

 UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS


 JUDUL:

SESI PENGAJIAN:________________

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di

 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.

4. **Sila tandakan ()

 (Mengandungi maklumat yang berdarjah keselamatan

 SULIT atau kepentingan Malaysia seperti yang termaktub

 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan

 oleh organisasi/badan di mana penyelidikan dijalankan)

  TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________

 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

NO. 86 LORONG PERDANA 1/1, DR. AHMED N. ABD ALLA

TAMAN PERDANA 26600 PEKAN, (Nama Penyelia)

PAHANG DARUL MAKMUR.

Tarikh: 20 NOVEMBER 2009 Tarikh: : 20 NOVEMBER 2009

CATATAN: * Potong yang tidak berkenaan.

 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak

 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu

 dikelaskan sebagai atau TERHAD.

 Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara

Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan

penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2009/2010

 SUHAIRAH BINTI RAZALI (860616-46-5464)

APPLICATION OF PSO TECHNIQUE FOR OPTIMAL

LOCATION OF FACTS DEVICES

iii

“I hereby acknowledge that the scope and quality of this thesis is qualified for the

award of the Bachelor Degree of Electrical Engineering (Electronics)”

Signature : __

 Name : DR AHMED N. ABD ALLA

 Date : 23 NOVEMBER 2009

 ii

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : SUHAIRAH BINTI RAZALI

Date : 23 NOVEMBER 2009

i

APPLICATION OF PSO TECHNIQUE FOR OPTIMAL LOCATION OF FACTS

DEVICES

SUHAIRAH BINTI RAZALI

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor of Electrical Engineering (Hons.) (Power System)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

 NOVEMBER, 2009

ii

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : SUHAIRAH BINTI RAZALI

Date : 23 NOVEMBER 2009

iii

DEDICATION

Specially dedicated to

My beloved parents, sisters, brother and friends

Thank you for the endless support and encouragement

iv

ACKNOWLEDGEMENT

In the name of Allah S.W.T the Most Gracious, the Most Merciful. Praise is to

Allah, Lord of the Universe and Pence and Prayers be upon His final Prophet and

Messenger, Muhammad S.A.W.

 First of all, I would like to express my sincere gratitude and appreciation to my

supervisor Dr. Ahmed N. Abd Alla for his guidance, encouragement, advice and

supports throughout the preparation of this thesis. His influence has helped we learn the

practicalities of this project.

 Secondly, I would like to sincerely thank the Universiti Malaysia Pahang (UMP)

and Fakulti Kejuruteraan Elektrik dan Elektronik (FKEE) for providing good facilities

for us in completing our project.

 Finally, I would like to thank to my parents, Razali bin Hasan and Che Azizon

binti Ab. Rahim, my lovely sisters and brother who had given me their support,

encouragement and always pray for my future undertakings. Without their support I

doubt it would have been possible for me to complete this study.

v

ABSTRACT

The application of Particle Swarm Optimization (PSO) technique to find optimal

location of Flexible AC Transmission System (FACTS) devices to achieve maximum

system loadability. While finding the optimal location, thermal limit for the lines and

voltage limit for the buses are taken as constraints. Two types of FACTS devices,

Unified Power Flow Controller (UPFC) and thyristor Controlled Series Compensator

(TCSC) are considered. The optimizations are performed on three parameters namely the

location of FACTS devices, their setting and their type. Simulations are performed on

IEEE 30-bus system for optimal location of FACTS devices and the results obtained are

encouraging and will be useful n electrical restructuring.

vi

ABSTRAK

Aplikasi bagi Particle Swarm Optimization (PSO) teknik, adalah untuk mencari

lokasi optimum peralatan Flexible AC Transmission System (FACTS) serta untuk

mencapai sistem keupayaan beban yang maksimum. Ketika mencari lokasi optimum,

had terma untuk sempadan dan had voltan untuk bas-bas itu dibawa sebagai kekangan.

Dua jenis peralatan FACTS yang ditekankan di dalam projek ini ialah Unified Power

Flow Controller (UPFC) dan Thyristor Controlled Series Compensator (TCSC).

Pengoptimuman dipersembahkan berdasarkan tiga parameter iaitu lokasi bagi peralatan

FACTS, persekitaran mereka dan jenis mereka. Simulasi-simulasi dipersembahkan

berdasarkan sistem IEEE 30 bas untuk lokasi optimum bagi peralatan FACTS dan

keputusan yang memperoleh adalah menggalakkan dan akan digunakan dalam membuat

penyusunan semula elektrik.

vii

TABLE OF CONTENT

CHAPTER TITLE PAGE

1 INTRODUCTION 1

 1.1 Introduction 1

 1.2 General introduction of FACTS Devices 2

 1.2.1 Unified Power Flow Controller (UPFC) 3

1.2.2 Thyristor Controlled Series Capacitor (TCSC) 3

 1.3 General Introduction of Particle Swarm Optimization (PSO) 4

 1.4 Objectives 4

1.5 Scope of Work 5

1.6 Problem Statement 5

2 LITERATURE REVIEW 6

2.1 Flexible Alternating Current Transmission System (FACTS)

Devices 6

 2.1.1 Unified Power Flow Controller 7

2.1.2 Thyristor Controlled Series Compensator 8

 2.2 Power System Limit 9

 2.2.1 Thermal Limit 9

 2.2.2 Voltage Limit 10

 2.3 Particle Swarm Optimization 11

 2.4 MATLAB 7.5.0 (R2007b) 13

viii

3 METHODOLOGY 14

 3.1 TCSC modeling 14

 3.2 UPFC Modeling 16

 3.3 PSO modeling 18

 3.4 Creating M-file Programming 19

 3.4 Creating Graphical User Interfaces (GUI) 20

4 RESULT AND DISCUSSION

 4.1 Graphic User Interface (GUI) Main Page 27

 4.2 The solution of optimal location. 31

5 CONCLUSION AND FUTURE RECOMMENDATION

 5.1 Conclusion 33

 5.2 Future Recommendation 33

 5.2.1 By install two FACTS devices in one time into

the system. 34

 5.2.2 Find the optimal location of multi type FACTS

 devices. 35

 5.2.3 Performed the simulation on various IEEE

 bus system 35

 5.2.4 Apply another algorithm technique 35

ix

LIST OF FIGURE

TABLE NO. TITLE PAGE

 2.1 UPFC Configuration 7

2.2 Basic structure of TCSC 9

3.1 Static model of line with TCSC 14

3.2 Static Power Injection Model of TCSC 15

3.3 Voltage Source Equivalent Circuit of UPFC 17

3.4 UPFC Power Injection Model 17

3.5 Starting the GUI 21

3.6 Main Page to Create New GUI 21

3.7 GUI Layout Area 22

3.8 GUI Design Layout 23

3.9 Property Inspector 24

3.10 M-file Programming 25

3.11 GUI Design 26

 4.1 Work path and command window 28

4.1 Main page of the GUI 28

4.2 The Introduction layout 29

3.4 The simulation GUI 29

4.5 Run dialog box 30

x

4.6 The PSO Initialization 30

4.7 Exit the program 31

4.8 Result for First Iteration. 32

xi

LIST OF SYMBOLS

FACTS - Flexible Alternating Current Transmission Systems

UPFC - Unified Power Flow Controller

TCSC - Thyristor Controlled Series Capacitor

SVC - Static VAR Compensator

TCR - Thyristor-controlled Reactor

PSO - Particle Swarm Optimization

GA - Genetic Algorithms

MATLAB - Matrix Laboratory

DC - Direct Current

AC - Alternating Current

PIM - Power Injection Model

GUI - Graphical User Interfaces

α - firing delay

pbest - Best solution (fitness) that has been achieves so far

gbest - Best value that is tracked by the global version of the

particle swarm optimizer is the overall best value

 , - Uniformly random numbers between 0 and 1.

 - Current velocity of individual i in dimension d at iteration

k.

