
i

AI SOLUTION TO ECONOMIC DISPATCH

NUR FARHANAH BT WAKIMAN

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor of Electrical Engineering (Hons.) (Power System)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

NOVEMBER,2009

ii

DECRALATION

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : NUR FARHANAH BT WAKIMAN

Date : 23 NOVEMBER 2009

iii

DEDICATION

Specially dedicated to

 My beloved family,friends and those who have guided and inspired me

 Thank you for the endless support and encouragement

iv

ACKNOWLEDGMENT

Praise to Allah S.W.T for giving me time and ability to complete this BEE4724

(Engineering Project II) I wish to express my deepest and sincere gratitude to my project

supervisor DR. AHMED N. ABD ALLA, l for his endless support, guidance,

constructive and keen interest in supervising this project.

Special thanks to University Malaysia Pahang for supporting and providing

equipment and information sources that assisted my studies and projects.

My heartiest thanks to my beloved family especially both of my parents

Wakiman b. Sario and Rahana bt Zakaria who always pray for my success continuously,

giving me all the guidance, support and love that I needs all the time.

To all my lovely friends who always willingly assist and support me throughout

my journey of education, you all deserve my wholehearted appreciation. Many thanks

Thank you.

v

ABSTRACT

In this study, proposes an AI optimization method for solving the economic

dispatch (ED) problem in power systems. Many nonlinear characteristics of the

generator, such as ramp rate limits, prohibited operating zone, and non-smooth

cost functions are considered using the proposed method in practical generator

operation. The feasibility of the proposed method is demonstrated for two different

systems, and it is compared with the Conventional method in terms of the solution

quality and computation efficiency. The experimental results show that the

proposed PSO method was indeed capable of obtaining higher quality solutions

efficiently in ED problems.

vi

ABSTRAK

Dalam kajian ini, mencadangkan satu kaedah pengoptimuman AI untuk penyelesaian

masalah dalam penghantaran sistem-sistem tenaga ekonomi secara ekonomik. Banyak

ciri penjana tak linear, seperti kadar tanjakan mengehadkan, zon beroperasi terlarang,

dan fungsi kos tidak licin dianggap menggunakan cadangkan kaedah dalam operasi

penjana praktikal. Kemungkinan mencadangkan kaedah adalah didemonstrasikan untuk

dua sistem berbeza, dan ia dibandingkan dengan kaedah konvensional dalam syarat-

syarat bagi kualiti penyelesaian dan kecekapan pengiraan. Pertunjukan hasil percubaan

yang mencadangkan kaedah PSO memang mampu mendapatkan penyelesaian-

penyelesaian berkualiti lebih tinggi dengan cekap dalam masalah-masalah penghantaran

sistem-sistem tenaga ekonomi secara ekonomik.

vii

 CHAPTER

TITLE PAGE

 Title page i

Declaration ii

Dedication iii

Acknowledgement iv

Abstract v

Abstrak vi

Table of Content vii

List of Table x

List of Figure xi

List of Abbreviation xii

List of Appendices xiv

viii

TABLE OF CONTENT

CHAPTER TITLE PAGE

1 INTRODUCTION 1

 1.1 Background 1

 1.2 Objective 2

 1.3 Scopes of Project 3

 1.4 Thesis Organization 3

2 LITERATURE REVIEW

 2.1 Introduction 4

 2.2 Economic Dispatch of Power Generation 4

 2.3 Artificial Intelligent 6

 2.3.1 Particle Swarm Optimization 7

 2.4 Problem Formulation 8

 2.5 MATLAB GUI 10

 2.5.1 A Brief Introduction of GUIDE 11

 2.5.2 Two Basic Tasks in Process of Implementing a GUI 11

ix

3 METHODOLOGY

 3.1 Introduction 13

 3.2 Flow Chart of Project 15

 3.3 Development Command 17

 3.3.1 Creating MATLAB File 17

` 3.4 A Brief Introduction of GUIDE 20

 3.4.1 Creating Graphical User Interfaces (GUIs) 20

 3.4.2 Layout the GUI 22

 3.4.2.1 Component Palette 24

 3.4.3 Property Inspector 26

 3.5 Program the GUI 27

4 RESULT AND ANALYSIS

 4.1 Introduction 29

 4.2 Economic Dispatch of Power Generation Software Package 30

 4.2.1 Introduction 30

 4.2.2 Detail of Software Package 31

 4.2.3 GUI Programming. 36

 4.3 Analysis Using Conventional Technique 36

4.3.1 Introduction 36

4.3.2 Solve Programming 37

x

4.4 Analysis Using PSO Technique 38

4.4.1 Introduction 38

4.4.2 PSO Programming 39

5 CONCLUSION AND RECOMMENDATION

 5.1 Conclusion 42

 5.2 Future Recommendation 42

 5.3 Commercialization 43

REFERENCES 44

APPENDIX A

APPENDIX B 55

APPENDIX C 60

xi

LIST OF TABLE

Table 3.1: Name and Function of Component Palette

xii

LIST OF FIGURE

Figure 2.1: One-line Diagram of the System

Figure 3.1: Illustrated the sequence of steps for work process.

Figure 3.2: Flow chart describing the Particle Swarm Optimization (PSO) algorithm

Figure 3.3: Toolbar for M-file

Figure 3.4: New Blank M-File

Figure 3.5: Example of written Editor

Figure 3.6: Main Page of GUI.

Figure3.7: Layout Area of GUI

Figure 3.8: GUI Page

Figure 3.9: Property Inspector

Figure 3.10: Example of M-file

Figure 4.1: MATLAB Set Path

Figure 4.2: Main Page of Software Package

Figure 4.3: Menu Page

Figure 4.4: Information of AI and PSO

Figure 4.5: Information of ED

Figure 4.6: Type of analysis window

xiii

Figure 4.7: Result for conventional technique

Figure 4.8: Result when using PSO method

xiv

LIST OF ABBREVIATION

PSO Particle Swarm Optimization

GUI Graphical User Interface

AI Artificial Intelligent

ED Economic Dispatch

UMP Universiti Malaysia Pahang

iii

“I hereby acknowledge that the scope and quality of this thesis is qualified for the

award of the Bachelor Degree of Electrical Engineering (Electronics)”

