
UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS

 JUDUL:

SESI PENGAJIAN:________________

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.
4. **Sila tandakan ()

 (Mengandungi maklumat yang berdarjah keselamatan
 SULIT atau kepentingan Malaysia seperti yang termaktub
 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
 oleh organisasi/badan di mana penyelidikan dijalankan)

 TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________
 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

22-2-11 JALAN 13/32, DR AHMED N ABD ALLA
TAMAN JINJANG BARU, (Nama Penyelia)
52000 KUALA LUMPUR,
WILAYAH PERSEKUTUAN.

Tarikh: 29 OCTOBER 2009 Tarikh: : 29 OCTOBER 2009

CATATAN: * Potong yang tidak berkenaan.
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu

 Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2009/2010

 TAI HEIN FONG (861106-56-6446)

CASE STUDY OF SHORT-TERM ELECTRICITY LOAD
FORECASTING WITH TEMPERATURE DEPENDENCY

i

CASE STUDY OF SHORT-TERM ELECTRICITY LOAD FORECASTING

WITH TEMPERATURE DEPENDENCY

TAI HEIN FONG

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor of Electrical Engineering (Power System) (Hons.)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

OCTOBER, 2009

ii

“I hereby acknowledge that the scope and quality of this thesis is qualified for the award

of the Bachelor Degree of Electrical Engineering (Control and Instrumentation)”

Signature : __

 Name : DR AHMED N ABD ALLA

 Date : 29 OCTOBER 2009

iii

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : TAI HEIN FONG

Date : 29 OCTOBER 2009

iv

ACKNOWLEDGEMENT

First and foremost, I would like to express the deepest gratitude to my

supervisor, Dr Ahmed N Abd Alla, for his continued support, encouragement, and

guidance in overseeing the progress of my project from its initial phase till its

completion. Without his valuable advices and comments, this would not have been

possible to achieve a good basis of project.

Secondly, I would like to extend words of appreciation to all the lecturers for

their friendly help and guidance throughout the process of completing this project.

To all our friends and course mates, thank you for believing in me and helping

me. The experiences and knowledge I gained would prove invaluable to better equip me

for the challenges lie ahead.

Last but definitely not the least to my parent, I can never thank enough for their

love, and for supporting me throughout my studies in University Malaysia Pahang

(UMP).

v

ABSTRACT

 Load forecasting is very essential to the operation of electricity companies. It

enhances the energy-efficient and reliable operation of a power system. This is a case

study of short-term load forecasting using Artificial Neural Networks (ANNs). This

load forecasting program gives load forecasts half an hour in advance. Historical load

data obtained from the electricity generation company will be use. The main stages

are the pre-processing of the data sets, network training, and forecasting. The inputs

used for the neural network are one set of historical load demand data and five sets of

temperature data. The neural network used has 3 layers: an input, a hidden, and an

output layer. The input layer has 5 neurons, the number of hidden layer neurons can

be varied for the different performance of the network, while the output layer has a

single neuron.

vi

ABSTRAK

 System yang dapat menganggarkan keperluan kuasa elektrik untuk kegunaan

harian merupakan ciri yang penting untuk sesebuah syarikat yang menghasilkan kuasa

elektrik. System tersebut dapat membekalkan kuasa elektrik secara berterusan tanpa

menghadapi sebarang masalah. Oleh itu, kajian kes ini telah dikaji dengan

menggunakan Artificial Neural Network (ANNs) bagi menghasilkan system tersebut.

Kajian ini akan dapat membuat anggaran keperluan kuasa elektrik untuk setiap

setengah jam. Maklumat yang digunakan bagi anggaran tersebut akan didapati

daripada syarikat yang menghasilkan kuasa elektrik. Proses yang teribat dalam kajian

ini terbahagi kepada tiga. Proses tersebut ialah proses mengumpul data, latihan Neural

Network dan akhir sekali ialah proses anggaran kuasa elektrik. Maklumat yang

digunakan ialah satu set kegunaan kuasa elektrik untuk setiap setengah jam yang lama

dan lima set maklumat suhu. Neural network ini mengandungi tiga lapisan, input,

hidden dan output. Lapisan input mengandungi lima neurons, untuk lapisan hidden,

bilangan neurons adalah bergantung kepada pengguna dan akhir sekali ialah lapisan

output yang mengandungi satu neuron.

vii

TABLE OF CONTENTS

TITLE PAGE

TITLE PAGE i

DECLARATION ii

ACKNOWLEDGEMENT iv

ABSTACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF FIGURES xi

LIST OF TABLES xiii

LIST OF APPENDIX xiv

CHAPTER 1: INTRODUCTION 1

1.1 : Introduction 1

1.2 : Project Objectives 3

1.3 : Thesis Outline 4

CHAPTER 2: FORECASTING METHODS 6

viii

2.1: Important Factors for Forecasts 6

2.2: Short-term load forecasting methods 7

2.2.1: Similar-day approach 8

2.2.2: Regression methods 8

2.2.3: Time Series 8

2.2.4: Neural Network 8

2.2.5: Expert system 8

2.2.6: Fuzzy logic 8

CHAPTER 3: NEURAL NETWORK MODELS FOR TIME 13

 SERIES FORECAST

3.1: Introduction 13

3.2: Important Factors for Electricity Load 15

CHAPTER 4: INTRODUCTION TO WAVELET TRANSFORM 17

4.1: Introduction 17

4.2: Fourier Transform 18

4.3: Short-Time Fourier Transform 19

4.4: Wavelet transform (WT) 20

4.4.1: Continuous Wavelet Transform 21

4.4.2: Discrete Wavelet Transform 22

4.4.3: Non-Decimated Wavelet Transform 23

4.5: Comparison between Fourier and Wavelet transform 25

ix

CHAPTER 5: NEURAL NETWORKS IN TIME-SERIES 31

 FORECAST

5.1: Introduction to Neural Network 27

5.2: Artificial Neural Network 28

5.3: The human brain 30

5.4: Artificial Neurons 32

5.4.1: McCulloch-Pitts Neuron 33

5.4.1: McCulloch-Pitts Neuron 33

5.4.1: The Perceptron 37

5.5: The Perceptron Network 38

5.6: Supervised Learning Algorithms 41

5.6.1: Widrow-Hoff Algorithm 42

5.6.2: Back-propagation Algorithm 43

5.7: Classification of Neural Networks 47

CHAPTER 6: THE PROPOSED FORECAST MODEL 49

6.1: Preliminary Forecast Model 49

6.1.1: Stage1: Pre Signal Processing 50

6.1.2: Stage2: Signal Prediction 51

6.1.3: Stage3: Post Signal Processing 52

6.2: Finalizing the Design 52

6.2.1: Number of Input Nodes and Output Neurons 53

6.2.2: Number of Hidden Neurons 53

6.2.3: Learning Algorithm 54

6.3: Final Proposed Forecast Model 54

x

CHAPTER 7: SIMULATION AND RESULTS 56

7.1: Methodology 56

7.2: Simulations 62

7.2.1: Finding the Suitable Resolution Level 62

7.2.2: Setting the Number of Hidden Neurons 63

7.3: Results 64

7.4: Matlab GUI 71

7.5: Discussions 75

CHAPTER 8: CONCLUSION AND RECOMMENDATIONS 76

8.1: Conclusion 76

8.2: Recommendations for Future Work 77

REFERENCES 78

APPENDIX A 81

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1 Wavelet Enhanced Neural Network Model 14

2 Signal decomposition in time domain 15

3 Fourier Transform of a Time Series Signal 18

4 Short-Time Fourier Transform of a Time Series Signal 19

5 Wavelet Transform of a Time Series Signal 20

6 à Trous Wavelet Transform of a Time-Series Signal 24

7 Comparison of the Transformation Techniques 26

8 Neural Network 28

9 A neural network is an interconnected group of nodes, 29

 akin to the vast network of neurons in the human brain

10 Elements and connectivity of Neural Network 31

11 Structural Levels of Organization in the Brain 31

12 Linear Threshold Unit 35

13 OR Function 36

14 AND Function 36

15 Single-layer Perceptron 38

16 Modified Linear Threshold Unit 40

17 Block Diagram of Supervised Learning 42

18 The Widrow-Hoff Approach 43

19 Multi-layer Perceptron with Two Hidden Layers 44

xii

20 Flow of Signals with the Back-propagation Algorithm 45

21 Classifications of Neural Network 47

22 Three Stages of the Preliminary Forecast Model 49

23 Wavelet Decomposition Process 51

24 Wavelet Recombination Process 52

25 Final Proposed NN Forecast Model 55

26 Comparison of Different Resolution Levels 62

27 Decomposition of Queensland Demand Series 64

28 Decomposition of Brisbane Temperature Series 64

29 Decomposition of Gold Coast Temperature Series 65

30 Decomposition of Townsville Temperature Series 65

31 Decomposition of Cairns Temperature Series 66

32 Decomposition of Rockhampton Temperature Series 66

33 Load Forecasted for 1 day (48 points) 67

34 Load Forecasted for 2 days (96 points) 67

35 Load Forecasted for 3 days (144 points) 68

36 Load Forecasted for 4 days (192 points) 68

37 Load Forecasted for 5 days (240 points) 69

38 Load Forecasted for 6 days (288 points) 69

39 Load Forecasted for 1 week (336 points) 70

40 The Main window 71

41 The Introduction 71

42 Use1 72

43 Use2 73

44 Use3 73

45 Use4 74

46 Credit 74

xiii

LIST OF TABLES

TABLE NO. TITLE PAGE

1 Truth-table for the OR Function 36

2 Truth-table for the AND Function 36

3 Summary of Various Conjugate Gradient Algorithms 47

4 The Mean Absolute Error obtained from the forecasting 75

neural network model

xiv

LIST OF APPENDIXES

APPENDIX NO. TITLE PAGE

A Program for Short-term Load Forecasting System 81

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

A reliable and continues supply of electrical energy is necessary for the

functioning of today’s complex societies. Due to the increasing consumption and

obstruction of various kinds, and the extension of existing electrical transmission

networks, power systems operated closer and closer to their limits thus the chances of

occurrences overloading, equipment failures and blackout increases. Moreover, another

problem to be faced is that the electrical energy cannot be stored whereby the electricity

is only generated when needed. As a result from the electricity supply and demand

fluctuating, an accurate model for electric power load forecasting is essential to the

operation and planning of electricity generation in order to provide an effective and

reliable operation.

Load forecasting predict the demand for electricity over the planning period of

time for the utility in planning generation schedules in a power system where it helps on

making decision on when and how much electricity need to be generated. Load forecasts

2

are extremely important for energy suppliers, ISOs, financial institutions, and other

participants in electric energy generation, transmission, distribution, and markets. Load

forecasts can be divided into three categories: short-term forecasts which are usually

from one hour to one week, medium forecasts which are usually from a week to a year,

and long-term forecasts which are longer than a year. However, short-term load

forecasting is more accurate than medium and long term load forecasting due to the

several factors.

For short-term load forecasting several factors should be considered, such as

time factors, weather data, and possible customers’ classes. However according to the

electric load prediction survey [1] published, it indicated that of the 22 research reports

considered, 13 made use of temperature only, 3 made use of temperature and humidity, 3

utilized additional weather parameters, and 3 used only load parameters which means

that the most important factor that decides on the accuracy of the result of short term

load forecasting is the temperature. This highlighted that temperature will directly

affected the accuracy of the short term load forecast model.

 In this case, Artificial Neural Network (ANN) is used to obtain the short term

load forecast model with the historical load demand data and temperature as the input

parameters.

3

1.2 Project Objective

 The main objective of this project is to propose a short-term load forecasting

model with high forecasting accuracy based on the historical data of load demand by

using the Artificial Neural Networks (ANN). This project is very usable in enhance the

energy efficiency and reliability of a power system generation plant. The proposed short-

term load forecasting model is ensuring adequate electricity generation from the power

system generation plant to meet the consumers’ demand and thus providing effective

operation. The factors that need to be concern in the proposed short-term load

forecasting model are the time and the temperature factors.