 - Velocity of individual i in dimension d at iteration k+1.

 - Current position of individual i in dimension d at iteration

k.

 - Position of individual i in dimension d at iteration k+1

 - Dimension d of the pbest of individual i.

xii

 - Dimension d of the gbest of the swarm.

 - The weighting of the stochastic acceleration that pull each

 particles towards pbest and gbest (cognitive and social

 acceleration constant respectively).

 - Inertia weight factor that controls the exploitation

 - Maximum number of iterations;

 - Current iteration number;

 - Maximum inertia weight;

 - Minimum inertia weight.

 - Real power injections

 - Reactive power injections

 - Conductance of the line-ij.

 - Susceptance of the line-ij.

 - Series voltage sources

 - Shunt voltage sources

 - Transmission line current

 and - respectively the equivalent complex power injected into

the two busbars, buses i and j, which are practically the

resultant power injections contributed by both the series

and shunt branches of UPFC.

 , - phase angle components of the voltages on buses i and

j.

 - the leakage susceptance of the series coupling

transformer.

r and - respectively, magnitude and phase and angle of series

voltage source,UPFC parameters.

xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A IEEE 30-bus System 33

B Bus Data 34

C Line Data 35

D Flow Chart 36

E Programming for the MAIN_PAGE 43

F Programming for the INTRODUCTION 46

G Programming for the SIMULATION 48

H Programming for the PSOsimulation 51

I Programming for the RUN button 53

J Programming to find the optimal location 56

K Programming to find the optimal location 60

xiv

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

The electric supply industry is undergoing a profound transformation worldwide.

Market forces, scare natural resources and an ever increasing demand for electricity are

some of the drivers responsible for such an unprecedented change. Particularly in the

case of transmission systems, it requires non-discriminatory open access to transmission

resources. Therefore sufficient transmission capacity for supporting transmission

services is a great demand to transmission network‟s requirement. Further to meet the

demand for a substantial increase in power transfers among utilities, as a major

consequence of electricity market, a much more intensive utilization of existing

transmission resource is needed. The advent of Flexible AC Transmission Systems

(FACTS) technology has coincided with the major restructuring of the electrical power

industry. FACTS can provide benefits in increasing system transmission capacity and

power flow control flexibility and rapidity. As deregulation picks up speed, making the

2

demand for sufficient services is becoming more critical, it is imperative to investigate

the capabilities and potential applications of FACTS on power networks [1]-[3].

Population based, cooperative stochastic search algorithms are very popular in

the recent years in the research arena of computational intelligence. Most of the

population based search approaches are motivated by evolution as seen in nature.

Particle swarm optimization (PSO), on the other hand, in motivated from the simulation

of social behavior. In this project, applying PSO technique, the optimal location of

FACTS devices maximum system loadability, while satisfying the power system

constraints, for single type (TCSC and UPFC).

1.2 General Introduction of FACTS Devices

A FACTS is a system comprised of static equipment used for the AC

transmission of electrical energy. It is meant to enhance controllability and increase

power transfer capability of the network. It is generally a power electronics-based

device.

FACTS is defined by the IEEE as “a power electronic based system and other

static equipment that provide control of one or more AC transmission system parameters

to enhance controllability and increase power transfer capability”.

FACTS devices are proven to be effective in power grids in well-developed

countries such as USA, Canada and Sweden. This technology can boost power transfer

capability by 20-30% by increasing the flexibility of the systems. It can also increase the

loadability or distance to voltage collapse power system, so that, additional loads can be

added in the system without addition of new transmission and generating facilities.

In this project, two types of FACTS devices are considered, which are Unified

Power Flow Controller (UPFC) and Thyristor Controlled Series Capacitor (TCSC).

3

1.2.1 Unified Power Flow Controller (UPFC)

UPFC is shunt and series compensation devices. It is well known that UPFC is a

powerful and versatile concept for power flow control that has capability of changing

power flow. The rapid and almost instantaneous responses make it suitable for many

applications requiring effective steady-state power flow control and/or transient and

dynamic stability improvement.

UPFC is capable of providing active, reactive and voltage magnitude control

under normal and network contingencies conditions without violating the operating

limits. From the operational point of view, the UPFC may act as a SVC or as a TCSC or

as a phase shift controller.

1.2.2 Thyristor Controlled Series Capacitor (TCSC)

TCSC used in power transmission line can increase the transportability and the

stability of system, and decrease the system loss significantly. It is one such device

which offers smooth and flexible control for security enhancement with much aster

response compared to the traditional control devices.

TCSC is connected in series with the line conductors to compensate for the

inductive reactance of the line. It can operate in both capacitive and inductive mode. In

capacitive mode, it reduces the transfer reactance between the buses at which the line is

connected, thus increasing the maximum power that can be transmitted and reducing the

effective active and reactive power losses.

4

1.3 General Introduction of Particle Swarm Optimization (PSO)

Particle Swarm Optimization is population based stochastic optimization

technique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social

behavior of bird flocking.

PSO is an extremely simple algorithm that seems to be effective for optimizing a

wide range of functions. PSO is applied for solving various optimization problems in

electrical engineering.

PSO shared many similarities with evolutionary computation techniques such as

Genetic Algorithms (GA). The system is initialized with a population of random

solutions and searches for optima by updating generations. However, unlike GA, PSO

has no evolution operators. In PSO, the potential solutions, called particles, fly through

the problem space by following the current optimum particles. PSO is easy to implement

and there are few parameters to adjust.

1.4 Objectives

The objectives of this project are:

i. To understand the concept of Particles Swarm Optimization (PSO) and

Flexible AC Transmission System (FACTS).

ii. To find the optimal location of FACTS devices to achieve maximum

system loadability.

iii. To identify the best performance of UPFC and TCSC in system

loadability.

5

iv. To implement the Particle Swarm Optimization technique using the

MATLAB

1.5 Scope of Work

The scopes that will be figure out in this research are:

i. Simulation and modeling of FACTS devices.

ii. Implement the PSO technique to find the optimal location of FACTS

devices in a power system.

iii. Performing the optimization on three parameters which are the location of

the devices, their types and their settings.

1.6 Problem Statement

The problems that are to be faced in planning stage are appropriate type, location,

size and setting for these controllers for various applications. This project is based on the

optimal location problem in the transmission line in a power system. FACTS devices is

one of the most common devices used in the transmission line. However FACTS device

has many types and the type has there our model. In this project, we only consider the

two types of the devices, which are UPFC and TCSC.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Flexible Alternating Current Transmission System (FACTS) Devices

FACTS controllers are products of FACTS technology; a group of power

electronics controllers expected to revolutionize the power transmission and distribution

system in many ways. FACTS controllers are beginning to appear in the developing

countries to appear in the developing countries, as the need for such controllers are

recognized well by research communities in this area, and electric power utilities. The

FACTS controllers clearly enhance power system performance, improve quality of

supply and also provide an optimal utilization of the existing resources [4].

There are several methods for finding the optimal locations of the FACTS

controllers in vertically integrated systems as well as unbundled power systems. Other

works have incorporated FACTS controllers in optimal power flow formulation with

different objective functions [10].

7

2.1.1 Unified Power Flow Controller

The UPFC consists of two identical voltage-source inverters: one in shunt and

the other one in series with the line; the general scheme is illustrated in Figure 2.1. Two

inverters, namely shunt inverter and series inverter, which operate via a common DC

link with a DC storage capacitor, allow UPFC to independently control active and

reactive power flows on the line as well as the bus voltage. Active power can freely flow

in either direction between the AC terminals of the two inverters through the DC link.

Although, each inverter can generate or absorb reactive power at its own AC output

terminal, they cannot internally exchange reactive power through DC link. The VA

rating of the injected voltage source is determined by the product of the maximum

injected voltage and the maximum line current at which power flow is still provided [8].

Figure 2.1: UPFC Configuration

The shunt inverter provides local bus voltage control when operated by itself.