Signature : __

 Name : DR AHMED N. ABD ALLA

 Date : 23 NOVEMBER 2009

1

CHAPTER 1

INTRODUCTION

1.1 Background

In realities, power plants are not at same distance with the center of load, and the fuel

costs are different for each distance. Under normal operating condition the generating

capacities are more than total load demand and losses. Thus, there is one main option for

scheduling generation is called optimal dispatch. The optimal dispatch of power generation

are used to defined an effective real and reactive power scheduling to power plant and meet

the load demand at the same time minimize the operating cost. The function cost may present

economic cost, security system. In this study, the analysis will limited to the economic

dispatch of real power generation. Economic dispatch analysis has been studied by many

researchers using different method.[1] Previous efforts on solving economic dispatch

problems have employed various mathematical programming methods and optimization

techniques. The solution of the power system depends largely on the type of the algorithm

used for optimization. The power system optimization problem need algorithm with faster

rate of convergence, very high accuracy and capacity to handle very large complexity.[2] in

order to make numerical methods more convenient for solving economic dispatch problem,

artificial intelligent technique such as the Hopfield Neural networks, Genetic

2

Algorithms(GA) or Simulated Annealing(SA) and Particle Swarm Optimization (PSO) has

been successfully used to solve power optimization problem.[2]

1.2 Objective

The objective of this project is to;

i. Find the optimum value that simultaneously minimize the generation cost rate

ii. To obtain simulation on economic dispatch of power generation using MATLAB

iii. To compare the result achieve by using conventional technique and PSO technique

iv. Build the user friendly software to solve the economic dispatch problem.

3

1.3 Scope of Project

In this project, there are several scopes that need to cover such as;

i. Study and analyze the use method Particle Swarm Optimization (PSO) to obtain

the optimal dispatch power generation.

ii. Simulation and analysis for Economic Dispatch in MATLAB.

iii. Simulation using MATLAB GUI and this stage will be classified to two phases.

Development of the GUI gone in two phases, the first phase is designing the

layout of GUI and the second phase is the MATLAB GUI programming.

1.4 Thesis Organization

This thesis consists of five chapters including this chapter. The content of each chapter are

outlined as follow:

Chapter 2 Contain a detailed description each part of project. It will explain about the

MATLAB GUIDE and MATLAB programming.

Chapter 3 Include the project methodology. This will explain how the project is organized

and the flow of the process in completing this project

Chapter4 Present the expected result of simulation run using MATLAB GUIDE

Finally the conclusion and the future recommendation of this project and presented are presented

in chapter 5.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Literature reviews are very important as a reference for understanding before making the

software package as good as possible. The author has studied many journal and article that had

been done by previous researcher.

2.2 Economic Dispatch of Power Generation

Electric utility investment practices and operation have been designed to ensure

affordable, reliable electricity service to consumers. Affordability and reliability require

thoughtful, long-term investments in generation and transmission as well as sophisticated

operation of these assets. Economic dispatch (ED) focuses on short-term operational decisions,

specifically how to best use available resources to meet customers‟ electricity needs reliably and

5

at lowest cost. [11] Before explaining further detail about ED let‟s look for the definition of ED,

ED is The operation of generation facilities to produce energy at the lowest cost to reliably serve

consumers, recognizing any operational limits of generation and transmission facilities. [12]. In

order to solve the economic dispatch problem we have to used the conventional method that

include lambda-iteration method, the base point and participation factors method and the

gradient method.[3]. In these numerical methods for solution of economic dispatch problem, an

essential assumption is that the incremental cost curves of the units are monotonically increasing

piecewise-linear functions. Unfortunately, this assumption may render these methods infeasible

because of its nonlinear characteristic in practical systems. Furthermore, for a large-scale mixed-

generating system, the conventional method has oscillatory problem resulting in a longer

solution time [4,5]. A dynamic programming then being introduces to solve the economic

dispatch problem with valve-point modeling, but this method may cause the dimensions of

economic dispatch problem to become extremely large, thus requiring enormous computational

efforts. In this paper, the process to solve a constrained economic dispatch problem using a PSO

algorithm was develop to obtain efficiently a high-quality solution within practical power system

operation. The PSO algorithm was utilized mainly to determine the optimal generation power of

each unit that was submitted to operation at the specific period, thus minimizing the total

generation cost [2]

6

2.3 Artificial Intelligent

Artificial Intelligent (AI) is the ability of a computer or other machine to perform those

activities that are normally thought to require intelligence. Many activities involve intelligent

action such as problem solving, perception, learning, planning and other symbolic reasoning,

creativity, and language.

The applications of AI are used to solve economic dispatch problems for units with

piecewise quadratic fuel cost functions and prohibited zones constraint. There a few techniques

are used to solve the economic dispatch problem such as Hopfield neural networks, genetic

algorithms (GA), simulated annealing (SA) and Particle swarm optimization (PSO).

In this paper, a PSO method for solving the economic dispatch problem in power system

is proposed. The process to solve a constrained ED problem using a PSO algorithm was

developed to obtain efficiently a high-quality solution within practical power system operation. It

was developed through simulation of a simplified social system, and has been found to be robust

in solving continuous nonlinear optimization problems. The PSO technique can generate high-

quality solutions within shorter calculation time and stable convergence characteristic than other

stochastic methods.

7

2.3.1 Particle Swarm Optimization.

Particle swarm optimization (PSO) is a population based stochastic optimization

technique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social behavior of

bird flocking or fish schooling.

PSO shares many similarities with evolutionary computation techniques such as Genetic

Algorithms (GA). The system is initialized with a population of random solutions and searches

for optima by updating generations. However, unlike GA, PSO has no evolution operators such

as crossover and mutation. In PSO, the potential solutions, called particles, fly through the

problem space by following the current optimum particles.

Each particle keeps track of its coordinates in the problem space which are associated

with the best solution (fitness) it has achieved so far. (The fitness value is also stored.) This value

is called pbest. Another "best" value that is tracked by the particle swarm optimizer is the best

value, obtained so far by any particle in the neighbors of the particle. This location is called lbest.

When a particle takes all the population as its topological neighbors, the best value is a global

best and is called gbest.

The particle swarm optimization concept consists of, at each time step, changing the

velocity of (accelerating) each particle toward its pbest and lbest locations (local version of

PSO). Acceleration is weighted by a random term, with separate random numbers being

generated for acceleration toward pbest and lbest locations.

 In past several years, PSO has been successfully applied in many research and application

areas. It is demonstrated that PSO gets better results in a faster, cheaper way compared with

other methods. Although the PSO seems to be sensitive to the tuning of some weights or

parameters, many researches are still in progress for proving its potential in solving complex

power system problem. In this project, a PSO method for solving the economic dispatch problem

in power generation is proposed. The proposed method considers the nonlinear characteristic of a

8

generator such as ramp rate limits and prohibited operating zone for actual power generation

operation. The feasibility of the proposed method was demonstrated for three different system,

respectively, as compared with the real coded GA method in the solution quality and

computation efficiency.