 This project concentrates on the using of Artificial Neural Network (ANN) in

creating the short-term load forecasting model. The scope of the project involved three

stages which are summarized as followed:

i. Preliminary stage

Step 1: Data Pre-processing

Step 2: Data Prediction

Step 3: Data Post-processing

ii. Network training

iii. Forecasting

4

1.3 Thesis Outline

 The thesis is orderly organized into 6 chapters and they are outlined as below:

 Chapter 1 explains the important in propose a short-term load forecasting model

with high forecasting accuracy based on the historical data of load demand by using the

Artificial Neural Networks (ANN). It also outlines objective and scope of this project.

Chapter 2 describes the forecasting methods used in the project. It gives a brief

review of the important factors that need to be considering in load forecasting. Few

short-term load forecasting methods such as similar-day approach, regression methods,

time series, neural network, expert system and fuzzy logic are discussed.

 Chapter 3 provides description and discussion on the neural network models for

time series forecast. There are three important process involved in proposing the neural

network models which are preliminary stage, network training and forecasting.

 Chapter 4 indicates the introduction to Fourier and Wavelet transform. For

Fourier transform, short-time Fourier transform is discussed. However for Wavelet

transform, it consists of continuous, discrete and non-decimated.

 Chapter 5 presents neural networks in time-series forecast. It discussed about the

concept of artificial neural network and how it works. In additional, it also discussed

about the perceptron network.

5

 Chapter 6 gives the overview of the proposed forecast model that summarizes

all the stages involved.

 Chapter 7 shows the results and simulation obtained from the project.

 Lastly, Chapter 8 is used for the conclusion and recommendations.

6

CHAPTER 2

FORECASTING METHODS

2.1 Important Factors for Forecasts

Generally, there are two different categories of forecasting models which are the

traditional models and the modern technique.

Traditional forecast model employ time series and regression analysis through

the use of statistical models such as peak load models and load shape models[8][9]. An

example of such models is the Autoregressive Moving Average (ARMA model). ARMA

model is a tool for understanding and perhaps predicting the future values of time series

data especially in statistical and signal processing. These models are mostly linear

methods and have limited ability to capture non-linearity in the load time series pattern.

Therefore, it is much complex to operate the traditional forecast model. For modern

techniques such as neural networks, fuzzy logic, and expert systems, it is known that

these technique can be use to operate the load forecast model more effectively and

accurately.

7

Since load forecasts can be divided into three categories: short-term forecasts

which are usually from one hour to one week, medium forecasts which are usually from

a week to a year, and long-term forecasts which are longer than a year, therefore this

means that for each of the categories, there will be the most appropriate methods to

operate the forecast models. First for the medium- and long-term forecasting, the so-

called end-use and econometric approach are broadly used. Whereas, a variety of

methods, which include the so-called similar day approach, various regression models,

time series, neural networks, statistical learning algorithms, fuzzy logic, and expert

systems, have been developed for short-term forecasting.

From the research, we know that there are a large variety of mathematical

methods and ideas have been used for load forecasting. When the time goes on, the

development and improvements of appropriate mathematical tools will lead to the

development of more accurate load forecasting techniques thus more effective forecast

models can be proposed.

However, the accuracy of load forecasting depends not only on the load

forecasting techniques, but it also depends on few other factors such as weather

condition and class of customers at that certain areas (e.g. residential, commercial, or

industrial). Among all the factors, weather plays an important role in determining the

load forecast model. Weather forecasting is an important issue where it affecting the

pattern of the load demands indirectly thus the data of the temperature for a long period

of time need to be obtained in proposing the load forecast models.

2.2 Short-term load forecasting methods

There is variety of statistical and artificial intelligence techniques have been

developed for short-term load forecasting for example similar-day approach, regression

8

methods, time series, expert system and fuzzy logic. Each of the methods will be discuss

in detail in the next session.

2.2.1 Similar-day approach

This approach is based on searching historical data for days within one, two, or

three years with similar characteristics to the forecast day. Similar characteristics include

weather, day of the week, and the date. The load of a similar day is considered as a

forecast. Instead of a single similar day load, the forecast can be a linear combination or

regression procedure that can include several similar days. The trend coefficients can be

used for similar days in the previous years.

2.2.2 Regression methods

 Regression is the one of most widely used statistical techniques. For electric load

forecasting regression methods are usually used to model the relationship of load

consumption and other factors such as weather, day type, and customer class. Engle et

al. [7] presented several regression models for the next day peak forecasting. Their

models incorporate deterministic influences such as holidays, stochastic influences such

as average loads, and exogenous influences such as weather. References [12], [16], [10],

[3] describe other applications of regression models to loads forecasting.

2.2.3 Time Series

Time series can be defined as a sequential set of data measured over time, such

as the hourly, daily or weekly peak load. The basic idea of forecasting is to first build a

9

pattern matching available data as accurate as possible, then obtains the forecasted value

with respect to time using established model.

Generally, series are often described as having following characteristic [5]:

,...2,1,0,1...)()()()(ttRtStTtX

Here, T(t) is the trend term, S(t) the seasonal term, and R(t) is the irregular or random

component (which can be generated using Matlab command). At this moment, we do not

consider the cyclic terms since these fluctuations can have a duration from two to ten

years or even longer which is not applicable to short-term load forecasting.

We have such assumptions to make things a little easier for the moment:

1) The trend is a constant level;

2) The seasonal effect has period s, that is, it repeats after s time periods. Or the

sum of the seasonal components over a complete cycle or period is zero.

s

j
jtS

1

0)(

2.2.4 Neural Network

The use of artificial neural networks (ANN or simply NN) has been a widely

studied electric load forecasting technique since 1990 [15]. Neural networks are

essentially non-linear circuits that have the demonstrated capability to do non-linear

curve fitting. Artificial Neural Networks are mathematical tools originally inspired by

the way human brain process information. It consists of an interconnected group of

artificial neurons and processes information using a connectionist approach to

computation.

10

In most cases an ANN is an adaptive system that changes its structure based on

external or internal information that flows through the network during the learning

phase. In more practical terms neural networks are non-linear statistical data modeling

tools. They can be used to model complex relationships between inputs and outputs or to

find patterns in data. The outputs of an artificial neural network are some linear or

nonlinear mathematical function of its inputs. The inputs may be the outputs of other

network elements as well as actual network inputs. In practice network elements are

arranged in a relatively small number of connected layers of elements between network

inputs and outputs. Feedback paths are sometimes used. Before the use of artificial

intelligence networks, the method of architecture needs to be determined.

The most popular artificial neural network architecture for electric load

forecasting is back propagation. With the ability to approximate any continuous

nonlinear function, the back propagation network has extraordinary forecasting abilities.

Artificial neural networks can be use in conjunction with other forecasting techniques

such as with regression trees, time series or fuzzy logic to perform a more accurate load

forecasting.

2.2.5 Expert system

Expert system makes use of rules and procedures used by human experts in the

field of interest into software that is then able to automatically make forecasts without

human assistance. This means that basically Expert system forecasts the load according

to rules extracted from experts' knowledge and operators' experience.

 Expert system use began in the 1960’s for such applications as geological

prospecting and computer design. Expert systems work best when a human expert is

11

available to work with software developers for a considerable amount of time in

imparting the expert’s knowledge to the expert system software. Also, an expert’s

knowledge must be appropriate for codification into software rules (i.e. the expert must

be able to explain his/her decision process to programmers). An expert system may

codify up to hundreds or thousands of production rules. Foe example, Ho et al. [11]

proposed a knowledge-based expert system for the short-term load forecasting of the

Taiwan power system. Operator’s knowledge and the hourly observations of system load

over the past five years were employed to establish eleven day types. To improve the

load forecasting result and lower down the forecasting error, operators at a particular site

need to be consulted. This method is promising, however, it is important to note that the

expert opinion may not always be consistent, and the reliability of such opinion may be

in question.

2.2.6 Fuzzy logic

Fuzzy logic is a generalization of the usual Boolean logic used for digital circuit

design. An input under Boolean logic takes on a truth value of “0” or “1”. Under fuzzy

logic an input has associated with it a certain qualitative ranges. For instance a

transformer load may be “low”, “medium” and “high”. Fuzzy logic allows one to

(logically) deduce outputs from fuzzy inputs. In this sense fuzzy logic is one of a

number of techniques for mapping inputs to outputs (i.e. curve fitting).

Among the advantages of fuzzy logic are the absence of a need for a

mathematical model mapping inputs to outputs and the absence of a need for precise (or

even noise free) inputs. With such generic conditioning rules, properly designed fuzzy

logic systems can be very robust when used for forecasting. Of course in many situations

an exact output (e.g. the precise 12PM load) is needed. After the logical processing of

fuzzy inputs, a “defuzzification” process can be used to produce such precise outputs.

12

References [13], [14], [17] describe applications of fuzzy logic to electric load

forecasting.

Among all the methods discuss as above, Artificial Neural Network (ANN) is

considered as the most appropriate method to propose the short-term load forecasting

model. This is because in practical terms, neural network are non-linear statistical data

modeling tools where it can be used to model complex relationship between inputs and

outputs or to find the patterns in data. Thus, the load forecast model is more accurate

with lesser error.

13

CHAPTER 3

NEURAL NETWORK MODELS FOR TIME SERIES FORECAST

3.1 Introduction

I. Preliminary stage

Stage 1: Data Pre-processing

Stage 2: Data Prediction

Stage 3: Data Post-processing

II. Network training

III. Forecasting

First and foremost, the latest historical data of load demand for year 2009 are

collected from Australian Energy Market Operator (AEMO) for a period of time. The

historical data of load demand are shown for every half an hour daily and up to one

month. Since the short-term forecast requires knowledge of the load from one hour up to

a few days therefore information derived from the short-term load forecasts are vital to

the system as operations in terms of short-term unit maintenance work, weekly, daily,

and hourly load scheduling of generating units, and economic and secure operation of

14

power systems .Those historical data of load demand obtained will be in time series

function, which means the signal, is measured as a function of time. For a pure neural

network (NN) model, it takes in a set of input data without undergoing the pre and post-

process step done. This means that the time series function signal is directly fed into the

neural network and outputting as a predicted data. However, the forecast model

produced is not accurate due to the hidden pattern of noise in the raw data input. To

solve this problem, wavelet transform technique is introduced.

Since the raw data obtained is non-linear and it may consist of noisy time series

pattern, which will affect the accuracy of the forecast model’s prediction therefore the

data will be processed using the wavelet transform technique to extract out the noise

pattern. The wavelet transform technique is consisting of three stages.

Figure 1: Wavelet Enhanced Neural Network Model

First the data will need to undergo decomposition where the data will be broken

into sinusoids of different frequency instead of coefficients. Each of the decomposed

scale is fed into one neural network as its input for training as well as for the prediction

15

in the next process. Finally, the decomposed scales at the output of neural network are

recombined using wavelet recombination technique to obtain the predicted data.

The wavelet transform technique can be easily implemented using the MATLAB

computing software which means the model is part of the simulation program.

Figure 2: Signal decomposition in time domain

For the network training session, the supervised training is used to train the

neural network. The network is presented with both the inputs as well as the expected

output to train each of the neural networks. Then the expected output is used to compare

with the actual output from the network.

Last but not least, for the forecasting part, the final proposed Neural Networks

Forecast Model will be obtained.

3.2 Important Factors for Electricity Load

As mentioned earlier, there are many factors that have a close relationship with

electricity load demand such as the time factors, weather data, and possible customers’

classes. Among all the factors, the time factor is the main factor that play an important

16

role important in short term load forecasting. The time factors include the time of the

year, the day of the week and the hour of the day. There are important differences in load

between weekdays and weekends. The load on different weekdays also can behave

differently from time to time. For example, morning time from Monday to Friday have

structurally different loads than night time from Monday to Friday.

 The temperature is also one of the factors that have a close relationship with

electricity load demand. This can be easily seen that it is commonly for the electricity to

increase during the hot weather in Malaysia. When the temperature is high, the usage of

air conditioning will increase thus increasing of load demand. Since weather has been

proven to have impact on the load demand, therefore it need to be considered in

proposing the short term load forecast model where the data of the temperature

forecasting need to be obtained. However, the temperature factor has les effect to the

short term load forecasting model if compared to the time factor.

To achieve the objective of this project, we need to increase the accuracy of this

short term load forecasting model, therefore wavelet transform technique has been used

to extract the noise so that to increase the accuracy of the load forecast model. However,

with the additional temperature data as the data input, the proposed forecast model will

then become more accurate.