When operated in conjunction with the series inverter, the shunt inverter has two

functions which are to control bus voltage by reactive power injection to the power

system and to supply active power to the series inverter via the DC link for series flow

control.

8

The series inverter, on the other hand, provides line power flow by injecting AC

voltage with controllable magnitude and phase angle at the power frequency, in series

with the line via an insertion transformer. This injected series voltage is, in effect, a

synchronous series AC voltage source, which provides active series compensation for

line voltage control and angle regulation through the transmission line current. The

transmission line currents flow through this voltage sources resulting in active and

reactive power exchange between the inverter and the AC system. The active power

exchanged at the series AC terminal is converted by the inverter into DC power that

appears at the DC link as positive or negative active power demand and transfer to the

other converter located at the other side of the line [8].

2.1.2 Thyristor Controlled Series Compensator

TCSC controllers use Thyristor-Controlled Reactor (TCR) in parallel with

capacitor segments of series capacitor bank. The basic structure of the device is shown in

Figure 2. The combination of TCR and capacitor allow the capacitive reactance to be

smoothly controlled over a wide range and switched upon command to a condition

where the bi-directional thyristor pairs conduct continuously and insert and inductive

reactance into the line.

For operation in the capacitive region, the maximum voltage constrains

operation, whereas inductive operation is limited by the maximum firing delay (α).

Between these constraints is an additional limiting characteristics related to harmonics,

which can cause additional heating in the surge reactor and thyristors [8].

9

Figure 1.2: Basic structure of TCSC

2.2 Power System Limit

For reliability, power system has to be operated within power transfer limits. The

limits will constrain the generation and transmission of active and reactive power in the

system. They are usually divided into three broad categories, namely thermal, voltage

and stability limits. In this project, while finding the optimal location, thermal limit for

the lines and voltage limit for the buses are taken as constraints.

2.2.1 Thermal Limit

 Thermal limits are due to thermal capability of power system equipments. As

power transfer increases, current magnitude increases a key to thermal damage. For

examples in a power plant, sustained operation of units beyond their maximum operation

limits will result in thermal damage. The damage may be to the stator windings or to

rotor windings of unit. Both active and reactive powers play a role to current magnitude.

10

 Out in the system, transmission lines and associated equipment must also operate

within the thermal limits. Sustained excessive current flow on an overhead line causes

the conductors to sag thus decreasing the ground clearance and reducing safety margins,

extreme levels of current flow will eventually damage the metallic structure of the

conductors producing permanent sag.

 Unlike overhead lines, underground cables and transformers must depend on

insulation other than air to dissipate the generated heat. These types of equipment are

tightly restricted in the amount of current they can safely carry. For the equipment,

sustained overloading will result in a reduction in services life due to damage to the

insulation. Most power system equipment can be safely overloaded. The important

aspect is how much is the overload and how long it does [8].

2.2.2 Voltage Limit

Both utility and customer equipment are designed to operate at a certain rated or

nominal supply voltage. A large, prolonged deviation from this nominal voltage can

adversely affect the performance of, as well as cause serious damage to system

equipment. Current flowing through the transmission lines may produce an unacceptable

large voltage drop at the receiving end of system. This voltage drop is primarily due to

the large reactive power loss, which occurs ad the current flows through the system. If

the reactive power produced by generators and other sources are not sufficient to supply

the system‟s demand, voltage will fall, outside the acceptable limit that is typically ±6%

around the nominal value.

System often requires reactive support to help prevent low voltage problems. The

amount of available reactive support often determines power transfer limits. A system

may be restricted to a lower level of active power transfer than desired because the

11

system does not posses the required reactive power reserves to sufficiently support

voltage.

2.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population based stochastic optimization

technique developed by Kennedy and Eberhart. The method is derived from simulation

of a simplified social model of swarms such as fish schooling and bird flocking, is based

on a simple concept, has bee found to be robust for solving problems featuring non-

linearity and non-differentiability, multiple optima and high dimensionality through

adaptation and provides high quality solutions with stable convergence.

The individuals (particles) persist over time, influencing one another‟s search of

the problem space, as compared with genetic algorithms where the weakest

chromosomes are immediately discarded. Instead of using evolutionary operators to

manipulate the individuals as in other evolutionary computation algorithms, each

individual in the swarm flies in the search space with a velocity which is dynamically

adjustable according to its own flying experience (velocity, inertia, gravity) and its

coordinates in the problem space, which are associated with the best solution (fitness) it

has achieves so far. This value is called pbest.

 Another best value that is tracked by the global version of the particle swarm

optimizer is the overall best value, and its location, obtained so far by any particle in the

population. This called gbest. The basic concept of PSO technique lies in accelerating

each particle towards its pbest and gbest locations at each time step. The modified

velocity of each particle can be computed using the current velocity and the distance

from pbest and gbest according to (1). The positions are modified using (2).

 (1)

12

 (2)

Where:

 , : Uniformly random numbers between 0 and 1.

 : Current velocity of individual i in dimension d at iteration k.

 : Velocity of individual i in dimension d at iteration k+1.

 : Current position of individual i in dimension d at iteration k.

 : Position of individual i in dimension d at iteration k+1

 : Dimension d of the pbest of individual i.

 : Dimension d of the gbest of the swarm.

 : The weighting of the stochastic acceleration that pull each

 particles towards pbest and gbest (cognitive and social

 acceleration constant respectively).

 : Inertia weight factor that controls the exploitation and

exploration of the search space by dynamically adjusting the

velocity and it is computed using (3).

 (3)

Where:

 : Maximum number of iterations;

 : Current iteration number;

 : Maximum inertia weight;

 : Minimum inertia weight.

The particle velocity is limited by the maximum value .

13

2.4 MATLAB 7.5.0 (R2007b)

MATLAB is a high-performance language for technical computing. It integrates

computation, visualization, and programming in an easy-to-use environment where

problems and solutions are expressed in familiar mathematical notation. Typical uses

include Math and computation Algorithm development Data acquisition Modeling,

simulation, and prototyping Data analysis, exploration, and visualization Scientific and

engineering graphics Application development, including graphical user interface

building.

 MATLAB is an interactive system whose basic data element is an array that does

not require dimensioning. This allows solving many technical computing problems,

especially those with matrix and vector formulations, in a friction of the time it would

take to write a program in a scalar no interactive language such as C or FORTRAN.

 The name MATLAB stands for matrix laboratory. MATLAB was originally

written to provide easy access to matrix software developed by the LINPACK and

EISPACK projects. Today, MATLAB engines incorporate the LAPACK and BLAS

libraries, embedding the state of the art in software for matrix computation.

 MATLAB has evolved over a period of years with input from many users. In

university environments, it is the standard instructional took for introductory and

advanced courses in mathematics, engineering and science. In industry, MATLAB is the

tool of choice for high-productivity research, development and analysis.

 MATLAB features a family of add-on application-specific solutions called

toolboxes. Very important to most users of MATLAB, toolboxes allow you to learn and

apply specialized technology. Toolboxes are comprehensive collection of MATLAB

function (M-files) that extend the MATLAB environment to solve particular classes of

problems. Areas in which toolboxes are available include signal processing, control

systems, neural networks, fuzzy logic, wavelets, simulation and many others.

 In this project, there are two parts of MATLAB, which are, the programming

parts using the M-file and the second part is the Graphical User Interfaces (GUI). Both

parts will be explained in detail in the next chapter.

14

CHAPTER 3

METHODOLOGY

3.1 TCSC modeling

 The modeling of TCSC of static model of line with TCSC and static power

injection model of TCSC are referred in reference [9]-[11]. A static Power Injection

Model (PIM) of TCSC has been used. The injection model represents the TCSC as a

device that injects certain amount of active and reactive power in a node.