2.4 Problem Formulation

Figure 2.1 shows the one-line diagram of a simple 5-bus power system with generator at buses 1,

2 and 3 and load at buses 2, 3, 4 and 5.

Figure 2.1 : One-line Diagram of the System

The basic economic dispatch problem can described mathematically as a minimization of

problem of minimizing the total fuel cost of all committed plants subject to the constraints. The

power output of any generator should not exceed its rating nor should it be below that necessary

for stable boiler operation. Thus, the generations are restricted to lie within given minimum and

maximum limits. The problem is to find the real power generation for each plant such that the

objective function (i.e., total production cost) as define by (Equ .6)

9

 (Equ. 6)

 is minimum, subject to the constraint given by (Equ. 7)

 (Equ. 7)

and the inequality constraints given by

 (Equ 8)

Where is the total production cost, is the production cost of th plant, is the

generation of th plant, is the total load demand, and is the total number of dispatchable

generating plants , and are the minimum and maximum generating limits

respectively for plant .

A typical approach is to augment the constraints into objective function by using the

Lagrange multipliers

 (Equ. 8)

The Khun-Tucker conditions complement the Lagrangian conditions to include the

inequality constraints as additional terms. The necessary condition for the optimal dispatch with

losses neglected becomes

 for

 for (equ 9)

 for

The numerical solution for an estimated , are found from the coordination equation

(Equ 11) and iteration is continued until .

10

 (Equ 11)

As soon as any plant reaches a maximum or minimum, the plant becomes pegged at the

limit. In effect, the plant output becomes a constant, and only the inviolate plants must operate at

equal incremental cost.

2.5 MATLB GUI

A graphical user interface (GUI) is a graphical display that contains devices, or

components, that enable a user to perform interactive tasks. A good GUI can make programs

easier to use by providing them with a friendly appearance and with control icon like

pushbuttons, list boxes, sliders, menus, radio button and so forth. To perform these tasks, the

user of the GUI does not have to create a script or type commands at the command line. Often,

the user does not have to know the details of the task at hand. The GUI should behave in an

understandable and predictable manner, so that a user knows what to expect when he or she

performs an action. For example, when a mouse click occurs on a pushbutton, the GUI should

initiate the action described on the label of the button [8] [9].

Each component, and the GUI itself, are associated with one or more user-written

routines known as callbacks. The execution of each callback is triggered by a particular user

action such as a button push, mouse click, selection of a menu item, or the cursor passing over a

component. The creator of the GUI will provide these callbacks. MATLAB enables the user to

create GUIs programmatically or with GUIDE, an interactive GUI builder. It also provides

functions that simplify the creation of standard dialog boxes. The technique had chosen depends

on the creator experience, preferences, and the kind of GUI that want to create [8] [9].

11

GUIDE, the MATLAB graphical user interface development environment, provides a set

of tools for creating graphical user interfaces (GUIs). These tools simplify the process of laying

out and programming GUIs [8] [9].

2.5.1 A Brief Introduction of GUIDE

 GUIDE, the MATLAB graphical user interface development environment, provides a set

of tools for creating graphical user interfaces (GUIs). These tools simplify the process of laying

out and programming GUIs [8].

 GUIDE is a primarily a set of layout tools that also generates an M-file that contains code

to handle the initialization and launching of the GUI [8]. This M-file also provides a framework

for the implementation of the callbacks and the functions will execute when the users activate the

component in the GUI [8].

2.5.2 Two Basic Tasks in Process of Implementing a GUI

 There are two basic tasks in Process of Implementing a GUI. First, laying out a GUI

where MATLAB implement GUIs as figure windows containing various styles of uicontrol

12

(User Interface) objects. Seconds, programming the GUI where each object must be program to

perform the intended action when activated by the user of GUI.

13

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter presents the methodology of this project. This methodology describes on

how the project is organize and the flow of the steps in order to complete this project. The

methodology is divided into two parts which is simulation and analysis of optimal dispatch in

MATLAB. There are three main steps are needed for software development of this project.

Before the project being developed using MATLAB, it is needed to make sure to study

and understand the method of economic dispatch of power generation analysis and how

MATLAB GUIDE works. The flow chart in figure 3.1 illustrated the sequence of steps for work

process. The first step is to study and understands about optimal dispatch analysis and

MATLAB. Second step is to develop the programming of PSO method and running the

simulation in MATLAB. Figure 3.2 show the flow chart that describing the Particle Swarm

Optimization (PSO) algorithm, the first step of the algorithm is to randomly initialize the

position and velocity of each particle in the swarm, dispersing them uniformly across the search

space [6].The fundamental process of particle swarm optimization is how the particles move

14

through solution space. The termination condition can be the number of iterations, the

convergence of the swarm or the achievement of a particular goal fitness value [7].

15

3.2 Flow Chart of Project

Figure3.1: Flow chart for work process

Case Study

Building MATLAB

Program

Identify Appropriate

Command

Study & Learn

MATLAB

Simulation &

Analysis

Start Building GUI
Study & Learn GUI

Propose to

Supervisor

Report Submission &

Presentation PSM2

START

END

Testing

OK?

Analysis

OK?

Testing

OK?

NO

YES

NO

YES

NO

Submit Report PSM

1

16

Figure 3.2: Flow chart describing the Particle Swarm Optimization (PSO) algorithm

17

3.3 Development Command

The MATLAB software provides a full programming language that enables user to write

a series of MATLAB statements into a file and then execute them with a single command. User

will write a program in an ordinary text file, giving the file a name of filename.m. The term use

for filename becomes the new command that MATLAB associates with the program. The file

extension of .m makes this a MATLAB M-file.[10] M-files can be “scripts” that simply execute

a series of MATLAB statements, or they can be” functions” that also accept input arguments and

produce output.

3.3.1 Creating MATLAB file

To create a new text file in the Editor/Debugger, either click the New M-file button on

the MATLAB desktop toolbar, or select File > New > M-File from the MATLAB desktop as

shown in figure 3.3.

18

Figure 3.3: Toolbar for M-file

After clicking the M-file toolbar, a new window will pop-up as shown in figure 3.4 and it

is ready to use to make a programming.

19

Figure 3.4: New Blank M-File

Now the M-file Editor is ready to use for programming. Figure 3.5 shows the example of

the Editor/Debugger outside of the desktop opened to an existing M-file, and calls out some of

the tool's useful features.

20

Figure 3.5: Example of written Editor

3.4 A Brief Introduction of GUIDE

GUIDE, the MATLAB Graphical User Interface development environment, provides a

set of tools for creating graphical user interfaces (GUIs). Usually, GUI will give the user to

design the layout of a program. In this section, we will discuss about the development in GUI on

how this project be conducted.