17

CHAPTER 4

INTRODUCTION TO WAVELET TRANSFORM

4.1 Introduction

Since the historical data of load demand obtained is in time series function with

hidden noise pattern, therefore it need to undergo wavelet transform to extract out the

hidden pattern of the time series function before it is being fed into the neural network.

Generally there are two popular mathematical transformations methods that can

be applied to extract useful information from the time series function signal. Among the

two methods, there are few mathematical transformations methods such as Fourier

Transform, Short Time Fourier Transform, Wavelet Transform, Continuous Wavelet

Transform, Discrete Wavelet Transform, and Non-Decimated Wavelet Transform that

can extract out the hidden pattern of noise from the signal function. However, to decide

which method will be the best use, it is depends on the output of the signal needed to

obtain. So, it is beneficial for us to understand the usage of all the methods before

making decision on with transformation method to be use.

18

 4.2 Fourier Transform

Fourier transform is probably the most popular mathematical transformation that

is applied to exact useful information that is hidden within a raw time series signal (time

series signal in its original form) [1].

Figure 3: Fourier Transform of a Time Series Signal

(Figure obtained from MATLAB help file)

As shown in Figure 3, Fourier analysis is used to transform a time series signal to

its frequency domain. This transformation is important as it provides a signal’s

frequency content for analysis. Nevertheless, FT has a serious drawback with the

problem of localization [2] [1]. Time information is lost whenever the time series signal

is transformed to the frequency domain. That means we can no longer tell when a

particular event occurs. Thus FT is more suitable only for stationary signals where time

is not of concern with the desired signal.

19

4.3 Short-Time Fourier Transform

 Short-Time Fourier Transform (STFT) is a technique that corrects the deficiency

of Fourier Transform (FT) by implementing an additional windowing technique that

allows only a small section of the signal to be analyzed within a particular time frame.

Figure 4 illustrates the STFT of a time series signal.

Figure 4: Short-Time Fourier Transform of a Time Series Signal

(Figure obtained from MATLAB help file)

 From Figure 4, it shown that the transformed STFT signal is both a function of

time and frequency. The signal within the given window size is equally segmented and

from each of the segmented signal, the frequency components are extracted. The

segmented signals are assumed to be stationary and are multiplied by a window

function. Hence, the mathematical expression for a STFT signal can be described as

shown in equation below.

Where ݂(ݐ) and ݃(ݐ − denote the signal to be transformed and the window (0ݐ݊

function respectively.

20

 Although the STFT technique is able to provide some information of time in the

transformed signal, it has a limitation of a fixed window size for all frequencies. The

information is obtainable only with a limited precision as determined by the window size

and this is undesirable as it causes problems related to the time-frequency resolutions.

To resolve the problem, a variable window size is required and this leads to the

implementation of wavelet transform which will be discussed shortly.

4.4 Wavelets transform (WT)

Wavelet transform (WT) is a scalable windowing technique. The adjustable

window size allows the use of long time intervals when more precise low-frequency

information is desired and short time intervals when desiring high-frequency

information. Figure 4 illustrates the WT of a time series signal.

Figure 5: Wavelet Transform of a Time Series Signal

(Figure obtained from MATLAB help file)

Wavelet analysis adopts the concept of scale and link between scale and

frequency. It breaks the signals into shifted scaled versions of the original wavelet as

compared to Fourier analysis, where signals are broken into sinusoids of different

21

frequencies instead. In addition to that, the technique uses a time-scale region instead of

a time-frequency region.

4.4.1 Continuous Wavelet Transform

 Continuous wavelet transform (CWT) is defined as the sum over all time of the

signal multiplied by scaled, shifted version of the wavelet function Ψ. The results of

CWT are many wavelet coefficients C, which are a function of scale and position. The

mathematical expression for a given signal ݂(ݐ) is described in equation below. The

summation terms on the left and right of equation below represents the approximation

and the detail respectively.

CWT uses a fully scalable window that is shifted across the entire signal. CWT can

operate at every scale, from that of the original signal up to some maximum scale that

you determine by trading off your need for detailed analysis. The CWT is also

continuous in terms of shifting: during computation, the analyzing wavelet is shifted

smoothly over the full domain of the analyzed function. By iterating the shifting process

many times with different scales (window size), a collection of time-frequency

representations of the signal with different resolutions is obtained.

 The most important step that involve in CWT is to calculate a number, C, that

represents how closely correlated the wavelet is with this section of the signal. The

higher C is, the more the similarity. More precisely, if the signal energy and the wavelet

energy are equal to one, C maybe interpreted as a correlation coefficient. However,

CWT is impracticability for implementation as calculating its wavelet coefficients at

22

every possible scale is an extremely tedious task, which may result in massive amount of

data to be generated as well even for a computer to perform the task. To solve this

problem, Discrete Wavelet Transform is introduced.

4.4.2 Discrete Wavelet Transform

 The computation of wavelet coefficients for discrete wavelet transform (DWT)

makes use of the scales and position based on power of two. The DWT algorithm is

capable of producing coefficients of fine scales for capturing high frequency

information, and coefficients of coarse scales for capturing low frequency information.

Therefore the Discrete Wavelet Transform (DWT) is easy to implement and reduces the

computation time and resources required. In CWT, the signals are analyzed using a set

of basis functions which relate to each other by simple scaling and translation. In the

case of DWT, a time-scale representation of the digital signal is obtained using digital

filtering techniques. The signal to be analyzed is passed through filters with different

cutoff frequencies at different scales. If we consider a mother wavelet function Ψ and

for a given signal݂(ݐ), a mathematical representation for a DWT can be expressed as

Where j is the dilation or level index, k is the translation or scaling index, øj0,k is a

scaling function of coarse scale coefficients cj0,k , wj0,k is the scaling function of detail

(fine scale) coefficients and all functions of Ψ(2j t-k) are orthonormal.

 Normally, the DWT is widely use for signal compression due to its ability to set a

large portion of the coefficients to zero without any substantial loss of information. In

addition, if more properties other than the stationary properties of a signal are desired,

23

DWT would definitely be a better option as compared with the traditional technique of

Fourier Transform (FT).

 Despite many advantages with DWT, its application in time series analysis is

limited by the lack of translation invariance due to a fixed dyadic grid. One way to

resolve the problem is to adopt the approach of Non-Decimated Wavelet Transform.

4.4.3 Non-Decimated Wavelet Transform

 The non-decimated wavelet transform (NWT) can be used to overcome the

problem encountered with DWT by using a redundant basis transformation in which it

produces equal-length wavelet coefficients for each resolution level. There are two types

of application for NWT which are the à trous transform and the mirror-bounded

stationary wavelet transform. However for this thesis, the à trous transform is used.

 The algorithm of the à trous transform is similar to DWT and the only difference

is that à trous transform do not have decimation step. The basic implementation of this

algorithm is rather simple. If we consider a given time series signal c0(k), the à trous

transform is performed by passing the signal through a series of low pass filters hl. The

result obtained at the output of each filters is the approximation (low frequency

information) coefficient series. The number of times to filter the signal depends on the

highest resolution level determined for the filtering process. That is, if the highest

resolution level set is n, the signal will be filtered n times with a chain of approximation

coefficient series cn(k); obtained at each of the different resolution levels. The

mathematical expression that describes this process is given as

24

Other than producing approximation coefficient series at level j, the process of à trous

wavelet transform also generates the wavelet (high frequency information) coefficient

series. Referring to equation below, the wavelet coefficient series is obtained by taking

the difference between cj-1(k) and cj(k).

The process of generating wavelet coefficient series is further illustrated with the block

diagram as shown in Figure 6.

Figure 6: à Trous Wavelet Transform of a Time-Series Signal

25

Last but not least, the signal can be reconstructed using the mathematical expression as

described in equation below

4.5 Comparison between Fourier and Wavelet transform

Fourier analysis has a serious drawback. When a signal is transformed into the

frequency domain, time information is lost. If it is mainly concerned with stationary

signals, signals that don't change much over time, this drawback is not very important.

Wavelet analysis is a windowing technique, similar to the STFT, with variable-sized

windows. It allows the use of long time intervals, when more low frequency information

is sought, and shorter regions, when more high frequency information is what you are

after. Wavelet analysis is capable of revealing aspects of data that other signal analysis

techniques miss, including aspects such as trends, breakdown points, discontinuities, and

self- similarity. It is also often used to compress or de noise a signal without any

appreciable degradation.

26

Figure 7: Comparison of the Transformation Techniques

(Figure obtained from MATLAB
®

help file)

27

CHAPTER 5

NEURAL NETWORKS IN TIME-SERIES FORECAST

5.1 Introduction to Neural Network

 Neural networks are composed of simple elements operating in parallel. These

elements are inspired by biological nervous systems. As in nature, the network function

is determined largely by the connections between elements. We can train a neural

network to perform a particular function by adjusting the values of the connections

(weights) between elements.

 Commonly neural networks are adjusted, or trained, so that a particular input

leads to a specific target output. Such a situation is shown below. There, the network is

adjusted, based on a comparison of the output and the target, until the network output

matches the target. Typically many such input or target pairs are needed to train a

network. Neural networks have been trained to perform complex functions in various

fields, including pattern recognition, identification, classification, speech, vision, and

control systems.

28

 Today neural networks can be trained to solve problems that are difficult for

conventional computers or human beings. Throughout the toolbox emphasis is placed on

neural network paradigms that build up to or are themselves used in engineering,

financial, and other practical applications.

Figure 8: Neural Network

5.2 Artificial Neural Network

 An artificial neural network (ANN), often just called a "neural network" (NN), is

a mathematical model or computational model based on biological neural networks. It

consists of an interconnected group of artificial neurons and processes information using

a connectionist approach to computation. In most cases an ANN is an adaptive system

that changes its structure based on external or internal information that flows through the

network during the learning phase.

29

In more practical terms neural networks are non-linear statistical data modeling

tools. They can be used to model complex relationships between inputs and outputs or to

find patterns in data. In general, it can be say that the function of neural network is to

produce a certain output pattern when it is fed by a certain input pattern.

Neural network adopt an approach of parallel processing. It consists of a network

processor which known as neurons that operates in parallel. Thus, neural network is able

to operate in fastest time. The operation of the neural network is similar to a human

brain. To understand how the neural network works, we need to understand how the

human brain works.

Figure 9: A neural network is an interconnected group of nodes, akin to the vast network

 of neurons in the human brain

30

5.3 The human brain

The human brain, an unparalleled pattern recognition system has approximately

1010 neurons; each on average may have as many as 10 connections to other neurons

[18]. Neurons in the brain are described as processors where they communicate through

a network of axons and synapses.

Firstly, the neurons take in information from the other neurons through the

dendrites. Then when the information is sufficient, it will produce an output which is

sent out from the cell body to the respective neurons through the axons where the links

that provide information coupling from an axon to a dendrite are known as synapses.

Synapses do not offer a direct linkage, but rather, they behave like a temporary chemical

bond between the two elements instead. Forming of the chemical bond takes place when

chemicals known as the neurotransmitters are released by the synapses. The coupling

strength of this chemical bond is determined by the amount of neurotransmitters

released. As such, the brain learns as the coupling strength varies, hence knowledge is

acquired through the learning process.

Thus, the human brain can be considered to be densely connected electrical

switching network conditioned largely by biochemical processes. Human brain's

powerful capabilities in remembering, recalling, correlating, interpreting and reasoning

have always have been a candidate for modeling and simulation. The vast neural

network has an elaborate structure with very complex interconnection. This is illustrated

in Figure 10 below [4]:

31

Figure 10: Elements and connectivity of Neural Network

After basic structure of a neuron has been discussed, we should have a quick

view on the various structural levels of organization in the brain. The structural

organization shows the unique characteristic of the brain and it is found that these

unique characteristics are similar with today’s modern digital computer. However, the

artificial neurons that are used to build the neural networks are truly primitive as

compared to those found in human brain.

Figure 11: Structural Levels of Organization in the Brain

32

5.4 Artificial Neurons

 Artificial neurons are ‘man made’ neurons that mimic the learning ability of a

natural neuron. In practical, these artificial neurons are processing elements that are

interconnected within the NNs. An artificial neuron also refers as a mathematical

function conceived as a crude model or abstraction of biological neurons. Artificial

neurons are the constitutive units in an artificial neural network. Depending on the

specific model used, artificial neurons can have different names, such as semi-linear

unit, Nv neuron, binary neuron, linear threshold function or McCulloch-Pitts neuron.