15

Figure 3.1: Static model of line with TCSC

Figure 3.1 shows a model of transmission line with TCSC connected between

buses i and j. The transmission line is represented by its lumped П-equivalent

parameters, connected between the two buses. During steady state, the TCSC can be

considered as a static reactance . The controllable reactance is directly used as

the control variable in the power flow equations. The corresponding power injection

model of TCSC, incorporated in the transmission line, is shown in Figure 3.2. The real

 and reactive power injections, due to TCSC at buses i and j are given by the

following equations:

 (4)

 (5)

 (6)

 (7)

Where,

 (8)

16

Figure 3.2: Static Power Injection Model of TCSC

 Where, , and are voltage and angle at buses i and j, respectively.

and are the conductance and susceptance of the line-ij.

3.2 UPFC Modeling

 Steady-state investigation of UPFC involves power flow studies which include

the calculation of bus voltages, branch loadings, real and reactive transmission losses,

and the impact of UPFC on the above mentioned system parameters. In order to evaluate

UPFC overall steady-state performance and adequate model is required. A UPFC model

using power injection concept, in this model, two voltage sources are used to represent

the fundamental components of the pulse width modulated controlled output voltage

waveforms of the two branches in the UPFC. The impedance of the two coupling

(9)

17

transformers is included in the proposed model and losses of UPFC are taken into

account. Figure 3.3 depicts voltage source equivalent circuit of UPFC [12].

 The series injection branch, a series injection voltage source, performs the main

functions of controlling power flow whilst the shunt branch is used to provide real power

demanded by the series branch and the losses in UPFC. However, in the proposed

model, this function of reactive compensation of shunt branch is completely neglected.

As shown in Figure 3.3, the series and shunt injection branch are modeled with two ideal

controllable voltage sources, and respectively, while and , respectively,

and denote the leakage reactance of the two coupling transformers. represents

transmission line current [12].

Figure 3.3: Voltage Source Equivalent Circuit of UPFC

Series voltage source , can be mathematically expressed as follows:

 (11)

Where,

 and

18

 For the purpose of simplifying the formulation procedure of the power injection

model, which has been derived in rectangular form is adopted here as shown in Figure

3.4.

Figure 3.4: UPFC Power Injection Model

 The components of equivalent power injections at buses i and j, , , and

 are formulated as follows:

 (12)

 (13)

 (14)

 (15)

In equation ((12),(13),(14) and (15));

 and : respectively the equivalent complex power injected into the two

busbars, buses i and j, which are practically the resultant power

injections contributed by both the series and shunt branches of

UPFC.

19

 , : respectively, the phase angle components of the voltages on

buses i and j.

 : the leakage susceptance of the series coupling transformer.

r and : respectively, magnitude and phase and angle of series voltage

source,UPFC parameters.

3.3 PSO modeling

 As stated at the previous chapter, PSO is initialized with a group of random

particles (solution) and then searches for optima by updating generations. In every

iteration, each particle is updated by following two “best” values. The first one is the

best solution it has achieved do far. This value called pbest. Another one called gbest

which is global best, this value is tracked by the particle swarm optimizer is the best

value, obtained so far by any particle in the population.

 After finding the two values, the particle updates its velocity and positions with

equation (1) and (2). The pseudo code of the procedure is as follows:

For each particle

 Initialize particle

End

Do

 For each particle

 Calculate fitness value

If the fitness value is better than the best pbest value in history set

current value as the new pbest

End

Choose the particle with the best fitness value of all the particles as the gbest

For each particle

 Calculate particle velocity according equation (1)

 Update particle position according equation (2)

End

20

Particle velocity on each dimension are clamped to a maximum velocity . If

the sum of accelerations would cause the velocity on that dimension to exceed ,

which is a parameter specified by the user. Then the velocity on that dimension is

limited to .

3.4 Creating M-file Programming

 Based on the TCSC, UPFC and PSO modeling above, a programming had been

create to find the optimal location of FACTS devices. Refer Appendix E.

3.5 Creating Graphical User Interfaces (GUI)

 The main reason GUIs are used is because it makes things simple for the end-

users of the program. If GUIs were not used, people would have to work from the

command line interface, which can be extremely difficult and frustrating. This part will

explain the step that had been used to create the GUI.

To start the GUI, click at File > New > GUI, and you should see the following

screen appear as shown in Figure 3.5. The GUIDE Quick Start dialog will appear as

shown in Figure 3.6, user can create a new GUI by choosing the one of the appropriate

GUIDE templates. To open an existing GUI in GUIDE choose Open Existing GUI, you

can choose a GUI from your current directory or browse other directories. In this part

choose Blank GUI (default) to create the new templates. The result should be appearing

as shown in Figure 3.7.

21

Figure 3.5: Starting the GUI

Figure 3.6: Main Page to Create New GUI

22

Figure 3.7: GUI Layout Area

At the GUI layout area, programmer can use their creativity to design the GUI by

selecting and aligning the GUI components by dragging it into the layout. After design

the layout, used the Property Inspector to give each component a name and to set the

characteristics of each component, such as its color, the text to displays, font size, font

style and so on.

For the main page GUI (Figure 3.11) we will need the following components:

 Three Axes components

 Two Static Text components

 One Push Button component

Add in all the components to the GUI by clicking on the icon and placing it onto

the grid. At this point, your GUI should look similar to the Figure 3.8 below:

23

Figure 3.8: GUI Design Layout

 Now, edit the properties of these components. For example here we look at the

static text. Double click one of the Static Text component and then the following Figure

3.9 will appear. It is called the Property Inspector and it allows you to modify the

properties of a component.

24

Figure 3.9: Property Inspector

Do the same step for all the other axes and push button components. After you

done it, save the GUI under any file name. When you save this file, MATLAB

automatically generates two files: mainpage.m (Figure 3.10) and mainpage.fig (Figure

3.11).

The .m file contains all the code for the GUI here the behavior of the GUI can be

programmed by several code or function. This code or function will controls how the

GUI respond to events such as button clicks, slider movement, menu item selection or

25

the creation and deletion of component. This programming takes the form of set of

function, called callbacks, for each component and for the GUI itself.

While the .fig file contains the graphics of your interface.

Figure 3.10: M-file Programming

26

Figure 3.11: GUI Design

27

CHAPTER 4

RESULT AND ANALYSIS

4.1 Graphic User Interface (GUI)

In this project, Application of PSO Technique for Optimal Location of FACTS

Devices, a GUI has been created by using MATLAB. This GUI is consists of three part

or layout which are „MAIN_PAGE‟ layout, „INTRODUCTION‟ layout and

„SIMULATION‟ layout. The „MAIN_PAGE‟ layout show the brief detail of the

programmer, supervisor, title and the main part before proceed in detail. This layout

consists of three button, which are NEXT and EXIT. Each push button will execute its

own GUI. When the „HELP‟ button is clicked, it will call „HELP.fig‟.

 Before calling the GUI main page, make sure that you have choose the

appropriate work path as shown in figure below. Work path is the location of the project

file that has been saved.

Then write the main file‟s name in the command window that shown in Figure 4.1.

Figure 4.2 is the main page of this project.

 The programming for the main page is shown in Appendix E.

28

Figure 4.2: Main page of the GUI

 Click at the „INTRODUCTION‟ button, and then the other layout come out, refer

the Figure 4.3. This layout gives the brief information about the FACTS devices and also

PSO. To return back to the main page, click EXIT button. The programming to this

layout will be attached to the Appendix F.

 The EXIT button brings the INTRODUCTION layout to the MAIN_PAGE

layout.

29

Figure 4.3: The Introduction layout

 From the main page layout, go to the button „SIMULATION‟ , then this layout

will come out as Figure 4.4.

Figure 4.4: The simulation GUI.

30

The purpose of this layout is to show how the PSO work. We can see that, the

particle in system moving randomly towards a best value. So this best value will be

implementing in the FACTS devices as the optimal location. Click the run button, then a

dialog box as shown in Figure 4.5 will pop out.

 Figure 4.5 : Run dialog box

 The „Yes‟ button allow the program to execute, while the „No‟ button terminate

the running. The programming is set to run the 49 swarm size with iteration of 30 times.

