalanced voltage supply 

 

 

 

Figure 4.21: rotor current for unbalanced voltage supply 

 

 

For rotor current, it shows a greater scale of ripple during the steady state 

phase compared to the rotor current for interturn short circuit model (figure 4.14). 
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Figure 4.23: electromagnetic torque for unbalanced voltage supply 

 

 

For electromagnetic torque, the ripple also greater at the steady state 

compared to the healthy stage. 

 

 

4.4.3 Single phase open circuit 

 

 

 The result obtained from the single phase open circuit model show the largest 

differences compared to the healthy model. Since one phase is intentionally opened, 

the motor model could not work properly, thus affected the result obtained. When one 

phase is open circuit, the circuit become incomplete and the current reading become 

zero. Figure 4.27 below will show the differences.  
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Figure 4.27: currents for single phase open circuit 

 

 

 

Figure 4.28: rotor current for single phase open circuit 
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Figure 4.29: stator current for single phase open circuit 

 

 

 

Figure 4.30: electromagnetic torque for single phase open circuit 
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Figure 4.31: Motor speed for single phase open circuit 

 

 

The rotor current, stator current, electromagnetic field and the motor speed 

also show differences from a healthy one. Since one phase is opened, the motor not 

operate and the speed becomes zero. 
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CHAPTER 5 

 

 

 

 

CONCLUSION AND RECOMMENDATION 

 

 

 

 

5.1 Conclusion 

 

 

The purpose of this final year project, the Simulation of electrical faults of 

three phase induction motor drive system is to study the induction motor when fault 

occur. MATLAB tools are used in this project to prevent the motor from being 

damaged when the faults are intentionally applied to the motor.  

 

 

The data from the simulation can be as references when monitoring the motor. 

The data from actual motor can be compared to the data from simulation, the 

differences can be assumed as the motor may have some problem. This is important 

to detect any abnormalities in the motor, so that any fault occur can be detect at early 

stage.  
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5.2 Recommendation 

 

 

For future recommendation, several suggestions are proposed: 

 

 Replace the simulation model with actual motor to analyze real time 

theoretical data where it is time consuming.  

 The data obtained from this project can be used as references to develop fault 

detection system. 
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APPENDIXE A 

(Program for GUI) 
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Program for main window GUI 

 

 

function varargout = main(varargin) 

% MAIN M-file for main.fig 

%      MAIN, by itself, creates a new MAIN or raises the existing 

%      singleton*. 

% 

%      H = MAIN returns the handle to a new MAIN or the handle to 

%      the existing singleton*. 

% 

%      MAIN('CALLBACK',hObject,eventData,handles,...) calls the 

local 

%      function named CALLBACK in MAIN.M with the given input 

arguments. 

% 

%      MAIN('Property','Value',...) creates a new MAIN or raises the 

%      existing singleton*.  Starting from the left, property value 

pairs are 

%      applied to the GUI before main_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property 

application 

%      stop.  All inputs are passed to main_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help main 

  

% Last Modified by GUIDE v2.5 04-Nov-2009 06:51:14 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 
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gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @main_OpeningFcn, ... 

                   'gui_OutputFcn',  @main_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before main is made visible. 

function main_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to main (see VARARGIN) 

movegui ('center') 

[c,map]=imread('UMP','JPG'); 

image(c) 

set(gca,'visible','off') 

  

% Choose default command line output for main 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 
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% UIWAIT makes main wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = main_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

  

% --- Executes on button press in pushbutton1. 

function pushbutton1_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

user_response = about, close main; 

  

  

% --- Executes on button press in pushbutton2. 

function pushbutton2_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

user_response = PRE1, close main; 

  

  

% --- Executes on button press in pushbutton3. 

function pushbutton3_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 

user_response = modaldlg('Title','Confirm Close'); 

switch user_response 

case {'No'} 

    % take no action 

case 'Yes' 

    % Prepare to close GUI application window 

    %                  . 

    %                  . 