 The artificial neuron receives one or more inputs (representing the one or more

dendrites) and sums them to produce an output (synapse). It takes in information through

its input lines and the weighted sum of these inputs is obtained by combining the

information from all these inputs. An output from the artificial neuron is then generated

based on a transfer function which depicts the relationship between the weighted sums

of inputs and the output. The transfer functions usually have a sigmoid shape, but they

may also take the form of other non-linear functions, piecewise linear functions, or step

functions. They are also often monotonically increasing, continuous, differentiable and

bounded. In general, the function of artificial neurons is similar to that of a neuron in the

human brain. An example of the transfer function for an artificial neuron can be

mathematically expressed as

Where y is the output of a neuron, x is weighted sum of inputs and k is the parameter of

the neuron. This transfer function is commonly known as a sigmoid function [21].

33

5.4.1 McCulloch-Pitts Neuron

 The first neural network was designed by Warren McCulloch and Walter Pitts

in 1943. It is called McCulloch-Pitts (M-P) where it represents the very first attempt of

an artificial neuron model. The weights on a McCulloch-Pitts neuron are set so that the

neuron performs a particular simple logic function, with different neurons performing

different functions. There are few requirements for McCulloch-Pitts neurons which are

summarized as follows

 The activation of a McCulloch-Pitts neuron is binary. That is, at any time step,

the neuron either fires (has an activation of 1) or does not fire (has an activation

of 0).

 McCulloch-Pitts neurons are connected by directed, weighted paths.

 A connection path is excitatory if the weight on the path is positive; otherwise it

is inhibitory. All excitatory connections into a particular neuron have the same

weights.

 Each neuron has a fixed threshold such that if the net input to the neuron is

greater than the threshold, the neuron fires.

 The threshold is set so that inhibition is absolute. That is, any nonzero inhibitory

input will prevent the neuron from firing.

 It takes one time step for a signal to pass over one connection link

The M-P neuron is an artificial neuron with a fixed or otherwise known as hard

threshold. The M-P neuron is also commonly referred to as a Linear Threshold Unit

(LTU) and its operation can be described as shown in Figure 12.

34

Figure12: Linear Threshold Unit

As depicted in Figure 12, from the left, xn is the input, wn is the input weight, ∑ is the

weighted sum of inputs follow by the threshold, θ and finally y is represented as the

output of the LTU. The model can also be mathematically expressed as

Where f[z] is the fixed transfer function and [∑ iݓ − −iݔ ߠ
ୀଵ] is the weighted sum

of inputs. The transfer function depends on certain conditions to generate an output.

Take the binary operation for example; the transfer function will generate an output

based on these conditions:

35

If for a bipolar operation, the transfer function will depend on the following conditions

instead:

For the case of a bipolar operation here, the transfer function is also called a step

function. However, for the mathematical expression as above, it is more commonly

known as the signum or sign function.

 The M-P neurons are proven to be capable of solving simple Boolean functions

like the logical AND and OR functions. However, its capability will not be proven here,

but rather, is demonstrated instead. For an OR function, consider a LTU with an output y

and two inputs, x1 and x2 that takes on the values of either 1 or 0. Then, an output value

of 1 will be generated based on the following:

In other words, equation above simply shows that the output will be a value of 0 unless

the sum of weighted inputs is greater than the defined threshold value.

From Figure 13, it can be observed that the possible combinations of inputs are only 00,

01, 10 and 11. The results of the OR function is shown in the truth-table (refer to Table

1).

36

Figure 13: OR Function

Table 1: Truth-table for the OR Function

For the same set of input combinations, the AND operation can be performed by setting

the threshold, θ to be 1.5. The truth-table for the resulting AND operation is shown in

Table 2.

Figure 14: AND Function

Table 2: Truth-table for the AND Function

x1 x2 θ y

0 0 0.5 0

0 1 0.5 1

1 0 0.5 1

1 1 0.5 1

x1 x2 θ y

0 0 1.5 0

0 1 1.5 0

1 0 1.5 0

1 1 1.5 1

37

 However, the McCulloch-Pitts Neuron is unlike the biological networks, the

parameters of their networks had to be designed, as no training method was available.

5.4.2 The Perceptron

 In the late 1950s, Frank Rosenblatt and several other researchers developed a

class of neural networks called perceptrons. The neurons in these networks were similar

to those of McCulloch and Pitts. Rosenblatt’s key contribution was the introduction of a

learning rule for training perceptron networks to solve pattern recognition problems. He

proved that his learning rule will always converge to the correct network weights, if

weights exist then solve the problem. Learning was simple and automatic. Examples of

proper behavior were presented to the network, which learned from its mistakes. The

perceptron could even learn when initialized with random values for its weights and

biases. Unfortunately, the perceptron network is inherently limited. These limitations

were widely publicized in the book Perceptrons by Marvin Minsky and Seymour Papert.

They demonstrated that the perceptron networks were incapable of implementing certain

elementary functions. It was not until the 1980s that these limitations were overcome

with improved (multilayer) perceptron networks and associated learning rules.

 Today the perceptron is viewed as an important network. It remains a fast and

reliable network for the class of problems that it can solve. In addition, an understanding

of the operations of the perceptron provides a good basis for understanding more

complex networks. Thus, the perceptron network and its associated learning rule are

well worth discussion here. In the next section, we will define what we mean by a

learning rule, explain the perceptron network and learning rule, and discuss the

limitations of the perceptron network.

38

5.5 The Perceptron Network

 The simplest form of a NN that is used to classify a particular pattern type is

known as the perceptron. The patterns classified in this form of NN are linearly

separable; that means the patterns are separable by planes or hyper-planes, like those

that are separable by straight lines. The perceptron was a modification of the LTU which

now has the ability to update its weights automatically. This Rosenblatt’s perceptron is

more of importance to psychological science. Nevertheless, the nature of its adaptive

behavior has made the perceptron a learning machine that is of particular interest to

engineers. Figure15 shows an example of a basic, single-layer perceptron with one

output.

Figure 15: Single-layer Perceptron

From the model of Figure 15, the linear summation of the inputs at the output of the

threshold notation (that is also the input to the hard limiter) can be defined in the case of

an elementary perceptron as

39

The synaptic weights in this perceptron can either be fixed or adapted on an iteration by

iteration basis. For the adaptation, the model adopts a learning algorithm which is known

as the perceptron convergence algorithm (PCA). PCA is a weight-updating rule and can

be mathematically expressed as

Where η is the learning-rate parameter which is a positive constant less than unity, dn

and yn are respectively the desired and the actual response and xn is the input vector.

 The development of PCA is illustrated in the modified version of the LTU.

Referring to Figure 16, the modified LTU can be observed to be using a neuron equation

that is similar to the M-P Neuron. The difference is that its threshold, θ is now treated as

a synaptic weight associated permanently with a fixed input value of -1that behaves like

a threshold. The mathematical expression for the modified LTU model is then defined as

40

Figure 16: Modified Linear Threshold Unit

The PCA has three classifications which are supervised, reinforcement or unsupervised

learning.

 In supervised learning, the learning rule is provided with a set of examples (the

training set) of proper network behavior:

Where pq is an input to the network and tq is the corresponding correct (target) output.

As the inputs are applied to the network, the network outputs are compared to the

targets. The learning rule is then used to adjust the weights and biases of the network in

order to move the network outputs closer to the targets. The perceptron learning rule

falls in this supervised learning category.

 Reinforcement learning is similar to supervised learning, except that, instead of

being provided with the correct output for each network input, the algorithm is only

given a grade. The grade (or score) is a measure of the network performance over some

41

sequence of inputs. This type of learning is currently much less common than supervised

learning. It appears to be most suited to control system applications.

 In unsupervised learning, the weights and biases are modified in response to

network inputs only. There are no target outputs available. They learn to categorize the

input patterns into a finite number of classes. This is especially useful in such

applications as vector quantization.

5.6 Supervised Learning Algorithms

 In this project, supervised learning algorithms will be used to train the neural

networks. The term supervised learning which is also known as active learning, can be

described with the concept of the availability of an external teacher. The teacher is

assumed to have the knowledge of an environment that is represented by a set of input-

output examples. Suppose now that the teacher and the Neural Network are exposed to

training by feeding it with a particular set of training examples drawn from the

environment. The teacher can provide a target response (output) to the Neural Network

by depending on its own knowledge. When comparing the target response with the

actual response of the Neural Network, we found out that there is an error measure

(difference) between the two responses.

 As a response to the error, the Neural Network will adjust its network parameters

based on the error measure. This adjustment is carried out iteratively in a step-by-step

fashion until an optimum response is achieved to minimize the error. When the desired

response is achieved, the learning system will “freeze” where it shows the learning

process is completed. For better understanding, the concept is described with a block

diagram (refer to figure 17). There are few supervised learning algorithm can be applied

for short-term load forecasting such as the Widrow-Hoff algorithm and the back-

42

propagation algorithm. However for this project, back-propagation algorithm will be use

to propose the short-term load forecast model.

Figure 17: Block Diagram of Supervised Learning

5.6.1 Widrow-Hoff Algorithm

 PCA works well with a single LTU for solving pattern classification problems

that are linearly separable. However, when it comes to solving classification problems

that not linearly separable, the algorithm is not able to terminate. In other words, as it

approaches the desire response, it goes into a saturated form of oscillation around the

response rather than terminating itself. In computing, algorithms with such phenomenon

are not desired. To have the problem resolved, the Widrow-Hoff (W-H) algorithm was

introduced.

 The W-H algorithm, also known as the least mean square algorithm or the delta

rule, was formulated by Widrow and Hoff in 1960. Similar to the PCA, the W-H

algorithm was also designed to operate with a single neuron. Although it was unable to

solve classification problems that are not linearly separable, it was able to eliminate the

43

problem faced by the PCA whilst achieving a reasonable accuracy with the desired

response. The W-H approach is illustrated in Figure 18.

Figure 18: The Widrow-Hoff Approach

5.6.2 Back-propagation Algorithm

The most popular artificial neural network architecture for electric load

forecasting is back propagation. Back propagation neural networks use continuously

valued functions and supervised learning. That is, under supervised learning, the actual

numerical weights assigned to element inputs are determined by matching historical data

(such as time and temperature) to desired outputs (such as historical electric loads) in a

44

pre-operational “training session. For this project, the input variables include historical

hourly load data and temperature. The model can forecast load profiles from one to

seven days. To handle these complex computations, the multi-layer perceptron (MLP)

networks need to be introduced. Figure 19 illustrates an example of a MLP with two

hidden layers.

Figure 19: Multi-layer Perceptron with Two Hidden Layers

MLPs are feed-forward Neural Networks commonly trained in a supervised

fashion with the error back-propagation (BP) algorithm [19] [20]. The back propagation

consists of a two direction which are the forward pass and backward pass. The operation

take place by first passing an input signal forward through the network in the direction

towards the output until a set of actual response is achieved by the network. Then the

error signal is generated from the difference between the actual and target response.

Finally the generated error signal is passed backwards through the hidden layers, in the

45

direction towards the inputs. During the forward pass, the synaptic weights of the

network are fixed. It is during the backward pass that the synaptic weights are adjusted

to adapt the network in producing desired outputs. Figure 20 illustrates the flow of the

forward and the backward signals.

Figure 20: Flow of Signals with the Back-propagation Algorithm

The adaptation of a BP MLP network with an arbitrary number of layers can be

mathematically expressed as

where η is the learning rate, V input is the input vector appearing at the input terminal of

the weight, and δ layer is a term associated with the error function which is layer

dependent.

46

 The basic BP algorithm is a gradient descent algorithm which adjusts the

network weights along the steepest descent direction of the error function (that is, the

direction in which the error function decreases most rapidly; negative of the gradient).

Since the BP algorithm is widely employed with supervised MLP networks, it is not

surprising that many variants of it are known to exist. These variants are commonly

known as the Conjugate Gradient Algorithms (CGA). Table 3 is a summary of various

popular CGAs obtained from the MATLAB® help file.

Types of CGA Comments on the algorithms

Fletcher-Reeves Update (FRU) Line search is required.