Figure 4.6 shows what is the swarm size in the system.

Figure 4.6: The PSO Initialization

31

 Appendix G shows the programming of the „SIMULATION‟ and Appendix H

for the „PSOsimulation‟. To exit the whole program, click the „EXIT‟ button on the main

page and the „Yes‟ to exit the program and „No‟ to continue the program. Appendix I

shows the programming.

Figure 4.7: Exit the program

4.2 The solution of optimal location.

 Refer to the Appendix J and K for the programming to find the optimal location

of FACTS devices.

The result from the programming will be different in every iteration, this is

because in every iteration the PSO will update the value. At the end of the execution,

MATLAB give the total loss of the system and will ask to write the xpbest and xgbest to

display the particles best solution and the global best solution.

32

Figure 4.8: Result for First Iteration.

33

CHAPTER 5

CONCLUSION AND FUTURE RECOMMENDATION

5.1 Conclusion

 By using the PSO technique, the optimal location of FACTS devices can be

determined. The PSO technique as stated in the previous chapter will choose the tested

transmission line randomly, and they will find the best value by doing the iteration.

Every iteration will come out with the different solution because PSO will always update

the best value in every iteration.

5.2 Future Recommendation

 There are few suggestion for the future recommendation in order to find the

practical solution for the distribution system problem.

34

5.2.1 By install two FACTS devices in one time into the system.

 In this project, we only considered only one FACTS device to be installed in a

time. In the case 1, UPFC had been installed in the transmission line of the IEEE 30-bus

system, while in case 2, TCSC had been installed in the transmission line of the IEEE

30-bus system.

 In the future, we can add two FACTS devices in a time. Instead using UPFC or

TCSC in a time, both of the devices will be installed in a time but in the different

transmission line. And then, we can compare the result, which solution give optimal

location in the power system.

5.2.2 Find the optimal location of multi type FACTS devices.

 The application of particle swarm optimization algorithm to find the optimal

location of multi type FACTS devices in a power system in order to eliminate or

alleviate the line over loads. The optimization can be performed n the parameter, namely

the location of the devices, their types, their setting and installation cost of FACTS

devices for single and multiple contingencies. This recommendation is a procedure to

place multi type FACTS devices along the system branches based on the contingency

severity index values to alleviate system overloads and to improve the system security

margin during single and double contingencies.

35

5.2.3 Performed the simulation on various IEEE bus system

Instead of using the IEEE 30-bus system, there are various IEEE bus system such

as IEEE 6-bus system, IEEE 14-bus system, IEEE 118-bus system or using TNEB 69-

bus system as test system to the future project.

 5.2.4 Apply another algorithm technique

By applying another algorithm technique, such as, Genetic Algorithm (GA) or

Evolutionary Programming (EP) algorithm. Find the optimal location of FACTS devices

in power system using that technique. Both techniques will give the different result or

different solution, so we can do the comparison which technique will perform the best

solution, which one required simple programming and which one is the most efficient

algorithm technique.

Genetic Algorithms are global search techniques, based on the mechanisms of

natural selection and genetic. They can search several possible solutions simultaneously

and they do not require any prior knowledge or special properties of the objective

function. The Gas start with random generation of initial population and then the

selection, crossover and mutation are proceeded until the maximal generation is reached.

Additionally, Gas are practical algorithm and easy to be implemented in the power

system analysis [13].

The Evolutionary Programming Algorithm is a computational optimization

method, which uses the mechanic of evolution to find the global optimal solution of

complex optimization problems. The EP Algorithm starts with random generation of

initial individuals in a population and then the mutation and selection are proceeded until

the best individual, which has the highest fitness, is found [14].

36

REFERENCE

[1] N.G. Hingorani and L.Gyugyi, Understanding FACTS Concepts and Technology of

Flexible AC Transmission Systems, IEEE Press, 2000, ISBN 0-7803-3455-8.

[2] R.M.Mathur and R.K. Varma, Thyristor based FACTS controllers for Electrical

Transmission System. John Wiley & Sons Inc, 2002.

[3] Y.H. Song and X.F. Wang, Operation of Market Oriented Power System, Springer-

Verlag Ltd, 2003, ISBN: 1-85233-670-6.

[4] James Kennedy, Russell Eberhart. Particle Swarm Optimization. Proc. IEEE Int'l.

Conf. on Neural Networks (Perth, Australia),IEEE Service Center, Piscataway, NJ,

IV:1942-1948. Available at: http://www.engr.iupui.edu/~shi/Coference/psopap4.html

[5] M. Saravanan, S. Mary Raja Slochanal, P. Venkatesh, Prince Stephen Abraham. J.

Application of PSO technique for optimal location of FACTS devices considering system

loadability and cost of installation.

[6] Citing Internet sources URL http://www.swarmintelligence.org/index.php

[7] J. Baskaran#, Dr. V. Palanisamy (2005). Genetic Algorithm applied to Optimal

Location of FACTS Device in a Power System Network considering economic saving

cost. Academic Open Internet Journal. Available at:

http://www.acadjournal.com/2005/v15/part6/p3/

[8] Dr. Nadarajah Mithulananthan, Mr. Artit Sode-yome, Mr. Naresh Acharya(2003).

Application of FACTS Controllers in Thailand Power Systems. RTG Budget-Joint

Research Project, Fiscal.

http://www.engr.iupui.edu/~shi/Coference/psopap4.html
http://www.engr.iupui.edu/~shi/Coference/psopap4.html
http://www.engr.iupui.edu/~shi/Coference/psopap4.html
http://www.swarmintelligence.org/index.php
http://www.acadjournal.com/2005/v15/part6/p3/

37

[9] Lennart Angquist, Gunnar Ingestrom, Hans-Ake Jonsson (1996). Dynamical

Performance of TCSC Schemes. ABB Power System AB Sweden.

[10] Srinivasa Rao Pudi, S.C. Srivastava, Senior Member, IEEE (2008). Optimal

Placement of TCSC Based on A Sensitivity Approach for Congestion Management. Fifth

National Power Systems Conference (NPSC), IIT Bombay.

[11] Seyed Abbas Taher, Hadi Besharat. Transmission Congestion Management by

Determining Optimal Location of FACTS Devices in Deregulated Power Systems.

American Journal of Applied Sciences 5 (3): 242-247, 2008, ISSN 1546-9239.

[12] Citing Internet sources URL

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V2T-4CF16W3-

2&_user=4406426&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&

_searchStrId=1065565538&_rerunOrigin=google&_acct=C000063100&_version=1&_u

rlVersion=0&_userid=4406426&md5=4ac5eaf18b2d2a132c3905a200e03e28

[13] L.J. Cai, I.Erlich, G. Stamtsis (2004). Optimal Choice and Allocation of FACTS

Devices in Deregulated Electricity Market using Genetic Algorithms.

[14] Weerakorn Ongsakul, Peerapol Jirapong (2005).Optimal Allocation of FACTS

Devices to Enhance Total Transfer Capability Using Evolutionary Programming.