    %                  . 

    delete(handles.figure1) 

end 
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Program for about window 

 

 

function varargout = about(varargin) 

% ABOUT M-file for about.fig 

%      ABOUT, by itself, creates a new ABOUT or raises the existing 

%      singleton*. 

% 

%      H = ABOUT returns the handle to a new ABOUT or the handle to 

%      the existing singleton*. 

% 

%      ABOUT('CALLBACK',hObject,eventData,handles,...) calls the 

local 

%      function named CALLBACK in ABOUT.M with the given input 

arguments. 

% 

%      ABOUT('Property','Value',...) creates a new ABOUT or raises 

the 

%      existing singleton*.  Starting from the left, property value 

pairs are 

%      applied to the GUI before about_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property 

application 

%      stop.  All inputs are passed to about_OpeningFcn via 

varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help about 

  

% Last Modified by GUIDE v2.5 04-Nov-2009 09:45:41 
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% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @about_OpeningFcn, ... 

                   'gui_OutputFcn',  @about_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before about is made visible. 

function about_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to about (see VARARGIN) 

movegui ('center') 

[c,map]=imread('im','JPG'); 

image(c) 

set(gca,'visible','off') 

  

  

% Choose default command line output for about 

handles.output = hObject; 
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% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes about wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = about_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

  

% --- Executes on button press in pushbutton1. 

function pushbutton1_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

user_response = main, close about; 

  

  

% --- Executes on button press in pushbutton2. 

function pushbutton2_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

user_response = modaldlg('Title','Confirm Close'); 

switch user_response 

case {'No'} 

    % take no action 
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case 'Yes' 

    % Prepare to close GUI application window 

    %                  . 

    %                  . 

    %                  . 

    delete(handles.figure1) 

end 
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Program for PRE1 window 

 

 

function varargout = PRE1(varargin) 

% PRE1 M-file for PRE1.fig 

%      PRE1, by itself, creates a new PRE1 or raises the existing 

%      singleton*. 

% 

%      H = PRE1 returns the handle to a new PRE1 or the handle to 

%      the existing singleton*. 

% 

%      PRE1('CALLBACK',hObject,eventData,handles,...) calls the 

local 

%      function named CALLBACK in PRE1.M with the given input 

arguments. 

% 

%      PRE1('Property','Value',...) creates a new PRE1 or raises the 

%      existing singleton*.  Starting from the left, property value 

pairs are 

%      applied to the GUI before PRE1_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property 

application 

%      stop.  All inputs are passed to PRE1_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help PRE1 

  

% Last Modified by GUIDE v2.5 04-Nov-2009 10:51:13 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 
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gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @PRE1_OpeningFcn, ... 

                   'gui_OutputFcn',  @PRE1_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before PRE1 is made visible. 

function PRE1_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to PRE1 (see VARARGIN) 

movegui ('center') 

[c,map]=imread('UMP','JPG'); 

image(c) 

set(gca,'visible','off') 

  

% Choose default command line output for PRE1 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 
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% UIWAIT makes PRE1 wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = PRE1_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

  

% --- Executes on button press in pushbutton4. 

function pushbutton4_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

user_response = main, close PRE1; 

  

  

% --- Executes on button press in pushbutton5. 

function pushbutton5_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

user_response = modaldlg('Title','Confirm Close'); 

switch user_response 

case {'No'} 

    % take no action 

case 'Yes' 

    % Prepare to close GUI application window 

    %                  . 

    %                  . 
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    %                  . 

    delete(handles.figure1) 

end 

  

  

% --- Executes on button press in pushbutton2. 

function pushbutton2_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

user_response = run_healthy; 

  

% --- Executes on button press in pushbutton3. 

function pushbutton3_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

user_response = PRE2, close PRE1; 
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Program for PRE2 window 

 

 

function varargout = PRE2(varargin) 

% PRE2 M-file for PRE2.fig 

%      PRE2, by itself, creates a new PRE2 or raises the existing 

%      singleton*. 