 Small storage requirement.

 Good choice for networks with

large number of weights

Polak-Ribiére Update (PRU) Line search is required.

 Slightly larger storage requirement

than Fletcher-Reeves Update.

 Faster convergence for certain

problems.

Powell-Beale Restarts (PBR) Line search is required.

 Performance is better than Polak-

Ribiére Update for certain

problems.

 Slightly larger storage requirement

and generally faster convergence

than Polak-Ribiére Update.

Scaled Conjugate Gradient (SCG) Line search is not required.

 Requires more iterations to

47

converge but shorter time needed

for computation in each iteration.

 Good general purpose training

algorithm.

Table 3: Summary of Various Conjugate Gradient Algorithms

5.7 Classification of Neural Networks

 NNs can be classified according to the type of input data or the type of algorithm

that is implemented. The various NN classifications are described as in Figure 21.

Figure 21: Classifications of Neural Network

48

 NNs that take in binary inputs are usually associated with Boolean logic

functions. That is, solving logical functions with inputs taking values of 1 or 0. Since the

perceptron is capable of solving Boolean functions, it is typically employed for such

NNs.

 NNs that take in continuous type of inputs (e.g. time series data) can be presented

with any range of values for both its input and output vectors. This type of NN is

commonly used for tasks such as pattern classification and function approximation. If a

supervised learning algorithm is adopted, a typical implementation would be the multi-

layer feed- forward NN [24]. The multi-layer feed-forward NN is also a popular

architecture that has been proven to give satisfactory results for time-series predictions

[10][14].

49

CHAPTER 6

THE PROPOSED FORECAST MODEL

6.1 Preliminary Forecast Model

 The preliminary forecast model has three main stages. This is illustrated in Figure

22.

Figure 22: Three Stages of the Preliminary Forecast Model

50

As depicted in Figure 22, wavelet techniques are implemented in the first and the last

stages. The actual time-series (electricity load and temperature data) are first

decomposed into a number of wavelet coefficient signals and one approximation signal.

The decomposed signals are then fed into the NNs at the second stage to predict the

future time-series patterns for each of the signals. Finally, the predicted signals are

recombined in the last stage to form the final predicted load time series.

6.1.1 Stage 1: Pre Signal Processing

 For pre signal processing, historical data is fed to the model as time-series

signals. Non-decimated Wavelet Transform (NWT) is used as the pre signal processor in

the model and depending on the selected resolution level, the respective time-series

signals are decomposed into a number of wavelet coefficients. In other words, if the

resolution level is defined as n, after decomposing the signal, there will be one

approximation coefficient series as well as n number of detail coefficient series. These

decomposed coefficients are then normalized and fed as inputs to the signal predictor

(NNs) for either training or forecasting use. The decomposition process is illustrated in

Figure 23.

51

Figure 23: Wavelet Decomposition Process

The most suitable resolution level is identified based on the smoothness of the

approximation signal at that level (i.e. having all the high frequency components

removed). The desired approximation signal should depict a general pattern of its

original. A higher resolution level would produce a smoother approximation signal. The

details on determining this resolution level will be discussed in the simulation section.

6.1.2 Stage 2: Signal Prediction

 NNs are used for signal prediction in the forecast model. The number of NNs

needed for the model is determined by the number of wavelet coefficient signals at the

output of the pre-processor. For each wavelet coefficient signal (including the

approximation), one NN is required to perform the corresponding prediction.

52

6.1.3 Stage 3: Post Signal Processing

 For post signal processing, the same wavelet technique (NWT) and resolution

level as mentioned in section 6.1.1 are used. In this stage, the outputs from the signal

predictor (NNs) are combined to form the final predicted output. This is achieved by

summing all the predicted wavelet coefficients. Figure 24 illustrates the recombination

process.

Figure 24: Wavelet Recombination Process

6.2 Finalizing the Design

 Since BP algorithm with supervised MLP feed-forward networks is a popular

choice for time-series predictions, the proposed forecast model will be implemented as

accordingly. Other design considerations are discussed in the subsequent subsections.

53

6.2.1 Number of Input Nodes and Output Neurons

 The elements in the input layer are called nodes instead of neurons because they

are only used to distribute input variables to the hidden layer. As mentioned earlier, the

training time-series data consist of temperature and electricity load of Queensland, hence

the initial plan is to have two input streams, one for the average load data and the other

is for the temperature data. Unfortunately, there is no average temperature data available

for use; thus the solution is to take seven sets of temperature data from five major cities

(higher power consumption regions) of Queensland and hence, there will be five input

streams for temperature instead of one. Therefore, the total number of input nodes for

the proposed model is fixed at six.

 The forecast model is set to have one output neuron that takes one value of the

time-series signal as the target.

6.2.2 Number of Hidden Neurons

 The learning capability of a NN depends on the number of neurons in its hidden

layer. Determining the number of hidden neurons is important; if the number of hidden

neurons is insufficient, the consequence will result in an inaccurate approximation. On

the other, excessive hidden neurons are not desirable. This will affect the learning

progress of the network. In other words, instead of learning the problem, the network

will tend to memorize it. Over-sizing the hidden layer can also lead to longer training

cycles. With adequate time for testing, the most suitable number of neurons for the NN

is explored.

54

6.2.3 Learning Algorithm

 As mentioned earlier in section 6.2, the BP algorithm will be used as the learning

algorithm for the forecast model. Since the standard BP algorithm is a gradient descent

algorithm, variants of the algorithm (refer to Table 3) are studied. For the purpose of this

thesis, the SCG algorithm is found to be suitable. This is due to its advantage of fast

computational time for a large NN size. Using this algorithm will significantly shorten

the time needed to train the NNs. Further information regarding SCG algorithm and its

benchmark with other algorithms is obtainable from the MATLAB® help file.

6.3 Final Proposed Forecast Model

 After finalizing the design considerations, the final proposed NN forecast model

is as depicted in Figure 25 on the next page. The model is a two-layer feed-forward NN

with two layers of adjustable weights.

55

Figure 25: Final Proposed NN Forecast Model

56

CHAPTER 7

SIMULATION AND RESULTS

7.1 Methodology

 First and foremost, three set of electricity load and temperature data for months of

January, February and March 2009, on a half-hourly basis are downloaded from the

AEMO website. The format of data downloaded is in Microsoft Office Excel Comma

Separated Values File. For the electricity load data, it consists of the settlement date,

time and the total demand whereas for the temperature data, it consists of settlement

date, time and the temperature value.

 For the proposed model, it is tested with six sets of historical data containing the

electricity load and temperature data for the month of January 2009, on a half-hourly

basis; one set of electricity load data of Queensland and five sets of temperature data

from five different locations (higher power consumption regions) of Queensland. The set

of electricity load data is downloaded from the AEMO website. The reason for using

five sets of temperature data is a compromise due to the unavailability of a general set of

average temperature data for Queensland. The five different locations where the

57

temperature data has been collected from are namely Brisbane, Gold Coast, Townsville,

Cairns and Rockhampton.

 The simulation results are obtained through the use of four different programs

main.m; nnCreate.m; nnForecast.m and nnRetrain.m (refer to the Appendix A for listing

of codes). These programs were written with the MATLAB® software, using the

standard commands found in its toolbox. A few other additional commands were

downloaded from the NETLAB Neural Network Software Website.

 Although temperature data is included with the electricity load data in this

forecast model, however the model is mainly meant to forecast only the electricity load.

Therefore, the final predicted series is formed by setting the training target of the NNs to

be a later load series. Temperature is only used with load to form a particular time-series

pattern as the inputs for training the NNs or for load predictions.

 The creating of the purposed forecasting model is beginning with the selection of

the desired resolution level, n. Users need to choose the desired amount of data to use

and data from the month that to be used. Then the program will read the historical

demand data into tDemandArray and display number of points in the selected time series

demand data. Before the wavelet decomposition technique (NWT) is applied, the five

sets of temperature data are first normalized and then multiplied by a power

consumption factor. The reason for having to use a power consumption factor is due to

regional effects. During the wavelet decomposition, the Non-decimated Wavelet

Transform (NWT) is used as the pre signal processor in the model and depending on the

selected resolution level, the respective time-series signals are decomposed into a

number of wavelet coefficients according to the resolution level which defined as n.

After decomposing the signal, there will be one approximation coefficient series as well

58

as n number of detail coefficient series. The function swt (Discrete stationary wavelet

transform 1-D) is used for the wavelet decomposition.

SWT Discrete stationary wavelet transform 1-D performs a multilevel 1-D

stationary wavelet decomposition using either a specific orthogonal wavelet ('wname'

see WFILTERS for more information) or specific orthogonal wavelet decomposition

filters. SWC = SWT(X,N,'wname') computes the stationary wavelet decomposition of

the signal X at level N, using 'wname'. N must be a strictly positive integer (see

WMAXLEV for more information). 2^N must divide length(X).

Moreover, the original demand data signal and the approximation demand data

signal are plotted. The same wavelet decomposition process is undergoing by the

temperature data to obtain the original demand data signal and the approximation

demand data signal graph.

In the nnCreate.m file, it involves the data preprocessing where the mature

Neural Network is created. The decomposed coefficients obtained previously are then

normalized and fed as inputs to the signal predictor (NNs) for either training or

forecasting use. To capture the pattern of the signal, the model is set to accept dataPoints

multiply six sets of training examples where included one set of demand and five sets of

temperature (one set for each five different locations).The normalised demand data from

point 2 is to be taken as the output value for the first iteration of training examples.

Next, the program will create and train the Neural Network for the respective

demand and temperature coefficient signals. The number of input nodes and hidden

neurons for the respective demand and temperature coefficient signal is stetted. In

additional, the setting number of training examples and target outputs of the training

examples are done. For the preparing of the training examples, firstly, training of the

59

inputs to be six is set with user defined number of iterations (dataPoints). Then to create

the new neural network for respective coefficient signal, the function NET = MLP(NIN,

NHIDDEN, NOUT, FUNC) is used.

NET = MLP(NIN, NHIDDEN, NOUT, FUNC) takes the number of inputs,

hidden units and output units for a 2-layer feed-forward network, together with a string

FUNC which specifies the output unit activation function, and returns a data structure

NET. The weights are drawn from a zero mean, unit variance isotropic Gaussian, with

variance scaled by the fan-in of the hidden or output units as appropriate. This makes

use of the Matlab function RANDN and so the seed for the random weight initialization

can be set using RANDN('STATE', S) where S is the seed value. The hidden units use

the TANH activation function.

The fields in NET are

type = 'mlp'

nin = number of inputs

nhidden = number of hidden units

nout = number of outputs

nwts = total number of weights and biases

actfn = string describing the output unit activation function:

 'linear'

 'logistic

 'softmax'

 w1 = first-layer weight matrix

 b1 = first-layer bias vector

 w2 = second-layer weight matrix

 b2 = second-layer bias vector

Here W1 has dimensions NIN times NHIDDEN, B1 has dimensions 1 times NHIDDEN,

W2 has dimensions NHIDDEN times NOUT, and B2 has dimensions 1 times NOUT.

60

For the training of the Neural Network, the function NETOPT(NET, OPTIONS,

X, T, ALG, LEN). NETOPT Optimize the weights in a network model. NETOPT is a

helper function which facilitates the training of networks using the general purpose

optimizers as well as sampling from the posterior distribution of parameters using

general purpose Markov chain Monte Carlo sampling algorithms. It can be used with

any function that searches in parameter space using error and gradient functions.

[NET, OPTIONS] = NETOPT(NET, OPTIONS, X, T, ALG) takes a network

data structure NET, together with a vector OPTIONS of parameters governing the

behavior of the optimization algorithm, a matrix X of input vectors and a matrix T of

target vectors, and returns the trained network as well as an updated OPTIONS vector.

The string ALG determines which optimization algorithm (CONJGRAD, QUASINEW,

SCG etc.) or Monte Carlo algorithm (such as HMC) will be used.[NET, OPTIONS,

VARARGOUT] = NETOPT(NET, OPTIONS, X, T, ALG) also returns any additional

return values from the optimization algorithm.

After the training of the Neural Network, the file is saved. Then the program will

load the trained Neural Network for load forecasting and recombines the predicted

outputs from the Neural Network to form the final predicted load series. The function Y

= MLPFWD(NET, X), forward propagation through 2-layer network is used for the

load forecasting.