School of Environment, Recources, and Development Asian Institute of Technology,

Pathumthani, Thailand.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V2T-4CF16W3-2&_user=4406426&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1065565538&_rerunOrigin=google&_acct=C000063100&_version=1&_urlVersion=0&_userid=4406426&md5=4ac5eaf18b2d2a132c3905a200e03e28
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V2T-4CF16W3-2&_user=4406426&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1065565538&_rerunOrigin=google&_acct=C000063100&_version=1&_urlVersion=0&_userid=4406426&md5=4ac5eaf18b2d2a132c3905a200e03e28
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V2T-4CF16W3-2&_user=4406426&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1065565538&_rerunOrigin=google&_acct=C000063100&_version=1&_urlVersion=0&_userid=4406426&md5=4ac5eaf18b2d2a132c3905a200e03e28
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V2T-4CF16W3-2&_user=4406426&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1065565538&_rerunOrigin=google&_acct=C000063100&_version=1&_urlVersion=0&_userid=4406426&md5=4ac5eaf18b2d2a132c3905a200e03e28

38

APPENDIX A

IEEE 30-bus System

39

APPENDIX B

Bus Data

40

APPENDIX C

Line Data

41

APPENDIX D

Flow Chart

42

APPENDIX E

Programming for the MAIN_PAGE

%%%
% Design By: SUHAIRAH BINTI RAZALI EC07082 %
% Degree of Electrical Engineering (Power System) %
% UNIVERSITI MALAYSIA PAHANG %
%%%

function varargout = MAIN_PAGE(varargin)
% MAIN_PAGE M-file for MAIN_PAGE.fig
% MAIN_PAGE, by itself, creates a new MAIN_PAGE or raises the

existing
% singleton*.
%
% H = MAIN_PAGE returns the handle to a new MAIN_PAGE or the

handle to
% the existing singleton*.
%
% MAIN_PAGE('CALLBACK',hObject,eventData,handles,...) calls the

local
% function named CALLBACK in MAIN_PAGE.M with the given input

arguments.
%
% MAIN_PAGE('Property','Value',...) creates a new MAIN_PAGE or

raises the
% existing singleton*. Starting from the left, property value

pairs are
% applied to the GUI before MAIN_PAGE_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to MAIN_PAGE_OpeningFcn via

varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help MAIN_PAGE

% Last Modified by GUIDE v2.5 23-Nov-2009 00:00:27

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @MAIN_PAGE_OpeningFcn, ...
 'gui_OutputFcn', @MAIN_PAGE_OutputFcn, ...

43

 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before MAIN_PAGE is made visible.
function MAIN_PAGE_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to MAIN_PAGE (see VARARGIN)

% Choose default command line output for MAIN_PAGE
handles.output = hObject;

axes(handles.axes1)
[x,map]=imread('ump','jpg');
 image(x)
 set(gca,'visible','off')

axes(handles.axes2)
[x,map]=imread('drahmed','jpg');
 image(x)
 set(gca,'visible','off')

axes(handles.axes3)
[x,map]=imread('suhairah','jpg');
 image(x)
 set(gca,'visible','off')

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes MAIN_PAGE wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = MAIN_PAGE_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

44

varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
user_response = INTRODUCTION, close MAIN_PAGE;

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
user_response = SIMULATION, close MAIN_PAGE;

% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
button=questdlg('Are you sure you want to

exit?','exit','Yes','No','No');
switch button
 case'Yes'
 close all;
 case'No'
 quite cancel;
end

45

APPENDIX F

Programming for the INTRODUCTION

%%%
% Design By: SUHAIRAH BINTI RAZALI EC07082 %
% Degree of Electrical Engineering (Power System) %
% UNIVERSITI MALAYSIA PAHANG %
%%%

function varargout = INTRODUCTION(varargin)
% INTRODUCTION M-file for INTRODUCTION.fig
% INTRODUCTION, by itself, creates a new INTRODUCTION or raises

the existing
% singleton*.
%
% H = INTRODUCTION returns the handle to a new INTRODUCTION or the

handle to
% the existing singleton*.
%
% INTRODUCTION('CALLBACK',hObject,eventData,handles,...) calls the

local
% function named CALLBACK in INTRODUCTION.M with the given input

arguments.
%
% INTRODUCTION('Property','Value',...) creates a new INTRODUCTION

or raises the
% existing singleton*. Starting from the left, property value

pairs are
% applied to the GUI before INTRODUCTION_OpeningFcn gets called.

An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to INTRODUCTION_OpeningFcn via

varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help INTRODUCTION

% Last Modified by GUIDE v2.5 23-Nov-2009 00:32:32

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @INTRODUCTION_OpeningFcn, ...
 'gui_OutputFcn', @INTRODUCTION_OutputFcn, ...
 'gui_LayoutFcn', [] , ...

46

 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before INTRODUCTION is made visible.
function INTRODUCTION_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to INTRODUCTION (see VARARGIN)

% Choose default command line output for INTRODUCTION
handles.output = hObject;

axes(handles.axes1)
[x,map]=imread('ump','jpg');
 image(x)
 set(gca,'visible','off')

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes INTRODUCTION wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = INTRODUCTION_OutputFcn(hObject, eventdata,

handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
user_response = MAIN_PAGE, close INTRODUCTION;

47

APPENDIX G

Programming for the SIMULATION

%%%
% Design By: SUHAIRAH BINTI RAZALI EC07082 %
% Degree of Electrical Engineering (Power System) %
% UNIVERSITI MALAYSIA PAHANG %
%%%

function varargout = SIMULATION(varargin)
% SIMULATION M-file for SIMULATION.fig
% SIMULATION, by itself, creates a new SIMULATION or raises the

existing
% singleton*.
%
% H = SIMULATION returns the handle to a new SIMULATION or the

handle to
% the existing singleton*.
%
% SIMULATION('CALLBACK',hObject,eventData,handles,...) calls the

local
% function named CALLBACK in SIMULATION.M with the given input

arguments.
%
% SIMULATION('Property','Value',...) creates a new SIMULATION or

raises the
% existing singleton*. Starting from the left, property value

pairs are
% applied to the GUI before SIMULATION_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to SIMULATION_OpeningFcn via

varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help SIMULATION

% Last Modified by GUIDE v2.5 23-Nov-2009 01:21:20

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...

48

 'gui_OpeningFcn', @SIMULATION_OpeningFcn, ...
 'gui_OutputFcn', @SIMULATION_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before SIMULATION is made visible.
function SIMULATION_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to SIMULATION (see VARARGIN)

movegui ('center')
handles.output = 'Yes';

% Choose default command line output for SIMULATION
handles.output = hObject;

axes(handles.axes1)
[x,map]=imread('ump','jpg');
 image(x)
 set(gca,'visible','off')

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes SIMULATION wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = SIMULATION_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

49

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
user_response = run;

50

APPENDIX H

Programming for the PSOsimulation

%%%
% Design By: SUHAIRAH BINTI RAZALI EC07082 %
% Degree of Electrical Engineering (Power System) %
% UNIVERSITI MALAYSIA PAHANG %
%%%

%% Particle Swarm Optimization Simulation
% Simulates the movements of a swarm to minimize the objective function
%
% $$ \left(x-15 \right) ^{2}+ \left(y-20 \right) ^{2} = 0$$
%
% The swarm matrix is
%
% swarm(index, [location, velocity, best position, best
% value], [x, y components or the value component])
%
% Author: Wesam ELSHAMY (wesamelshamy@yahoo.com)
% MSc Student, Electrical Enginering Dept., Faculty of Engineering

Cairo University, Egypt
%%

%% Initialization
% Parameters
clear
clc
iterations = 30;
inertia = 1.0;
correction_factor = 2.0;
swarm_size = 49;

% ---- initial swarm position -----
index = 1;
for i = 1 : 7
 for j = 1 : 7
 swarm(index, 1, 1) = i;
 swarm(index, 1, 2) = j;
 index = index + 1;
 end
end

swarm(:, 4, 1) = 1000; % best value so far
swarm(:, 5, :) = 0; % initial velocity

%% Iterations
for iter = 1 : iterations

 %-- evaluating position & quality ---

51

 for i = 1 : swarm_size
 swarm(i, 1, 1) = swarm(i, 1, 1) + swarm(i, 2, 1)/1.3;

%update x position
 swarm(i, 1, 2) = swarm(i, 1, 2) + swarm(i, 2, 2)/1.3;

%update y position
 x = swarm(i, 1, 1);
 y = swarm(i, 1, 2);

 val = (x - 15)^2 + (y - 20)^2; % fitness evaluation

(you may replace this objective function with any function having a

global minima)

 if val < swarm(i, 4, 1) % if new position is

better
 swarm(i, 3, 1) = swarm(i, 1, 1); % update best x,
 swarm(i, 3, 2) = swarm(i, 1, 2); % best y postions
 swarm(i, 4, 1) = val; % and best value
 end
 end