% 

%      H = PRE2 returns the handle to a new PRE2 or the handle to 

%      the existing singleton*. 

% 

%      PRE2('CALLBACK',hObject,eventData,handles,...) calls the 

local 

%      function named CALLBACK in PRE2.M with the given input 

arguments. 

% 

%      PRE2('Property','Value',...) creates a new PRE2 or raises the 

%      existing singleton*.  Starting from the left, property value 

pairs are 

%      applied to the GUI before PRE2_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property 

application 

%      stop.  All inputs are passed to PRE2_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help PRE2 

  

% Last Modified by GUIDE v2.5 04-Nov-2009 13:07:18 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 
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gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @PRE2_OpeningFcn, ... 

                   'gui_OutputFcn',  @PRE2_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before PRE2 is made visible. 

function PRE2_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to PRE2 (see VARARGIN) 

movegui ('center') 

[c,map]=imread('UMP','JPG'); 

image(c) 

set(gca,'visible','off') 

  

  

% Choose default command line output for PRE2 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 
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% UIWAIT makes PRE2 wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = PRE2_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

  

% --- Executes on button press in pushbutton4. 

function pushbutton4_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

user_response = PRE1, close PRE2; 

  

  

% --- Executes on button press in pushbutton5. 

function pushbutton5_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

user_response = modaldlg('Title','Confirm Close'); 

switch user_response 

case {'No'} 

    % take no action 

case 'Yes' 

    % Prepare to close GUI application window 
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    %                  . 

    %                  . 

    %                  . 

    delete(handles.figure1) 

end 

  

  

% --- Executes on button press in pushbutton1. 

function pushbutton1_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

user_response = run; 

  

  

% --- Executes on button press in pushbutton2. 

function pushbutton2_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

user_response = run_unbal_a; 

  

  

% --- Executes on button press in pushbutton3. 

function pushbutton3_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

user_response = run_os_a; 
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Program for closing window 

 

 

function varargout = modaldlg(varargin) 

% MODALDLG M-file for modaldlg.fig 

%      MODALDLG by itself, creates a new MODALDLG or raises the 

%      existing singleton*. 

% 

%      H = MODALDLG returns the handle to a new MODALDLG or the 

handle to 

%      the existing singleton*. 

% 

%      MODALDLG('CALLBACK',hObject,eventData,handles,...) calls the 

local 

%      function named CALLBACK in MODALDLG.M with the given input 

arguments. 

% 

%      MODALDLG('Property','Value',...) creates a new MODALDLG or 

raises the 

%      existing singleton*.  Starting from the left, property value 

pairs are 

%      applied to the GUI before modaldlg_OpeningFcn gets called.  

An 

%      unrecognized property name or invalid value makes property 

application 

%      stop.  All inputs are passed to modaldlg_OpeningFcn via 

varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help modaldlg 
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% Last Modified by GUIDE v2.5 10-Oct-2009 23:50:25 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @modaldlg_OpeningFcn, ... 

                   'gui_OutputFcn',  @modaldlg_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

% --- Executes just before modaldlg is made visible. 

function modaldlg_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to modaldlg (see VARARGIN) 

  

% Choose default command line output for modaldlg 

handles.output = 'Yes'; 

  

% Update handles structure 

guidata(hObject, handles); 
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% Insert custom Title and Text if specified by the user 

% Hint: when choosing keywords, be sure they are not easily confused  

% with existing figure properties.  See the output of set(figure) 

for 

% a list of figure properties. 

if(nargin > 3) 

    for index = 1:2:(nargin-3), 

        if nargin-3==index, break, end 

        switch lower(varargin{index}) 

         case 'title' 

          set(hObject, 'Name', varargin{index+1}); 

         case 'string' 

          set(handles.text1, 'String', varargin{index+1}); 

        end 

    end 

end 

  

% Determine the position of the dialog - centered on the callback 

figure 

% if available, else, centered on the screen 

FigPos=get(0,'DefaultFigurePosition'); 