The Y = MLPFWD(NET, X) takes a network data structure NET together with a

matrix X of input vectors, and forward propagates the inputs through the network to

generate a matrix Y of output vectors. Each row of X corresponds to one input vector

and each row of Y corresponds to one output vector. [Y, Z] = MLPFWD(NET, X) also

61

generates a matrix Z of the hidden unit activations where each row corresponds to one

pattern.

Finally, the actual time series against predicted result is plotted and the mean

absolute error is calculated. The model is evaluated based on it prediction errors. A

successful model would yield an accurate time-series forecast. The performance of the

model is hence measured using the mean absolute percentage error (MAPE) which is

defined as

where N is the number of points measured, xi is the actual values and yi is the

predicted values.

62

7.2 Simulations

7.2.1 Finding the Suitable Resolution Level

 As mentioned in Chapter 6.1.1, the best resolution level is tested. The results are

as follow:

Figure 26: Comparison of Different Resolution Levels

63

From Figure 26, it can be observed that the approximation signal at resolution level two

is sufficiently smooth to represent a general pattern of the original signal. Therefore,

resolution level two is chosen for both pre and post processing stages.

7.2.2 Setting the Number of Hidden Neurons

 The proposed model is tested with a number of different values of hidden

neurons, however no significant changes are observed with the predicted results. This is

a normal phenomenon as until now, no one has proven a typical configuration for the

hidden neurons (refer to the MATLAB help file). Therefore, a default configuration for

setting the number of hidden neurons can be adopted by setting the value lesser or equal

to the number of inputs and greater than the number of outputs. For the purpose of this

thesis, the results obtained from the simulations are based on setting the number of

hidden neurons to three.

64

7.3 Results

Six sets of historical time-series data are decomposed at resolution level 2 as follows:

Figure 27: Decomposition of Queensland Demand Series

Figure 28: Decomposition of Brisbane Temperature Series

65

Figure 29: Decomposition of Gold Coast Temperature Series

Figure 30: Decomposition of Townsville Temperature Series

66

Figure 31: Decomposition of Cairns Temperature Series

Figure 32: Decomposition of Rockhampton Temperature Series

67

The performance of the forecast model was evaluated and the results are as follows:

Figure 33: Load Forecasted for 1 day (48 points)

Figure 34: Load Forecasted for 2 days (96 points)

68

Figure 35: Load Forecasted for 3 days (144 points)

Figure 36: Load Forecasted for 4 days (192 points)

69

Figure 37: Load Forecasted for 5 days (240 points)

Figure 38: Load Forecasted for 6 days (288 points)

70

Figure 39: Load Forecasted for 1 week (336 points)

71

7.4 Matlab GUI

 To begin the Short-term Load Forecasting System, first we need to open the

Main.m file. At the Debug menu, clicks run Main. Then The Main window as Figure 40

will appear. The Main window contain five buttons which are the Introduction, How to

use?, Start, Credit and Exit.

Figure 40: The Main window

 If the Introduction button is clicked, Figure 41 will appear.

Figure 41: The Introduction

72

 However, if the How to use? button is clicked, Figure 42, 43, 44, 45 will appear

one by one every time the next button is clicked. The figures show step by step

instruction to the first time user in using the Short-term Load Forecasting system. It

gives a brief idea on what data is needed by the system on every stage to perform the

load forecasting.

Figure 42: Use1

73

Figure 43: Use2

Figure 44: Use3

74

Figure 45: Use4

 If the Start Button is clicked, the Short-term Load Forecasting system is executed.

On the other hand, if the Credit Button is clicked, the Figure 46 is shown.

Figure 46: Credit

75

 To exit the program, press the Exit button, and a message showing “Are you sure

want to quit” will pop out, user can choose to click ‘Yes’ for exit and ‘No’ to return to

the Main program.

7.4 Discussions

 The table below shows the result obtained by using the Neural Network model

which tested with six sets of historical data containing the electricity load and

temperature data for the month of January 2009, on a half-hourly basis; one set of

electricity load data of Queensland and five sets of temperature data from five different

locations (higher power consumption regions) of Queensland.

No. of Demand dataPoints MAPE(%)

1 day (48 Points) 2.2055%

2 days (96 Points) 1.9467%

3 days (144 Points) 1.8520%

4 days (192 Points) 1.8709%

5 days (240 Points) 1.9171%

6 days (288 Points) 1.9605%

1 week (336 Points) 1.9929%

Table 4: The Mean Absolute Error obtained from the forecasting neural network model

By referring to the Mean Absolute Error obtained from the forecasting of neural network

model, we can see that all the MAPE obtained are less than 2.3%. This means that the

accuracy of the Short-term neural network obtained have a very high accuracy which is

up to 97.7%. Therefore this short-term neural network model can be used to provide a

more reliable electricity generation to the load.

76

CHAPTER 8

CONCLUSION AND RECOMMENDATIONS

8.1 Conclusion

 This thesis proposed a STLF model with a high forecasting accuracy. The NWT

has been successfully implemented in the model. The implementation of NWT has

reasonably enhanced the learning capability of the NNs in the model, thus minimizing

their training frequencies as shown in the simulations.

 Temperature has a close relationship with electricity load and its feasibility to be

included for STLF has been proven with reasonable accuracy achieved from the

simulations. However, when temperature data is included, the model is found to be able

to forecast only one point ahead. Nevertheless, this limitation can easily be overcome.

The details are discussed as future improvements in the next section.

 In summary, the inclusion of temperature data (as an additional input variable)

and the use of NWT (as the data processing tool) for the proposed STLF model have

been a success.

77

8.2 Recommendations for Future Work

 The limitation as mentioned earlier can be easily resolved. Having to forecast

more than one point ahead requires additional NNs to forecast the temperature series that

are used in the model.

 To be able to predict more than one point ahead, the model is suggested to

include another fifteen NNs. In other words, instead of training only one NN to predict

an output of load series, fifteen additional NNs (three NNs to predict one temperature)

are trained to predict the five sets of temperature series as well. In this way, the first set

of predicted values (one load and five temperatures) can be used to represent the second

set of inputs to predict the second point of load value, and the sequence goes on. The

suggested model is also anticipated to produce a further improved accuracy for the short-

term load forecasting of one point ahead.

The Neural Network model discusses above is only a suggestion; other types of

NNs (e.g. recurrent NNs) should also be explored in detail for future improvements.

Technology evolves with time; perhaps new methods and algorithms would be

formulated in the near future to improve the STLF model. Thus to predict more points

ahead with satisfactory results, future researched methodologies should also be

considered.

78

REFERENCES

[1] R. Polikar, Rowan University website, “The Wavelet Tutorial (Part I),”

Fundamental Concepts & An Overview of the Wavelet Theory (2 n),

http://engineering.rowan.edu/~polikar/WAVELETS/WTpart1.html (current Jun.

1996) [20] I. Nabney, “Netlab,” Netlab

[2] A. Louis et al, “Wavelets Theory and Applications,” John Wiley & Sons Ltd,

England, 1997

[3] W. Charytoniuk, M.S. Chen, and P. Van Olinda. Nonparametric Regression

Based Short-Term Load Forecasting. IEEE Transactions on Power Systems,

13:725–730, 1998.

[4] T. Down, .Introduction to Neural Computing & Pattern Recognition,

http://www.csee.uq.edu.au/~comp3700lectures/lecture1.pdf (current Jul. 2003)

[5] G.Janacek, L.Swift, Time series: forecasting, simulation, applications, West

Sussex: Ellis Horwood Limited, 1993.

[6] H. S. Hippert et al, .Neural Networks for Short-Term Load Forecasting: A

Review and Evaluation,. IEEE Trans. on Power Systems, Vol. 16, No. 1, Feb.

2001, pp. 44-54

[7] R.F. Engle, C. Mustafa, and J. Rice. Modeling Peak Electricity Demand. Journal

of Forecasting, 11:241–251, 1992.

79

[8] D. K. Ranaweera et al, “Effect of probabilistic inputs on neural network-based

electric load forecasting,” IEEE Trans. on Neural Networks, Vol. 7, No. 6, Nov.

1996, pp. 1528-1532 References 90

[9] A. D. Papalexopoulos and T. C. Hesterberg, “A regression-based approach to

short-term system load forecasting,” IEEE Trans. on Power Systems, Vol. 5, No.

4, Nov. 1990, pp. 1535-1547

[10] T. Haida and S. Muto. Regression Based Peak Load Forecasting using a

Transformation Technique. IEEE Transactions on Power Systems, 9:1788–1794,

1994.

[11] K.L. Ho, Y.Y. Hsu, F.F. Chen, T.E. Lee, C.C. Liang, T.S. Lai, and K.K. Chen.

Short-Term Load Forecasting of Taiwan Power System using a Knowledge

Based Expert System. IEEE Transactions on Power Systems, 5:1214–1221,

1990.

[12] O. Hyde and P.F. Hodnett. An Adaptable Automated Procedure for Short-Term

Electricity Load Forecasting. IEEE Transactions on Power Systems, 12:84–93,

1997.

[13] S.J. Kiartzis and A.G. Bakirtzis. A Fuzzy Expert System for Peak Load

Forecasting: Application to the Greek Power System. Proceedings of the 10th

Mediterranean Electrotechnical Conference, 3:1097– 1100, 2000.

[14] V. Miranda and C. Monteiro. Fuzzy Inference in Spatial Load Forecasting.

Proceedings of IEEE Power Engineering Winter Meeting, 2:1063–1068, 2000.

80

[15] M. Peng, N.F. Hubele, and G.G. Karady. Advancement in the Application of

Neural Networks for Short-Term Load Forecasting. IEEE Transactions on

Power Systems, 7:250–257, 1992.

[16] S. Ruzic, A. Vuckovic, and N. Nikolic. Weather Sensitive Method for Short-

Term Load Forecasting in Electric Power Utility of Serbia. IEEE Transactions

on Power Systems, 18:1581–1586, 2003

[17] S.E. Skarman and M. Georgiopoulous. Short-Term Electrical Load Forecasting

using a Fuzzy ARTMAP Neural Network. Proceedings of SPIE, 181–191, 1998.

[18] T. Down, “Introduction to Neural Computing & Pattern Recognition,”

COMP3700 Machine Learning website, University of Queensland, Australia,

http://www.csee.uq.edu.au/~comp3700/lectures/lecture1.pdf (current Jul. 2002)

[19] S. Haykin, “Neural Networks,” Macmillan College Publishing Company, Inc.