21

3.4.1 Creating Graphical User Interfaces (GUIs)

To start GUIDE, enter guide at MATLAB prompt. The display of GUIDE Quick Start

dialog, is shown in figure 3.3

Figure 3.6: Main Page of GUI.

 From the Quick Start dialog, user can create a new GUI from one of the GUIDE

templates or open an existing GUI. The Create New Guide part will be used to create a new GUI

program and after select the option, click OK. The result should be appearing as shown in figure

3.4.

22

Figure3.7 : Layout Area of GUI

The Open Existing GUI used to callback the previous project that we have saved before.

3.4.2 Layout the GUI

 Using the GUIDE Layout Editor, the user can lay out a GUI easily by clicking and

dragging GUI component such as panels, buttons, text fields, sliders, menus, and so on into the

layout area. All of these component palettes have their own function in GUI. Figure 3.5 shows

the GUI page and the name for each button.

23

Figure 3.8: GUI Page

24

3.4.2.1 Component Palette

Table 3.1 below shows the type of components that include in the GUI page and the

function for each component.

Component Icon Function

Push Button

Push buttons generate an action when clicked. For example, an OK

button might apply settings and close a dialog box. When you

click a push button, it appears depressed and when you release the

mouse button, the push button appears raised.

Toggle Button

Toggle buttons generate an action and indicate whether they are

turned on or off. When you click a toggle button, it appears

depressed, showing that it is on. When you release the mouse

button, the toggle button remains depressed until you click it a

second time. When you do so, the button returns to the raised state,

showing that it is off. Use a button group to manage mutually

exclusive toggle buttons.

Radio Button

Radio buttons are similar to check boxes, but radio buttons are

typically mutually exclusive within a group of related radio

buttons. That is, when you select one button the previously

selected button is deselected. To activate a radio button, click the

mouse button on the object. The display indicates the state of the

button. Use a button group to manage mutually exclusive radio

buttons.

Check Box

Check boxes can generate an action when checked and indicate

their state as checked or not checked. Check boxes are useful when

providing the user with a number of independent choices, for

example, displaying a toolbar.

25

Edit Text

Edit text components are fields that enable users to enter or modify

text strings. Use edit text when you want text as input. Users can

enter numbers but you must convert them to their numeric

equivalents.

Static Text

Static text controls display lines of text. Static text is typically used

to label other controls, provide directions to the user, or indicate

values associated with a slider. Users cannot change static text

interactively.

Slider

Sliders accept numeric input within a specified range by enabling

the user to move a sliding bar, which is called a slider or thumb.

Users move the slider by clicking the slider and dragging it, by

clicking in the trough, or by clicking an arrow. The location of the

slider indicates the relative location within the specified range.

List Box

List boxes display a list of items and enable users to select one or

more items.

Pop-Up Menu

Pop-up menus open to display a list of choices when users click

the arrow.

Axes

Axes enable your GUI to display graphics such as graphs and

images. Like all graphics objects, axes have properties that you

can set to control many aspects of its behavior and appearance. See

Axes Properties in the MATLAB Graphics documentation and

commands such as the following for more information on axes

objects: plot, surf, line, bar, polar, pie, contour, and mesh. See

Functions by Category in the MATLAB Function Reference

documentation for a complete list.

Panel Panels arrange GUI components into groups. By visually grouping

related controls, panels can make the user interface easier to

26

understand. A panel can have a title and various borders. Panel

children can be user interface controls and axes as well as button

groups and other panels. The position of each component within a

panel is interpreted relative to the panel. If you move the panel, its

children move with it and maintain their positions on the panel.

Button Group

Button groups are like panels but are used to manage exclusive

selection behavior for radio buttons and toggle buttons.

ActiveX

Component

ActiveX components enable you to display ActiveX controls in

your GUI. They are available only on the Microsoft Windows

platform. An ActiveX control can be the child only of a figure, i.e.,

of the GUI itself. It cannot be the child of a panel or button group.

See ActiveX Control in this document for an example. See

MATLAB COM Client Support in the MATLAB External

Interfaces documentation to learn more about ActiveX controls.

Table 3.1: Name and Function of Component Palette

3.4.3 Property Inspector

 After placing the component in the layout area, the properties of each GUI component

must be set. The Property Inspector from the View menu is chosen to display the property

Inspector dialog box. When the component in the Layout Editor is chosen, the Property Inspector

will display that component‟s properties. If no component is selected, the Property Inspector

displays the properties of the GUI figure. Figure 3.6 shows the dialog box for Property Inspector

27

Figure 3.9: Property Inspector

 The Property Inspector is used to give each component a name and to set the

characteristic of each component such as color, name, font size, tag and others.

3.5 Program the GUI

 GUIDE automatically generates an M-file that controls how the GUI operates.

The M-files initializes the GUI and contains a framework for all the GUI callbacks, the

commands that are executed when a user clicks a GUI component.

28

Figure 3.10: Example of M-file

 Figure 3.7 was the example of M-file that is generated when the complete layout has been

design and saved. By using M-file, the behavior of the GUI can be programmed by several code

or function. This code will be programmed to give responded for component palette that has

been designed in the Layout area.

 The programming M-file was the most difficult part in developing GUI because it need

an extra reading on the coding before GUI can performed.

29

CHAPTER 4

RESULT AND ANALYSIS

4.1 Introduction

 The discussion of this chapter was categorized into two parts. The first parts consist of

the discussions on the software package development using MATLAB Graphical User Interface

Development Environment. Meanwhile the second part consists of the Economic Dispatch

simulation result with MATLAB based on problem in Section 3.

30

4.2 Economic Dispatch of Power Generation Software Package

4.2.1 Introduction

 Economic Dispatch of Power Generation Software Package is a MATLAB GUI files that

has been developed to solve the economic dispatch problem. The whole software package file

was installed in the C:\Program Files\MATLAB\R2007b\work\power. This is important because

if this step is not allowed, the user will face difficulties to load the software. The first time user

must add entire folder by click the „Add with Subfolder…‟ as shown in figure 4.1. After the

adding path process completed by clicking save button, users just have to type „EDP‟ in the

command window to load the software package.

Figure 4.1: MATLAB Set Path

31

To view the list of folder in EDP, user can type „cd(C:\Program

Files\MATLAB\R2007b\work\power) and followed by „ls‟. If the users want to learn more about

this command, user can type „help cd‟ or „help ls‟ in command window in MATLAB.