 [temp, gbest] = min(swarm(:, 4, 1)); % global best position

 %--- updating velocity vectors
 for i = 1 : swarm_size
 swarm(i, 2, 1) = rand*inertia*swarm(i, 2, 1) +

correction_factor*rand*(swarm(i, 3, 1) - swarm(i, 1, 1)) +

correction_factor*rand*(swarm(gbest, 3, 1) - swarm(i, 1, 1)); %x

velocity component
 swarm(i, 2, 2) = rand*inertia*swarm(i, 2, 2) +

correction_factor*rand*(swarm(i, 3, 2) - swarm(i, 1, 2)) +

correction_factor*rand*(swarm(gbest, 3, 2) - swarm(i, 1, 2)); %y

velocity component
 end

 %% Plotting the swarm
 clf
 plot(swarm(:, 1, 1), swarm(:, 1, 2), 'x') % drawing swarm

movements
 axis([-2 30 -2 30]);
pause(.2)
end

52

APPENDIX I

Programming for the RUN button

%%%
% Design By: SUHAIRAH BINTI RAZALI EC07082 %
% Degree of Electrical Engineering (Power System) %
% UNIVERSITI MALAYSIA PAHANG %
%%%

function varargout = run(varargin)
% RUN M-file for run.fig
% RUN, by itself, creates a new RUN or raises the existing
% singleton*.
%
% H = RUN returns the handle to a new RUN or the handle to
% the existing singleton*.
%
% RUN('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in RUN.M with the given input arguments.
%
% RUN('Property','Value',...) creates a new RUN or raises the
% existing singleton*. Starting from the left, property value

pairs are
% applied to the GUI before run_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to run_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help run

% Last Modified by GUIDE v2.5 22-Nov-2009 13:32:15

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @run_OpeningFcn, ...
 'gui_OutputFcn', @run_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else

53

 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before run is made visible.
function run_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to run (see VARARGIN)

movegui ('center')
handles.output = 'Yes';

% Choose default command line output for run
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes run wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = run_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;
handles.output = 'No';

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
user_response = 'Yes';
switch user_response
 case 'Yes',close, PSOsimulation;
end

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

54

% handles structure with handles and user data (see GUIDATA)
user_response = 'No'
switch user_response
 case 'No' , close ;
end

55

APPENDIX J

Programming to find the optimal location

%%%
% Design By: SUHAIRAH BINTI RAZALI EC07082 %
% Degree of Electrical Engineering (Power System) %
% UNIVERSITI MALAYSIA PAHANG %
%%%

function fpbest = PSOFACTS(xpbest,Particles,d)

 % IEEE 30-BUS TEST SYSTEM (American Electric Power)
 basemva=100; accuracy=0.001; accel=1.8; maxiter=100;
% Bus Bus Voltage Angle --Load-- ---Generator---

Injected
% No Code Mag. Degree MW Mvar MW Mvar Qmin Qmax

Mvar
busdata=[1 1 1.06 0 0.0 0.0 0.0 0.0 0 0

0;
 2 2 1.043 0 21.70 12.7 40.0 0.0 -40 50

0;
 3 0 1.0 0 2.4 1.2 0.0 0.0 0 0

0;
 4 0 1.06 0 7.6 1.6 0.0 0.0 0 0

0;
 5 2 1.01 0 94.2 19.0 0.0 0.0 -40 40

0;
 6 0 1.0 0 0.0 0.0 0.0 0.0 0 0

0;
 7 0 1.0 0 22.8 10.9 0.0 0.0 0 0

0;
 8 2 1.01 0 30.0 30.0 0.0 0.0 -10 40

0;
 9 0 1.0 0 0.0 0.0 0.0 0.0 0 0

0;
 10 0 1.0 0 5.8 2.0 0.0 0.0 0 0

19;
 11 2 1.082 0 0.0 0.0 0.0 0.0 -6 24

0;
 12 0 1.0 0 11.2 7.5 0.0 0.0 0 0

0;
 13 2 1.071 0 0.0 0.0 0 0 -6 24

0;
 14 0 1.0 0 6.2 1.6 0 0 0 0

0;
 15 0 1.0 0 8.2 2.5 0 0 -6 24

0;
 16 0 1.0 0 3.5 1.8 0 0 0 0

0;
 17 0 1.0 0 9.0 5.8 0 0 0 0

0;
 18 0 1.0 0 3.2 0.9 0 0 0 0

0;

56

 19 0 1.0 0 9.5 3.4 0 0 0 0

0;
 20 0 1.0 0 2.2 0.7 0 0 0 0

0;
 21 0 1.0 0 17.5 11.2 0 0 0 0

0;
 22 0 1.0 0 0.0 0.0 0 0 0 0

0;
 23 0 1.0 0 3.2 1.6 0 0 0 0

0;
 24 0 1.0 0 8.7 6.7 0 0 0 0

4.3;
 25 0 1.0 0 0.0 0.0 0 0 0 0

0;
 26 0 1.0 0 3.5 2.3 0 0 0 0

0;
 27 0 1.0 0 0.0 0.0 0 0 0 0

0;
 28 0 1.0 0 0.0 0.0 0 0 0 0

0;
 29 0 1.0 0 2.4 0.9 0 0 0 0

0;
 30 0 1.0 0 10.6 1.9 0 0 0 0

0];

 % Line Data
 %
 % Bus Bus R X 1/2B for Line code or
 % n1 nr pu pu pu tap setting value
 linedata=[1 2 0.0192 0.0575 0.02640 1;
 1 3 0.0452 0.1852 0.02040 1;
 2 4 0.0570 0.1737 0.01840 1;
 3 4 0.0132 0.0379 0.00420 1;
 2 5 0.0472 0.1983 0.02090 1;
 2 6 0.0581 0.1763 0.01870 1;
 4 6 0.0119 0.0414 0.00450 1;
 5 7 0.0460 0.1160 0.01020 1;
 6 7 0.0267 0.0820 0.00850 1;
 6 8 0.0120 0.0420 0.00450 1;
 6 9 0.0 0.2080 0.0 0.978;
 6 10 0.0 0.5560 0.0 0.969;
 9 11 0.0 0.2080 0.0 1;
 9 10 0.0 0.1100 0.0 1;
 4 12 0.0 0.2560 0.0 0.932;
 12 13 0.0 0.1400 0.0 1;
 12 14 0.1231 0.2559 0.0 1;
 12 15 0.0662 0.1304 0.0 1;
 12 16 0.0945 0.1987 0.0 1;
 14 15 0.2210 0.1997 0.0 1;
 16 17 0.0824 0.1923 0.0 1;
 15 18 0.1073 0.2185 0.0 1;
 18 19 0.0639 0.1292 0.0 1;
 19 20 0.0340 0.0680 0.0 1;
 10 20 0.0936 0.2090 0.0 1;
 10 17 0.0324 0.0845 0.0 1;
 10 21 0.0348 0.0749 0.0 1;
 10 22 0.0727 0.1499 0.0 1;

57

 21 22 0.0116 0.0236 0.0 1;
 15 23 0.1000 0.2020 0.0 1;
 22 24 0.1150 0.1790 0.0 1;
 23 24 0.1320 0.2700 0.0 1;
 24 25 0.1885 0.3292 0.0 1;
 25 26 0.2544 0.3800 0.0 1;
 25 27 0.1093 0.2087 0.0 1;
 28 27 0.0000 0.3960 0.0 0.968;
 27 20 0.2198 0.4153 0.0 1;
 27 30 0.3202 0.6027 0.0 1;
 29 30 0.2399 0.4533 0.0 1;
 8 28 0.0636 0.2000 0.0214 1;
 6 28 0.0169 0.0599 0.065 1];
 % %
nbus = length(busdata(:,1)); % No. of Transmission Line
nbr =length(linedata(:,1)); %No. of tramsmission line