1994

[20] N. K. Bose and P. Liang, “Neural Network Fundamentals with Graphs,

Algorithms, and Applications,” McGraw-Hill Electrical and Computer

Engineering Series, McGraw-Hill, Inc. 1996

[21] R. Bharath and J. Drosen, “Neural Network Computing,” Windcrest, USA, 1994

APPENDIX A

Program for Short-term Load

Forecasting System

82

Main.m file

function varargout = Main(varargin)
% MAIN M-file for Main.fig
% MAIN, by itself, creates a new MAIN or raises the existing
% singleton*.
%
% H = MAIN returns the handle to a new MAIN or the handle to
% the existing singleton*.
%
% MAIN('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in MAIN.M with the given input
arguments.
%
% MAIN('Property','Value',...) creates a new MAIN or raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before Main_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to Main_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Main

% Last Modified by GUIDE v2.5 10-Oct-2009 19:45:50

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Main_OpeningFcn, ...
 'gui_OutputFcn', @Main_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Main is made visible.
function Main_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure

83

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Main (see VARARGIN)

% Choose default command line output for Main
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);
[x,map]=imread('PowerPlant','jpg');
image(x)
set(gca,'visible','off')

% UIWAIT makes Main wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = Main_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
figure(Introduction)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
figure(Use1)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
clc;
clear;
%Obtain user desired resolution level (Tested: resolution = 2 is the
best)
level = menu('Enter desired resolution level: ', '1', '2 <= (For
testing, please select this!!)', '3', '4');
switch level
case 1, resolution = 1;
case 2, resolution = 2;
case 3, resolution = 3;
case 4, resolution = 4;

84

end
msg = ['Resolution level to be used is ', num2str(resolution)];
disp(msg);
%%
%Obtain user desired amount of data to use
data = menu('Choose amount of data to use: ', '1 day', '2 days', '3
days', '4 days',...
'5 days', '6 days', '1 week <= (For testing,please select this!!)', '2
weeks');
switch data
case 1, dataPoints = 48; %1 day = 48 points
case 2, dataPoints = 96; %2 days = 96 points
case 3, dataPoints = 144; %3 days = 144 points
case 4, dataPoints = 192; %4 days = 192 points
case 5, dataPoints = 240; %5 days = 240 points
case 6, dataPoints = 288; %6 days = 288 points
case 7, dataPoints = 336; %1 week = 336 points
case 8, dataPoints = 672; %2 weeks = 672 points
end
msg = ['No. of data points to be used is ', num2str(dataPoints)];
disp(msg);
%%
%Menu for data set selection
select = menu('Use QLD data of: ', 'Jan09 <= (For testing,please select
this!!)',...
'Feb09', 'Mar09');
switch select
case 1, demandFile = 'DATA200901_QLD1', brisTempFile =
'BRISBANE200901'...
, goldcstTempFile = 'GOLDCST200901'...
, townsvilTempFile = 'TOWNSVIL200901'...
, cairnsTempFile = 'CAIRNS200901', rockyTempFile = 'ROCKY200901';
case 2, demandFile = 'DATA200902_QLD1', brisTempFile =
'BRISBANE200902'...
, goldcstTempFile = 'GOLDCST200902'...
, townsvilTempFile = 'TOWNSVIL200902'...
, cairnsTempFile = 'CAIRNS200902', rockyTempFile = 'ROCKY200902';
case 3, demandFile = 'DATA200903_QLD1', brisTempFile =
'BRISBANE200903'...
, goldcstTempFile = 'GOLDCST200903'...
, townsvilTempFile = 'TOWNSVIL200903'...
, cairnsTempFile = 'CAIRNS200903', rockyTempFile = 'ROCKY200903';
end
%%
%Reading the historical DEMAND data into tDemandArray
selectedDemandFile = [demandFile, '.csv'];
[regionArray, sDateArray, tDemandArray, rrpArrray, pTypeArray,tTime]
...
= textread(selectedDemandFile, '%s %q %f %f %s %f','headerlines', 1,
'delimiter',',');
%Display no. of points in the selected time series demand data

[demandDataPoints,y] = size(tDemandArray);
msg = ['The no. of points in the selected Demand data is ',
num2str(demandDataPoints)];
disp(msg);
%Decompose historical demand data signal

85

[dD, l] = swt(tDemandArray, resolution, 'db2');
approx = dD(resolution, :);
%Plot the original demand data signal
figure (1);
subplot(resolution + 2, 1, 1); plot(tDemandArray(1: dataPoints))
legend('Demand Original');
title('QLD Demand Data Signal');
%Plot the approximation demand data signal
for i = 1 : resolution
subplot(resolution + 2, 1, i + 1); plot(approx(1: dataPoints))
legend('Demand Approximation');
end
%After displaying approximation signal, display detail x
for i = 1: resolution
if(i > 1)
detail(i, :) = dD(i-1, :)- dD(i, :);
else
detail(i, :) = tDemandArray' - dD(1, :);
end
subplot(resolution + 2, 1, resolution - i + 3); plot(detail(i, 1:
dataPoints))
legendName = ['Demand Detail ', num2str(i)];
legend(legendName);
i = i + 1;
end
%Normalising approximation demand data
maxDemand = max(approx'); %Find largest component
normDemand = approx ./ maxDemand; %Right divison
maxDemandDetail = [];
normDemandDetail = [];
detail = detail + 4000;
for i = 1: resolution
maxDemandDetail(i) = max(detail(i, :));
normDemandDetail(i, :) = detail(i, :) ./maxDemandDetail(i);
end
%%
%Reading the historical Brisbane's TEMPERATURE data into temp1Array
selectedTempFile1 = [brisTempFile, '.csv'];
[dTimeArray, temp1Array] ...
= textread(selectedTempFile1, '%s %f', 'headerlines', 1, 'delimiter',
',');
%Display no. of points in Brisbane's temperature data
[noOfDataPoints, y] = size(temp1Array);
msg = ['The no. of points in Brisbane Temperature data is ',
num2str(noOfDataPoints)];
disp(msg);
%Decompose historical Brisbane's temperature data signal
[dT1, l] = swt(temp1Array, resolution, 'db2');
approxT1 = dT1(resolution, :);
%Plot the original Brisbane's temperature data signal
figure (2);
subplot(resolution + 2, 1, 1); plot(temp1Array(1: dataPoints))
legend('T1 Original');
title('BRISBANE Temperature Data Signal');
%Plot the approximation Brisbane's temperature data signal
for i = 1 : resolution
subplot(resolution + 2, 1, i + 1); plot(approxT1(1: dataPoints))

86

legend('T1 Approximation');
end
%After displaying approximation signal, display detail x
for i = 1: resolution
if(i > 1)
detailT1(i, :) = dT1(i-1, :)- dT1(i, :);
else
detailT1(i, :) = temp1Array' - dT1(1, :);
end
subplot(resolution + 2, 1, resolution - i + 3); plot(detailT1(i, 1:
dataPoints))
legendName = ['T1 Detail ', num2str(i)];
legend(legendName);
i = i + 1;
end
%Normalising approximation Brisbane's temperature data
maxBrisTemp = max(approxT1'); %Find largest component
normBrisTemp = approxT1 ./ maxBrisTemp; %Right divison
maxBrisTempDetail = [];
normBrisTempDetail = [,];
detailT1 = detailT1 + 40;
for i = 1: resolution
maxBrisTempDetail(i) = max(detailT1(i, :));
normBrisTempDetail(i, :) = detailT1(i, :) ./maxBrisTempDetail(i);
end
%%
%Reading the historical GoldCoast's TEMPERATURE data into temp2Array
selectedTempFile2 = [goldcstTempFile, '.csv'];
[dTimeArray, temp2Array] ...
= textread(selectedTempFile2, '%s %f', 'headerlines', 1, 'delimiter',
',');
%Display no. of points in GoldCoast's temperature data
[noOfDataPoints, y] = size(temp2Array);
msg = ['The no. of points in Gold Coast Temperature data is ',
num2str(noOfDataPoints)];
disp(msg);
%Decompose historical GoldCoast's temperature data signal
[dT2, l] = swt(temp2Array, resolution, 'db2');
approxT2 = dT2(resolution, :);
%Plot the original GoldCoast's temperature data signal
figure (3);
subplot(resolution + 2, 1, 1); plot(temp2Array(1: dataPoints))
legend('T2 Original');
title('GOLD COAST Temperature Data Signal');
%Plot the approximation GoldCoast's temperature data signal
for i = 1 : resolution
subplot(resolution + 2, 1, i + 1); plot(approxT2(1: dataPoints))
legend('T2 Approximation');
end
%After displaying approximation signal, display detail x
for i = 1: resolution
if(i > 1)
detailT2(i, :) = dT2(i-1, :)- dT2(i, :);
else
detailT2(i, :) = temp2Array' - dT2(1, :);
end

87

subplot(resolution + 2, 1, resolution - i + 3); plot(detailT2(i, 1:
dataPoints))
legendName = ['T2 Detail ', num2str(i)];
legend(legendName);
i = i + 1;
end
%Normalising approximation GoldCoast's temperature data
maxGoldCstTemp = max(approxT2'); %Find largest component
normGoldCstTemp = approxT2 ./ maxGoldCstTemp; %Right divison
maxGoldCstTempDetail = [];
normGoldCstTempDetail = [,];
detailT2 = detailT2 + 40;
for i = 1: resolution
maxGoldCstTempDetail(i) = max(detailT2(i, :));
normGoldCstTempDetail(i, :) = detailT2(i, :) ./maxGoldCstTempDetail(i);
end
%%
%Reading the historical Townsville's TEMPERATURE data into temp3Array
%and applied a weightage of 0.95
selectedTempFile3 = [townsvilTempFile, '.csv'];
[dTimeArray, temp3Array] ...
= textread(selectedTempFile3, '%s %f', 'headerlines', 1, 'delimiter',
',');
%Display no. of points in Townsville's temperature data
[noOfDataPoints, y] = size(temp3Array);
msg = ['The no. of points in Townsville Temperature data is ',
num2str(noOfDataPoints)];
disp(msg);
%Decompose historical Townsville's temperature data signal
[dT3, l] = swt(temp3Array, resolution, 'db2');
approxT3 = dT3(resolution, :);
%Plot the original Townsville's temperature data signal
figure (4);
subplot(resolution + 2, 1, 1); plot(temp3Array(1: dataPoints))
legend('T3 Original');
title('TOWNSVILLE Temperature Data Signal');
%Plot the approximation Townsville's temperature data signal
for i = 1 : resolution
subplot(resolution + 2, 1, i + 1); plot(approxT3(1: dataPoints))
legend('T3 Approximation');
end
%After displaying approximation signal, display detail x
for i = 1: resolution
if(i > 1)
detailT3(i, :) = dT3(i-1, :)- dT3(i, :);
else
detailT3(i, :) = temp3Array' - dT3(1, :);
end
subplot(resolution + 2, 1, resolution - i + 3); plot(detailT3(i, 1:
dataPoints))
legendName = ['T3 Detail ', num2str(i)];
legend(legendName);
i = i + 1;
end
%Normalising approximation Townsville's temperature data
maxTownsvilTemp = max(approxT3'); %Find largest component
normTownsvilTemp = approxT3 ./ maxTownsvilTemp; %Right divison

88

normTownsvilTemp = normTownsvilTemp * 0.95; % Apply weightage
maxTownsvilTempDetail = [];
normTownsvilTempDetail = [,];
detailT3 = detailT3 + 40;
for i = 1: resolution
maxTownsvilTempDetail(i) = max(detailT3(i, :));
normTownsvilTempDetail(i, :) = detailT3(i, :)
./maxTownsvilTempDetail(i);
end
normTownsvilTempDetail = normTownsvilTempDetail * 0.95;
%%
%Reading the historical Cairns's TEMPERATURE data into temp4Array
selectedTempFile4 = [cairnsTempFile, '.csv'];
[dTimeArray, temp4Array] ...
= textread(selectedTempFile4, '%s %f', 'headerlines', 1, 'delimiter',
',');
%Display no. of points in Cairns's temperature data
[noOfDataPoints, y] = size(temp4Array);
msg = ['The no. of points in Cairns Temperature data is ' ,
num2str(noOfDataPoints)];
disp(msg);
%Decompose historical Cairns's temperature data signal
[dT4, l] = swt(temp4Array, resolution, 'db2');
approxT4 = dT4(resolution, :);
%Plot the original Cairns's temperature data signal
figure (5);
subplot(resolution + 2, 1, 1); plot(temp4Array(1: dataPoints))
legend('T4 Original');
title('CAIRNS Temperature Signal');
%Plot the approximation Cairns's temperature data signal
for i = 1 : resolution
subplot(resolution + 2, 1, i + 1); plot(approxT4(1: dataPoints))
legend('T4 Approximation');
end
%After displaying approximation signal, display detail x
for i = 1: resolution
if(i > 1)
detailT4(i, :) = dT4(i-1, :)- dT4(i, :);
else
detailT4(i, :) = temp4Array' - dT4(1, :);
end
subplot(resolution + 2, 1, resolution - i + 3); plot(detailT4(i, 1:
dataPoints))
legendName = ['T4 Detail ', num2str(i)];
legend(legendName);
i = i + 1;
end
%Normalising approximation Cairns's temperature data
maxCairnsTemp = max(approxT4'); %Find largest component
normCairnsTemp = approxT4 ./ maxCairnsTemp; %Right divison
normCairnsTemp = normCairnsTemp * 0.90; % Apply weightage
maxCairnsTempDetail = [];
normCairnsTempDetail = [,];
detailT4 = detailT4 + 40;
for i = 1: resolution
maxCairnsTempDetail(i) = max(detailT4(i, :));
normCairnsTempDetail(i, :) = detailT4(i, :) ./maxCairnsTempDetail(i);