4.2.2 Detail of Software Package

After entered the MATLAB window by clicking twice at MATLAB icon, user must load

the software package. In order to load the Economic Dispatch of Power Generation Software

Package, user must type „EDP‟ in MATLAB command window. The main page of the software

package will appear as shown in figure 4.2

Figure 4.2: Main Page of Software Package

This main page will give an introduction about the project such as the name of the

subject, subject code, title of project, project code, the designer and the designer identity number.

32

In this page also include one push button name „ENTER‟. This push button will open the new

window named MENU. Figure 4.3 shows the MENU page.

 This window contain four push button which are „ARTIFICIAL INTELLIGENT‟,

„ECONOMIC DISPATCH‟, „ECONOMIC DISPATCH ANALYSIS‟ and „CLOSE‟. The first

button which is the „ARTIFICIAL INTELLIGENCE‟ button, it will give the user some

information about the definition of Artificial Intelligence (AI) and Particle Swarm Optimization

(PSO) as shown in figure 4.4. For the second button, „ECONOMIC DISPATCH‟ button, same as

the first button this window gives brief information about Economic Dispatch (ED) of power

generation analysis as shown in figure 4.5. The third button, „ECONOMIC DISPATCH

ANAYSIS‟ button will open new window names „TYPE‟ which is shown in figure 4.6. And the

last button is „CLOSE‟ button. When the users click this button, a pop-up window will appear

shown in figure 4.7. The pop-up window will ask user whether they are very sure to close the

entire windows that are opened. These functions are applied for „MENU‟ window only. Another

„CLOSE‟ button that use on other window can just close the window only.

Figure 4.3: Menu Page

33

Figure 4.4: Information of AI and PSO

Figure 4.5: Information of ED

34

This figure is generated by economic.fig,economic.asv and economic.m file here the first

two will generate the window. This window briefly gives the information to the user about

economic dispatch of power generation analysis. The „CLOSE‟ pushbutton will close this

window and call back the menu page of the package software window.

Figure 4.6: Type of analysis window

This window will ask the user what type of analysis they want to use for the analysis.

There are two types of analysis which is using conventional technique and PSO technique. This

two buttons will run the programming and give different output as shown in figure 4.7 and 4.8.

each time the user choose type of analysis there will be a pop-up window asking user whether

they are sure to used this type of analysis.

Figure 4.8 shows the output of analysis when users choose to used conventional

technique.

35

Figure 4.7: Result for conventional technique

Figure 4.8: Result for PSO technique

36

4.2.3 GUI Programming.

 After designing the GUI and setting component properties, the need to be programmed.

User can programmed the GUI by coding one or more callbacks for each of components.

Callbacks are functions that used to execute in response to some action by the user.

 GUI callback can be found in an M-file generated by the GUIDE automatically. GUIDE

add templates for the most commonly used callbacks to this M-files, but user may want to add

other M-files used to edit the files.

 The created GUI uses the dialog box and image to make the GUI more attractive. The

coding used during programming can be referred on the appendix.

4.3 Analysis Using Conventional Technique

4.3.1 Introduction

 ECONOMIC dispatch (ED) problem is one of the fundamental issues in power system

operation. In essence, it is an optimization problem and its objective is to reduce the total

generation cost of units, while satisfying constraints. Previous efforts on solving ED problems

have employed various mathematical programming methods and optimization techniques. These

conventional methods include the lambda-iteration method, the base point and participation

factors method, and the gradient method. In this project, the lambda iteration is chosen as the

conventional method.

37

4.3.2 Solve Programming

 This conventional mathematic method are used to solve the one-line diagram of a simple

5-bus power system with generator at buses 1,2 and 3. Bus2 and 3 are 1.045pu, 40MW and

1.030pu 30MW respectively. The load and MW and Mvar values are shown on the diagram.

Line impedance and one-half of the line capacitive susceptance are given in in per unit on aa

100MVA base.

 In order to solve the problem, following command is used

and the result obtain as shown below:-

38

4.4 Analysis Using PSO Technique

4.4.1 Introduction

ECONOMIC dispatch (ED) problem is one of the fundamental issues in power system

operation. In essence, it is an optimization problem and its objective is to reduce the total

generation cost of units, while satisfying constraints. In these numerical methods for solution of

ED problems, an essential assumption is that the incremental cost curves of the units are

monotonically increasing piecewise-linear functions. Unfortunately, this assumption may render

these methods infeasible because of its nonlinear characteristics in practical systems. These

nonlinear characteristics of a generator include discontinuous prohibited zones, ramp rate limits,

and cost functions which are not smooth or convex. Furthermore, for a large-scale mixed-

generating system, the conventional method has oscillatory problem resulting in a longer

solution time.

In order to make numerical methods more convenient for solving ED problems, artificial

intelligent techniques, such as the Hopfield neural networks, have been successfully employed to

solve ED problems for units with piecewise quadratic fuel cost functions and prohibited zones

constraint. In this paper, a PSO method for solving the ED problem in power system is proposed.

The proposed method considers the nonlinear characteristics of a generator such as ramp rate

limits and prohibited operating zone for actual power system operation.

39

4.4.2 PSO Programming

 This programming are used to solve the one-line diagram of a simple 5-bus power system

with generator at buses 1,2 and 3. Bus 2 and 3 are 1.045pu, 40MW and 1.030pu 30MW

respectively. The load and MW and Mvar values are shown on the diagram. Line impedance and

one-half of the line capacitive susceptance are given in per unit on a 100MVA base.

 In order to solve the problem, following command is used

40

and the result obtain as shown below:-

Figure 4.9 show the movement of particle data during the calculation.

41

Figure 4.9: Figure of Movement Data

42

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

At the end of this project, we can identified the optimum value that simultaneously

minimize the generation cost rate and to meet the load demand and experimental results show

that the proposed PSO method was indeed capable of obtaining higher quality solutions

efficiently in ED problems.

And by creating a friendly GUI modeling, user will be more interested to used this

software because of the information that they will gain and the interesting design of GUI

5.2 Future Recommendation

This project is well functioning. For future improvement, several suggestions are

proposed for more advanced and better application in future:

43

 Try to add more function in the software. Not only calculate the economic

dispatch. Besides calculating the economic dispatch only, try to add other

application in the software for an example, build other programming to solve

economic dispatch and optimal dispatch.

 To make this software more users friendly and interesting, try to add function that

allowed user to key in the input data and add some sound or music during the

iteration session.

 Time taken for this software to gain output is depending on number of iteration,

try to build a programming that can help user identify the time taken for every

calculation.

5.3 Commercialization

This project and thesis is meant for the academic motivation of all electrical engineering

students, especially in teaching and learning session in Universiti Malaysia Pahang (UMP). All

the lecturer of UMP are allowed to use this project and thesis for teaching session. I give full

authorities to my supervisor Dr Ahmed N. Abd Alla to handle the matter that come further about

the usefulness of my project.