New=busdata;

for t1=1:Particles
 lo_tcsc=xpbest(t1,1);
 lo=lo_tcsc;
 % add TCSC location
 X1=linedata(lo,1);
 X2=linedata(lo,2);
 % Add TCSC MODEL
 xc=0.0575;
 rij=linedata(t1,3);
 xij=linedata(t1,4);
 Gij=xc*(rij^2-xij^2+xc*xij)/(rij^2+xij^2)*(rij^2+(xij-xc)^2);
 Bij=xc*rij*(xc-xij)/(rij^2+xij^2)*(rij^2+(xij-xc)^2);
 Vi=busdata(X1,3);
 di=busdata(X1,4);
 Vj=busdata(X2,3);
 dj=busdata(X2,4);
 Pi=Vi^2*Gij-Vi*Vj*(Gij*cos(di-dj)+Bij*sin(di-dj));
 Qi=-Vi^2*Bij-Vi*Vj*(Gij*sin(di-dj)+Bij*cos(di-dj));
 Pj=Vj^2*Gij-Vi*Vj*(Gij*cos(di-dj)-Bij*sin(di-dj));
 Qj=-Vj^2*Gij+Vi*Vj*(Gij*sin(di-dj)+Bij*cos(di-dj));
 %insert TCSC model
busdata(X1,6)=busdata(X1,6)+Qi;
busdata(X1,7)=busdata(X1,7)+Pi;
busdata(X2,6)=busdata(X2,6)+Qj;
busdata(X2,7)=busdata(X2,7)+Pj;

 % add UPFC
 lo_upfc=xpbest(t1,2);
 lou=lo_upfc;
 % add UPFC location
 X3=linedata(lou,1);
 X4=linedata(lou,2);
 %Add UPFC MODEL
 sr=2.4;
 sbse=0.0001;
 sgamma=5;

58

 sthetai=0;
 sthetaj=0;
 sPiupfc=(0.02*r*bse*Vi^2*sin*gamma)-1.02*r*bse*Vi*Vj*sin*(thetai-

thetaj+gamma);
 sQiupfc=-r*bse*Vi^2*cos*gamma;
 sPjupfc=r*bse*Vi*Vj*sin*(thetai-thetaj+gamma);
 sQjupfc=r*bse*Vi*Vj*cos*(thetai-thetaj+gamma);
 %
 Pupfc=0.2;
 Qupfc=0.5;
%insert UPFC model
busdata(X3,6)=busdata(X1,6)+Qupfc;
busdata(X3,7)=busdata(X1,7)+Pupfc;
busdata(X4,6)=busdata(X2,6)+Qupfc;
busdata(X4,7)=busdata(X2,7)+Pupfc;

%[Ybus]=lfybus(linedata);
%[Vm,delta,P,Q,S,VBc,a,nbr,nbus,nr,nl]=lfnewton(busdata,linedata);
%[Snkr,Snki]=lineflow(busdata,linedata,Vm,delta,P,Q,S,V,Bc,nr,nl,basemv

a);
lfybus; %Forms the bus admittance matrix
lfnewton; %Power flow solution by newton method
busout; %Print the power flow solution on the screen
lineflow; %Computes and displays the line flow and losses
x1=Vm;
x2=deltad;
% x3=P;
% x4=Q;
% neural output
 for t2=1:nbus
 tt(t2,t1)=x1(t2); % Vm
 tt1(t2,t1)=x2(t2)*3.14/180; % deltad
 end
 % pp(1,t1)=Pd; % total power losses
% Remove TCSC and UPFC
busdata=New;
end
fpbest(t1)=min(max(tt));
disp('Testing has been carried out successfully');
end

59

APPENDIX K

Programming to find the optimal location

%%%
% Design By: SUHAIRAH BINTI RAZALI EC07082 %
% Degree of Electrical Engineering (Power System) %
% UNIVERSITI MALAYSIA PAHANG %
%%%

% SWARM Swarm minimization
%%
% [X,BEST]=swarm(Particles,d,Range,n,C0,C1,C2,FUN)
% minimizes function FUN using Swarm Minimization.
%Particles: number of creatures in swarm

(maxgen)
% d: number of Parameter
% Range: range of initial uniform distribution of creature position
% N: number of steps (iterations)

(Popnumber)
% C0: influence of old velocty to new velocity (0.66)
% C1: influence of personal best vector two new velocity (2)
% C2: influence of collective's best vector two new velocity (2)
% FUN: string containing name of function to minimize.
%%
%Return X (Particles,n,d) vector with swarm locations, BEST collective
% value
%% d= two device FACTS
Particles=10; d=2; n=25; Range=[1 41;1 41]; c0=0.66; c1=2; c2=2;
% function [xx,best] = swarm1(Particles, d, Range, n, c0, c1 , c2)
xx = [];
%Handle=waitbar(0,'Please wait...');
%Initialization of PSO parameters
%wmax=0.9;
%wmin=0.4;
%for iter=1:n
%W(iter)=wmax-((wmax-wmin)/n)*iter;
%end
% choose initial position and location of particles
%Initialization of positions of agents
%%%%%%% agents are initialized between Range(i,2),Range(i,1) randomly
for i=1:d
 a=Range(i,1)+(Range(i,2)-Range(i,1))*rand(Particles,1);
for j=1:Particles
a1(j,i)=a(j);
end
end
% Find integer No.
for i1=1:d
 for j1=1:Particles
 n22=a1(j1,i1);
 a1(j1,i1)=ceil(n22.*rand(1,1));
 end
end

%%%%v=rand(count,d)*vstddev;

60

%Initialization of velocities of agents
%Between c3=0,c4=0.66
c3=0;
c4=0.1;
for i=i:d
v=c3+(c4-c3)*rand(Particles,1);
for j=1:Particles
v1(j,i)=v(j);
end
end
% compute personal and global optima for initial configuration
xpbest = a1; % initial vector with personal optima locations
%fpbest = feval(fun, xpbest); % initial vector with personal optima

values
fpbest = PSOFACTS(xpbest,Particles,d); % initial vector with personal

optima values
[fgbest , xgbest] = min(fpbest); % global best optima value
xgbest = xpbest(xgbest,:); % global best optimal location
%P=ones(count,1)*xpbest(xgbest,:);

for i=1:n % iteration loop
% change velocity
v1 =c0*v1+c1*repmat(rand(Particles, 1), 1,d).*(xpbest-a1)+...
c2*repmat(rand(Particles, 1),1,d).*(repmat(xgbest, Particles, 1)-a1);

for i=1:d
v1(:,i)=min(v1(:,i),ones(Particles,1)*0.2);
v1(:,i)=max(v1(:,i),ones(Particles,1)*0.0001);
end
a1 = a1 + v1; % update positions
m=a1;
% to fly back by indentification parameter to limited range
for i=1:d
a1(:,i)=min(a1(:,i),ones(Particles,1)*Range(i,2));
a1(:,i)=max(a1(:,i),ones(Particles,1)*Range(i,1));
end

for i1=1:d
 for j1=1:Particles
 n22=a1(j1,i1);
 a1(j1,i1)=ceil(n22.*rand(1,1));
 end
end
f= PSOFACTS(a1,Particles,d); % evaluate function at new swarm positions
% check for new individual optimia (each particle seperately)
haschanged = find(min(f,fpbest)<fpbest);
k=size(haschanged,2);
for h=1:k
xpbest(haschanged(h),:) = a1(haschanged(h),:);
fpbest(haschanged(h)) = f(haschanged(h));
end
% check for new collective optimum
if (min(fpbest)<fgbest)
 [fgbest ,newbest] = min(fpbest);
xgbest = xpbest(newbest,:);
end

61

%end
xx=xgbest; % append current swarm postiions (best FACTS place for TCSC

and UPFC)
best = fgbest;
disp('Type xpbest to see the particle solution');
disp('Type xgbest to see the global solution');

lxii