OldUnits = get(hObject, 'Units'); 

set(hObject, 'Units', 'pixels'); 

OldPos = get(hObject,'Position'); 

FigWidth = OldPos(3); 

FigHeight = OldPos(4); 

if isempty(gcbf) 

    ScreenUnits=get(0,'Units'); 

    set(0,'Units','pixels'); 

    ScreenSize=get(0,'ScreenSize'); 

    set(0,'Units',ScreenUnits); 

  

    FigPos(1)=1/2*(ScreenSize(3)-FigWidth); 

    FigPos(2)=2/3*(ScreenSize(4)-FigHeight); 

else 

    GCBFOldUnits = get(gcbf,'Units'); 

    set(gcbf,'Units','pixels'); 
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    GCBFPos = get(gcbf,'Position'); 

    set(gcbf,'Units',GCBFOldUnits); 

    FigPos(1:2) = [(GCBFPos(1) + GCBFPos(3) / 2) - FigWidth / 2, ... 

                   (GCBFPos(2) + GCBFPos(4) / 2) - FigHeight / 2]; 

end 

FigPos(3:4)=[FigWidth FigHeight]; 

set(hObject, 'Position', FigPos); 

set(hObject, 'Units', OldUnits); 

  

% Show a question icon from dialogicons.mat - variables 

questIconData 

% and questIconMap 

load dialogicons.mat 

  

IconData=questIconData; 

questIconMap(256,:) = get(handles.figure1, 'Color'); 

IconCMap=questIconMap; 

  

Img=image(IconData, 'Parent', handles.axes1); 

set(handles.figure1, 'Colormap', IconCMap); 

  

set(handles.axes1, ... 

    'Visible', 'off', ... 

    'YDir'   , 'reverse'       , ... 

    'XLim'   , get(Img,'XData'), ... 

    'YLim'   , get(Img,'YData')  ... 

    ); 

  

% Make the GUI modal 

set(handles.figure1,'WindowStyle','modal') 

  

% UIWAIT makes modaldlg wait for user response (see UIRESUME) 

uiwait(handles.figure1); 

  

% --- Outputs from this function are returned to the command line. 

function varargout = modaldlg_OutputFcn(hObject, eventdata, handles) 
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% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

% The figure can be deleted now 

delete(handles.figure1); 

  

% --- Executes on button press in pushbutton1. 

function pushbutton1_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

handles.output = get(hObject,'String'); 

  

% Update handles structure 

guidata(hObject, handles); 

  

% Use UIRESUME instead of delete because the OutputFcn needs 

% to get the updated handles structure. 

uiresume(handles.figure1); 

  

% --- Executes on button press in pushbutton2. 

function pushbutton2_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

handles.output = get(hObject,'String'); 

  

% Update handles structure 
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guidata(hObject, handles); 

  

% Use UIRESUME instead of delete because the OutputFcn needs 

% to get the updated handles structure. 

uiresume(handles.figure1); 

  

  

% --- Executes when user attempts to close figure1. 

function figure1_CloseRequestFcn(hObject, eventdata, handles) 

% hObject    handle to figure1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

if isequal(get(handles.figure1, 'waitstatus'), 'waiting') 

    % The GUI is still in UIWAIT, us UIRESUME 

    uiresume(handles.figure1); 

else 

    % The GUI is no longer waiting, just close it 

    delete(handles.figure1); 

end 

  

  

% --- Executes on key press over figure1 with no controls selected. 

function figure1_KeyPressFcn(hObject, eventdata, handles) 

% hObject    handle to figure1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Check for "enter" or "escape" 

if isequal(get(hObject,'CurrentKey'),'escape') 

    % User said no by hitting escape 

    handles.output = 'No'; 

     

    % Update handles structure 

    guidata(hObject, handles); 
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    uiresume(handles.figure1); 

end     

     

if isequal(get(hObject,'CurrentKey'),'return') 

    uiresume(handles.figure1); 

end     

 

 

 

 

 

 

 

 

 