44

REFERENCES

[1] X.S. Han, H. B. Gooi., Dynamic Economic Dispatch: Feasible and Optimal Solutions,2001

[2] Zwe-Lee Gaing, ,“Particle Swarm Optimization to Solving the Economic Dispatch Considering the Generator

Constraints” , IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 18, NO. 3, AUGUST 2003

[3] A.Bakirtzis,V.Petridis, and SKazarlis, “Genetic algorithm solution to the economic dispatch problem,”Proc.Inst.

Elect. Eng.-Gen., Transm. Dist. Vol. 141, no.4, pp. 377-382,July1994

[4] C.C.Fung, S. Y. Chow,and K. P. Wong, “Solving the economic dispatch problem with an integrated parallel

genetic algorithm,” in Proc PowerCon Int. Conf., vol. 3,2000,pp.1257-1262

[5] H.Saadat,Power System Analysis. New York:McGraw-Hill,1999

[6] J.M. Johnson and Y. Rahmat-Samii, “Genetic Algorithms in EngineeringElectromagnetics,” IEEE Antennas and

Propagation Magazine, vol. 39, no. 4, pp. 7 -21,1997.

[7] Yahya Rahmat-Samii, Dennis Gies, and Jacob Robinson “Particle Swarm Optimization (PSO): A Novel

Paradigm for Antenna Designs”

[8] Chapman, Stephen J., MATLAB Programming for Engineer, Brooks Cole, 2001.

[9] Creating Graphical User Interfaces, Version 7: The Math Work

[10] http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/f7-41453.html#f7-38070

[11] United States Department of Energy, “The Value Of Economic Dispatch”, A Report To Congress Pursuant To

Section 1234 Of The Energy Policy Act Of 2005

[12] FERC Staff Boston, Massachussetts, “Economic Dispatch: Concepts, Practices and Issues”, Presentation to

the Joint Board for the Study of Economic Dispatch, November 29, 2005

http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/f7-41453.html#f7-38070

45

APPENDIX A

GUI PROGRAMMING

46

GUI PROGRAMMING FOR EDP

47

GUI PROGRAMMING FOR MENU

48

49

GUI PROGRAMMING FOR pso

50

GUI PROGRAMMING FOR economic

51

GUI PROGRAMMING FOR TYPE

52

GUI PROGRAMMING FOR RUN_PSO

53

GUI PROGRAMMING FOR RUN_CON

54

55

APPENDIX B

CONVENTIONAL

PROGRAMMING

56

PROGRAMMING FOR CONVENTIONAL

57

PROGRAMMING FOR Dispatch

58

59

PROGRAMMING FOR Gencost

%function [totalcost]=gencost(Pgg, cost)
if exist('Pgg')~=1
Pgg=input('Enter the scheduled real power gen. in row matrix ');
else,end
if exist('cost')~=1
cost = input('Enter the cost function matrix ');
else, end
ngg = length(cost(:,1));
Pmt = [ones(1,ngg); Pgg; Pgg.^2];
for i = 1:ngg
costv(i) = cost(i,:)*Pmt(:,i);
end
totalcost=sum(costv);
fprintf('\nTotal generation cost = % 10.2f $/h \n', totalcost)

60

APPENDIX C

PSO

PROGRAMMING

61

PROGRAMMING FOR psotest

% the data matrix should have 5 columns of fuel cost coefficients and plant

limits.
% 1.a ($/MW^2) 2. b $/MW 3. c ($) 4.lower lomit(MW) 5.Upper limit(MW)
%no of rows denote the no of plants(n)
clear
clc
format long;

global data B B0 B00 Pd % this type of data can be used by other function
data=[0.008 7 200 10 85 %fuel cost coefficients and plant limits
 0.009 6.3 180 10 80
 0.007 6.8 140 10 70];
B=.01*[.0218 .0093 .0028;.0093 .0228 .0017;.0028 .0017 .0179];% loss

coefficients
 B0=0*[.0003 .0031 .0015];
 B00=100*.00030523;
 Pd=150;% total power load
 Pd=Pd+B00;
l=data(:,4)';
u=data(:,5)';
ran=[l' u'];
n=length(data(:,1));
Pdef = [100 3000 50 2 2 0.9 0.4 1500 1e-6 5000 NaN 0 0];
 [OUT]=pso_Trelea_vectorized('f6',n,1,ran,0,Pdef);% PSO programming
 out=abs(OUT)
 P=out(1:n)
 [F Pl]=f6(P')

62

PROGRAMMING FOR pso_Trelea_vectorized

function [OUT,varargout]=pso_Trelea_vectorized(functname,D,varargin)

rand('state',sum(100*clock));
if nargin < 2
 error('Not enough arguments.');
end

% PSO PARAMETERS
if nargin == 2 % only specified functname and D
 VRmin=ones(D,1)*-100;
 VRmax=ones(D,1)*100;
 VR=[VRmin,VRmax];
 minmax = 0;
 P = [];
 mv = 4;
 plotfcn='goplotpso';
elseif nargin == 3 % specified functname, D, and mv
 VRmin=ones(D,1)*-100;
 VRmax=ones(D,1)*100;
 VR=[VRmin,VRmax];
 minmax = 0;
 mv=varargin{1};
 if isnan(mv)
 mv=4;
 end
 P = [];
 plotfcn='goplotpso';
elseif nargin == 4 % specified functname, D, mv, Varrange
 mv=varargin{1};
 if isnan(mv)
 mv=4;
 end
 VR=varargin{2};
 minmax = 0;
 P = [];
 plotfcn='goplotpso';
elseif nargin == 5 % Functname, D, mv, Varrange, and minmax
 mv=varargin{1};
 if isnan(mv)
 mv=4;
 end
 VR=varargin{2};
 minmax=varargin{3};
 P = [];
 plotfcn='goplotpso';
elseif nargin == 6 % Functname, D, mv, Varrange, minmax, and psoparams
 mv=varargin{1};
 if isnan(mv)
 mv=4;
 end
 VR=varargin{2};
 minmax=varargin{3};

63

 P = varargin{4}; % psoparams
 plotfcn='goplotpso';
elseif nargin == 7 % Functname, D, mv, Varrange, minmax, and psoparams,

plotfcn
 mv=varargin{1};
 if isnan(mv)
 mv=4;
 end
 VR=varargin{2};
 minmax=varargin{3};
 P = varargin{4}; % psoparams
 plotfcn = varargin{5};
elseif nargin == 8 % Functname, D, mv, Varrange, minmax, and psoparams,

plotfcn, PSOseedValue
 mv=varargin{1};
 if isnan(mv)
 mv=4;
 end
 VR=varargin{2};
 minmax=varargin{3};
 P = varargin{4}; % psoparams
 plotfcn = varargin{5};
 PSOseedValue = varargin{6};
else
 error('Wrong # of input arguments.');
end

% sets up default pso params
Pdef = [100 2000 24 2 2 0.9 0.4 1500 1e-25 250 NaN 0 0];
Plen = length(P);
P = [P,Pdef(Plen+1:end)];

df = P(1);
me = P(2);
ps = P(3);
ac1 = P(4);
ac2 = P(5);
iw1 = P(6);
iw2 = P(7);
iwe = P(8);
ergrd = P(9);
ergrdep = P(10);
errgoal = P(11);
trelea = P(12);
PSOseed = P(13);

% used with trainpso, for neural net training
if strcmp(functname,'pso_neteval')
 net = evalin('caller','net');
 Pd = evalin('caller','Pd');
 Tl = evalin('caller','Tl');
 Ai = evalin('caller','Ai');
 Q = evalin('caller','Q');
 TS = evalin('caller','TS');
end

64

etc
 letiter = 5; % # of iterations before checking environment, leave at

least 3 so PSO has time to converge
 outorng = abs(1- (outbestval/gbestval)) >= threshld;
 samepos = (max(sentry == gbest));

 if (outorng & samepos) & rem(i,letiter)==0
 rstflg=1;
 % disp('New Environment: reset pbest, gbest, and vel');
 %% reset pbest and pbestval if warranted
% outpbestval = feval(functname,[pbest]);
% Poutorng = abs(1-(outpbestval./pbestval)) > threshld;
% pbestval = pbestval.*~Poutorng + outpbestval.*Poutorng;
% pbest = pbest.*repmat(~Poutorng,1,D) +

pos.*repmat(Poutorng,1,D);

 pbest = pos; % reset personal bests to current positions
 pbestval = out;
 vel = vel*10; % agitate particles a little (or a lot)

 % recalculate best vals
 if minmax == 1
 [gbestval,idx1] = max(pbestval);
 elseif minmax==0
 [gbestval,idx1] = min(pbestval);
 elseif minmax==2 % this section needs work
 [temp,idx1] = min((pbestval-ones(size(pbestval))*errgoal).^2);
 gbestval = pbestval(idx1);
 end

 gbest = pbest(idx1,:);

 % used with trainpso, for neural net training
 % assign gbest to net at each iteration, these interim assignments
 % are for plotting mostly
 if strcmp(functname,'pso_neteval')
 net=setx(net,gbest);
 end
 end % end if outorng

 sentryval = gbestval;
 sentry = gbest;

 end % end if chkdyn

 % find particles where we have new pbest, depending on minmax choice
 % then find gbest and gbestval
 %[size(out),size(pbestval)]
 if rstflg == 0
 if minmax == 0
 [tempi] = find(pbestval>=out); % new min pbestvals
 pbestval(tempi,1) = out(tempi); % update pbestvals
 pbest(tempi,:) = pos(tempi,:); % update pbest positions

 [iterbestval,idx1] = min(pbestval);

65

 % % build a simple predictor 10th order, for gbest trajectory
 % if i>500
 % for dimcnt=1:D
 % pred_coef = polyfit(i-250:i,(bestpos(i-250:i,dimcnt))',20);
 % % pred_coef = polyfit(200:i,(bestpos(200:i,dimcnt))',20);
 % gbest_pred(i,dimcnt) = polyval(pred_coef,i+1);
 % end
 % else
% gbest_pred(i,:) = zeros(size(gbest));
% end

 %gbest_pred(i,:)=gbest;
 %assignin('base','gbest_pred',gbest_pred);

 % % convert to non-inertial frame
 % gbestoffset = gbest - gbest_pred(i,:);
 % gbest = gbest - gbestoffset;
 % pos = pos + repmat(gbestoffset,ps,1);
 % pbest = pbest + repmat(gbestoffset,ps,1);

%PSO

 % get new velocities, positions (this is the heart of the PSO

algorithm)
 % each epoch get new set of random numbers
 rannum1 = rand([ps,D]); % for Trelea and Clerc types
 rannum2 = rand([ps,D]);
 if trelea == 2
 % from Trelea's paper, parameter set 2
 vel = 0.729.*vel... % prev vel
 +1.494.*rannum1.*(pbest-pos)... % independent
 +1.494.*rannum2.*(repmat(gbest,ps,1)-pos); % social
 elseif trelea == 1
 % from Trelea's paper, parameter set 1
 vel = 0.600.*vel... % prev vel
 +1.700.*rannum1.*(pbest-pos)... % independent
 +1.700.*rannum2.*(repmat(gbest,ps,1)-pos); % social
 elseif trelea ==3
 % Clerc's Type 1" PSO
 vel = chi*(vel... % prev vel
 +ac1.*rannum1.*(pbest-pos)... % independent
 +ac2.*rannum2.*(repmat(gbest,ps,1)-pos)) ; % social
 else
 % common PSO algo with inertia wt
 % get inertia weight, just a linear funct w.r.t. epoch parameter iwe
 if i<=iwe
 iwt(i) = ((iw2-iw1)/(iwe-1))*(i-1)+iw1;
 else
 iwt(i) = iw2;
 end
 % random number including acceleration constants
 ac11 = rannum1.*ac1; % for common PSO w/inertia
 ac22 = rannum2.*ac2;

66

 vel = iwt(i).*vel... % prev vel
 +ac11.*(pbest-pos)... % independent
 +ac22.*(repmat(gbest,ps,1)-pos); % social
 end

 % limit velocities here using masking
 vel = ((vel <= velmaskmin).*velmaskmin) + ((vel > velmaskmin).*vel

);
 vel = ((vel >= velmaskmax).*velmaskmax) + ((vel < velmaskmax).*vel

);

 % update new position (PSO algo)
 pos = pos + vel;

 % position masking, limits positions to desired search space
 % method: 0) no position limiting, 1) saturation at limit,
 % 2) wraparound at limit , 3) bounce off limit
 minposmask_throwaway = pos <= posmaskmin; % these are psXD matrices
 minposmask_keep = pos > posmaskmin;
 maxposmask_throwaway = pos >= posmaskmax;
 maxposmask_keep = pos < posmaskmax;

 if posmaskmeth == 1
 % this is the saturation method
 pos = (minposmask_throwaway.*posmaskmin) + (minposmask_keep.*pos

);
 pos = (maxposmask_throwaway.*posmaskmax) + (maxposmask_keep.*pos

);
 elseif posmaskmeth == 2
 % this is the wraparound method
 pos = (minposmask_throwaway.*posmaskmax) + (minposmask_keep.*pos

);
 pos = (maxposmask_throwaway.*posmaskmin) + (maxposmask_keep.*pos

);
 elseif posmaskmeth == 3
 % this is the bounce method, particles bounce off the boundaries

with -vel
 pos = (minposmask_throwaway.*posmaskmin) + (minposmask_keep.*pos

);
 pos = (maxposmask_throwaway.*posmaskmax) + (maxposmask_keep.*pos

);

 vel = (vel.*minposmask_keep) + (-vel.*minposmask_throwaway);
 vel = (vel.*maxposmask_keep) + (-vel.*maxposmask_throwaway);
 else
 % no change, this is the original Eberhart, Kennedy method,
 % it lets the particles grow beyond bounds if psoparams (P)
 % especially Vmax, aren't set correctly, see the literature
 end

%PSO
% check for stopping criterion based on speed of convergence to desired
 % error

67

 tmp1 = abs(tr(i) - gbestval);
 if tmp1 > ergrd
 cnt2 = 0;
 elseif tmp1 <= ergrd
 cnt2 = cnt2+1;
 if cnt2 >= ergrdep
 if plotflg == 1
 fprintf(message,i,gbestval);
 disp(' ');
 disp(['--> Solution likely, GBest hasn''t changed by at least ',...
 num2str(ergrd),' for ',...
 num2str(cnt2),' epochs.']);
 eval(plotfcn);
 end
 break
 end
 end

 % this stops if using constrained optimization and goal is reached
 if ~isnan(errgoal)
 if ((gbestval<=errgoal) & (minmax==0)) | ((gbestval>=errgoal) &

(minmax==1))

 if plotflg == 1
 fprintf(message,i,gbestval);
 disp(' ');
 disp(['--> Error Goal reached, successful termination!']);

 eval(plotfcn);
 end
 break
 end

 % this is stopping criterion for constrained from both sides
 if minmax == 2
 if ((tr(i)<errgoal) & (gbestval>=errgoal)) | ((tr(i)>errgoal) ...
 & (gbestval <= errgoal))
 if plotflg == 1
 fprintf(message,i,gbestval);
 disp(' ');
 disp(['--> Error Goal reached, successful termination!']);

 eval(plotfcn);
 end
 break
 end
 end % end if minmax==2
 end % end ~isnan if

 % % convert back to inertial frame
 % pos = pos - repmat(gbestoffset,ps,1);
 % pbest = pbest - repmat(gbestoffset,ps,1);
 % gbest = gbest + gbestoffset;

68

end % end epoch loop

%% clear temp outputs
% evalin('base','clear temp_pso_out temp_te temp_tr;');

% output & return
 OUT=[gbest';gbestval];
 varargout{1}=[1:te];
 varargout{2}=[tr(find(~isnan(tr)))];

 return

69

PROGRAMMING FOR gplotpso

clf
 set(gcf,'Position',[651 50 600 474]); % this is the computer

dependent part
 %set(gcf,'Position',[743 33 853 492]);
 set(gcf,'Doublebuffer','on');

% particle plot, upper right
 subplot('position',[.7,.5,.27,.4]);
 set(gcf,'color','k')

 plot3(pos(:,1),pos(:,D),out,'bx','Markersize',7)

 hold on
 plot3(pbest(:,1),pbest(:,D),pbestval,'g+','Markersize',12);
 plot3(gbest(1),gbest(D),gbestval,'r.','Markersize',25);

 % crosshairs
 offx = max(abs(min(min(pbest(:,1)),min(pos(:,1)))),...
 abs(max(max(pbest(:,1)),max(pos(:,1)))));

 offy = max(abs(min(min(pbest(:,D)),min(pos(:,D)))),...
 abs(min(max(pbest(:,D)),max(pos(:,D)))));
 plot3([gbest(1)-offx;gbest(1)+offx],...
 [gbest(D);gbest(D)],...
 [gbestval;gbestval],...
 'b-.');
 plot3([gbest(1);gbest(1)],...
 [gbest(D)-offy;gbest(D)+offy],...
 [gbestval;gbestval],...
 'b-.');

 hold off

 xlabel('Dimension 1','color','m')
 ylabel(['Dimension ',num2str(D)],'color','m')

 title('Particle Dynamics','color','r','fontweight','bold')

 set(gca,'Xcolor','m')
 set(gca,'Ycolor','m')

 set(gca,'color','m')

 % camera control
 view(2)
 try
 axis([gbest(1)-offx,gbest(1)+offx,gbest(D)-offy,gbest(D)+offy]);
 catch
 axis([VR(1,1),VR(1,2),VR(D,1),VR(D,2)]);
 end

% error plot, left side

70

 subplot('position',[0.1,0.1,.475,.830]);
 semilogy(tr(find(~isnan(tr))),'color','b','linewidth',2)
 %plot(tr(find(~isnan(tr))),'color','m','linewidth',2)
 xlabel('epoch','color','c')
 ylabel('gbest val.','color','c')

 if D==1
 titstr1=sprintf(['%11.6g = %s([%9.6g])'],...
 gbestval,strrep(functname,'_','_'),gbest(1));
 elseif D==2
 titstr1=sprintf(['%11.6g = %s([%9.6g, %9.6g])'],...
 gbestval,strrep(functname,'_','_'),gbest(1),gbest(2));
 elseif D==3
 titstr1=sprintf(['%11.6g = %s([%9.6g, %9.6g, %9.6g])'],...

gbestval,strrep(functname,'_','_'),gbest(1),gbest(2),gbest(3));
 else
 titstr1=sprintf(['%11.6g = %s([%g inputs])'],...
 gbestval,strrep(functname,'_','_'),D);
 end
 title(titstr1,'color','c','fontweight','bold');

 grid on
% axis tight

 set(gca,'Xcolor','c')
 set(gca,'Ycolor','c')

 set(gca,'color','c')

 set(gca,'YMinorGrid','off')

% text box in lower right
% doing it this way so I can format each line any way I want
subplot('position',[.62,.1,.29,.4]);
 clear titstr

 legstr = {'Green(+) = Personal Bests';...
 'Blue(x) = Current Positions';...
 'Red(.) = Global Best'};
 text(.1,0.025,legstr{1},'color','g');
 text(.1,-.05,legstr{2},'color','b');
 text(.1,-.125,legstr{3},'color','r');

 hold off

 set(gca,'color','w');
 set(gca,'visible','off');

 drawnow

71