89

end
normCairnsTempDetail = normCairnsTempDetail * 0.90;
%%
%Reading the historical Rockhampton's TEMPERATURE data into temp5Array
selectedTempFile5 = [rockyTempFile, '.csv'];
[dTimeArray, temp5Array] ...
= textread(selectedTempFile5, '%s %f', 'headerlines', 1, 'delimiter',
',');
%Display no. of points in Rockhampton's temperature data
[noOfDataPoints, y] = size(temp5Array);
msg = ['The no. of points in Rockhampton Temperature data is ',
num2str(noOfDataPoints)];
disp(msg);
%Decompose historical Rockhampton's temperature data signal
[dT5, l] = swt(temp5Array, resolution, 'db2');
approxT5 = dT5(resolution, :);
%Plot the original Rockhampton's temperature data signal
figure (6);
subplot(resolution + 2, 1, 1); plot(temp5Array(1: dataPoints))
legend('T5 Original');
title('ROCKHAMPTON Temperature Signal');
%Plot the approximation Rockhampton's temperature data signal
for i = 1 : resolution
subplot(resolution + 2, 1, i + 1); plot(approxT5(1: dataPoints))
legend('T5 Approximation');
end
%After displaying approximation signal, display detail x
for i = 1: resolution
if(i > 1)
detailT5(i, :) = dT5(i-1, :)- dT5(i, :);
else
detailT5(i, :) = temp5Array' - dT5(1, :);
end
subplot(resolution + 2, 1, resolution - i + 3); plot(detailT5(i, 1:
dataPoints))
legendName = ['T5 Detail ', num2str(i)];
legend(legendName);
i = i + 1;
end
%Normalising approximation Rockhampton's temperature data
maxRockyTemp = max(approxT5'); %Find largest component
normRockyTemp = approxT5 ./ maxRockyTemp; %Right divison
normRockyTemp = normRockyTemp * 0.85; % Apply weightage
maxRockyTempDetail = [];
normRockyTempDetail = [,];
detailT5 = detailT5 + 40;
for i = 1: resolution
maxRockyTempDetail(i) = max(detailT5(i, :));
normRockyTempDetail(i, :) = detailT5(i, :) ./maxRockyTempDetail(i);
end
normRockyTempDetail = normRockyTempDetail * 0.85;

%%
%Function here allows repetitive options to,
% 1) Create new NNs, 2) Retrain the existing NNs,
% 3) Perform load demand forecasting and 4) Quit session
resultGraphNum = 8; %For multiple forecast use

90

while (1)
%Main MENU
choice = menu('Please select one of the following options: ',...
'CREATE new Neural Networks',...
'RETRAIN existing Neural Networks',...
'Perform FORECASTING of load demand', 'QUIT session...');
switch choice
case 1, scheme = 'c';
case 2, scheme = 'r';
case 3, scheme = 'f';
case 4, scheme = 'e';
end
%If scheme is 'c', call <nnCreate> to create new NNs, train them then
perform forecast
if(scheme == 'c')
nnCreate;
end
%If scheme is 'r', call <nnRetrain> to retrain the existing NNs
if(scheme == 'r')
nnRetrain;
end
%If scheme is 'f', call <nnForecast> to load the existing NN model
if(scheme == 'f')
nnforecast;
end
%If scheme is 'e', verifies and quit session if 'yes' is selected else
continue
if(scheme == 'e')
button = questdlg('Quit session?', 'Exit Dialog','Yes','No','No');
switch button
case 'Yes', disp(' ');
disp('Session has ended!!');
disp(' ');
break;
case 'No', quit cancel;
end
end
end
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

 % --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
figure(Credit)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
button=questdlg('Are you sure want to quit?','Exit','Yes','No','No');
switch button
 case 'Yes',
 close all
case 'No',
 quit cancel;end

91

nnCreate.m file

%Subsystem : Data pre-processing / Creates then matures the NNs
%File name : nnCreate.m
%Author : Tai Hein Fong
%Date : July 2009
%Description : This file prepares the input & output data for the NNs.
It creates %then trains the NNs to mature them. When all is done,
program will return to the Main %Menu for other options.
%%
%Clear command screen and set target demand ouput to start at point 2
clc;
targetStartAt = 2;
disp('Program will now CREATE a Neural Network for training and
forecasting...');
disp(' ');
disp('To capture the pattern of the signal, the model is ')
disp('set to accept dataPoints x 8 sets of training examples; ');
disp('1 set of demand + 7 sets of temp (1 set for each 7 different
locations). ');
disp(' ');
disp('The normalised demand data <point 2>, is to be taken as the ')
disp('output value for the first iteration of training examples. ');
disp(' ');
disp('Press ENTER key to continue...');
numOfNNs = resolution + 1;
%Creating and training the NNs for the respective
%demand and temperature coefficient signals
for x = 1: numOfNNs
%Clearing variables
clear targetDemand;
clear inputs;
clear output;
clc;
if(x == 1)
 neuralNetwork = ['Neural network settings for approximation level
',...
num2str(resolution)];
else
neuralNetwork = ['Neural network settings for detail level ', num2str(x
- 1)];
end
disp(neuralNetwork);
disp(' ');
%Set no. of input nodes and hidden neurons for the
%respective demand and temperature coefficient signal
numOfInputs = 6;
inputValue = ['Number of neural network INPUT units is set at ',...
num2str(numOfInputs)];
disp(inputValue);
disp(' ');
numOfOutput = 1;
outValue = ['Output is set to ', num2str(numOfOutput)];
disp(outValue);
disp(' ');
numOfHiddens =3;

92

hiddenValue = ['Number of neural network HIDDEN units is set at
',num2str(numOfHiddens)];
disp(hiddenValue);
disp(' ');
%Setting no. of training examples
trainingLength = dataPoints;
%Set target outputs of the training examples
if(x == 1)
targetDemand = normDemand(targetStartAt: 1 + trainingLength);
else
targetDemand = normDemandDetail(x - 1, targetStartAt: 1 +
trainingLength);
end
%Preparing training examples
%Setting training i/ps to be 8 with user defined no. of iterations
(dataPoints)
y = 0;
while y < trainingLength
if(x == 1)
inputs(1, y + 1) = normDemand(y + 1);
inputs(2, y + 1) = normBrisTemp(y + 1);
inputs(3, y + 1) = normGoldCstTemp(y + 1);
inputs(4, y + 1) = normTownsvilTemp(y + 1);
inputs(5, y + 1) = normCairnsTemp(y + 1);
inputs(6, y + 1) = normRockyTemp(y + 1);
else
inputs(1, y + 1) = normDemandDetail(x - 1, y + 1);
inputs(2, y + 1) = normBrisTempDetail(x - 1, y + 1);
inputs(3, y + 1) = normGoldCstTempDetail(x - 1, y + 1);
inputs(4, y + 1) = normTownsvilTempDetail(x - 1, y + 1);
inputs(5, y + 1) = normCairnsTempDetail(x - 1, y + 1);
inputs(6, y + 1) = normRockyTempDetail(x - 1, y + 1);
end
output(y + 1, :) = targetDemand(y + 1);
y = y + 1;
end
inputs = (inputs');
%With reference to line 161
%Create new neural network for respective coefficient signal
%NET = MLP(NIN, NHIDDEN, NOUT, FUNC)
net =mlp(numOfInputs,numOfHiddens,numOfOutput,'linear');
%NN options
options = zeros(1, 18);
options(1) = 1; %Provides display of error values
options(14) = 100;%No of cycles
%Training the neural network
%nnopt(net, options, x, t, alg, len);
[net,options] = netopt(net, options, inputs, output, 'scg');
%Save the neural network
filename = ['net', num2str(x)];
save(filename, 'net');
disp(' ');
msg = ['Neural network successfully CREATED and saved as => ',
filename];
disp(msg);
if(x < 1)
disp(' ');

93

disp('Press ENTER key to continue training the next NN...');
else
disp(' ');
disp('Model is now ready to forecast!!');
disp(' ');
end

nnRetrain.m file

%Subsystem : Retrain the NNs
%File name : nnRetrain.m
%Date : July 2009
%Description : This file loads the existing NNs and trains them again.
%%
%Clear command screen and display msgs
clc;
disp('Program will now RETRAIN the Neural Networks ')
disp('with the SAME initial data series again...');
disp(' ');
disp('To capture the pattern of the signal, the model is ')
disp('set to accept dataPoints x 8 sets of training examples; ');
disp('1 set of demand + 7 sets of temp (1 set for each 7 different
locations). ');
disp(' ');
disp('The normalised demand data <point 2>, is to be taken as the ')
disp('output value for the first iteration of training examples. ');
disp(' ');
msg = ['Data points to be used for reTraining the NNs is from 1 to
',...
 num2str(dataPoints)];
disp(msg);
disp(' ');
disp('Press ENTER key to continue...');
pause;
%Clear command screen
clc;
%Prompt for no. of training cycles
%For current program, 1 cycle = user set no. of iterations (ie:
dataPoints)
cycle = input('Input number of cycles to retrain the NNs: ');
numOfNNs = resolution + 1;
%Loading existing NNs for training
for x = 1: numOfNNs
%Re-initialising variables
clear targetDemand;
clear inputs;
clear output;
clc;
%Loading NN for the respective demand and temperature coefficient
signals
filename = ['net', num2str(x)];
clear net
load(filename);
%Getting the size of NN
numOfInputs = net.nin;

94

numOfHiddens = net.nhidden;
numOfOutput = 1;
%Setting length of reTraining examples and target outputs
reTrainLength = dataPoints;
targetLength = reTrainLength;
targetStartAt = 2;
%Set target outputs of the training examples
if(x == 1)
targetDemand = normDemand(targetStartAt: 1 + targetLength);
else
targetDemand = normDemandDetail(x - 1, targetStartAt: 1 +
targetLength);
end
%Preparing training examples
%Setting training i/ps to be 8 with user set no. of iterations
(dataPoints)
y = 0;
while y < reTrainLength
if(x == 1)
inputs(1, y + 1) = normDemand(y + 1);
inputs(2, y + 1) = normBrisTemp(y + 1);
inputs(3, y + 1) = normGoldCstTemp(y + 1);
inputs(4, y + 1) = normTownsvilTemp(y + 1);
inputs(5, y + 1) = normCairnsTemp(y + 1);
inputs(6, y + 1) = normRockyTemp(y + 1);

else
inputs(1, y + 1) = normDemandDetail(x - 1, y + 1);
inputs(2, y + 1) = normBrisTempDetail(x - 1, y + 1);
inputs(3, y + 1) = normGoldCstTempDetail(x - 1, y + 1);
inputs(4, y + 1) = normTownsvilTempDetail(x - 1, y + 1);
inputs(5, y + 1) = normCairnsTempDetail(x - 1, y + 1);
inputs(6, y + 1) = normRockyTempDetail(x - 1, y + 1);

end
output(y + 1, :) = targetDemand(y + 1);
y = y + 1;
end
inputs = (inputs');
%Setting no. of training cycles
[ni, np] = size(targetDemand); % <== [ni, np] tells the NN how long is
1 cycle;
size(targetDemand) %With reference to line 106
%NN options
options = zeros(1, 18);
options(1) = 1; %Provides display of error values
options(14) = 100
%Training the neural network
%nnopt(net, options, x, t, alg, len);
net = netopt(net, options, inputs, output, 'scg');
%Save the neural network
filename = ['net', num2str(x)];
save(filename, 'net');
disp(' ');
msg = ['Neural network => ', filename, ' <= successfully RETRAINED and
saved!! '];
disp(msg);

95

if(x < 3)
disp(' ');
disp('Press ENTER key to continue training the next NN...');
else
disp(' ');
disp('Model is now ready to forecast again!!');
disp(' ');
disp('Press ENTER key to continue...');
end
pause;
end

nnForecast.m file

%Subsystem : Forecasting / Data post-processing
%File name : nnForecast.m
%Date : July 2009
%Description : This file loads the trained NNs for load forcasting and
%recombines the predicted outputs from the NNs to form the final
predicted load series.
%%
%Clear command screen and variables
clc;
clear forecastResult;
clear actualDemand;
clear predicted;
clear actualWithPredicted;
disp('Neural networks loaded, performing electricity demand
forecast...');
disp(' ');
pointsAhead = input('Enter no. of points to predict (should be < 336):
');
numOfTimes = resolution + 1;
%Predict coefficient signals using respective NNs
for x = 1 : numOfTimes
%Loading NN
filename = ['net', num2str(x)];
clear net
load(filename);
clear in;
numOfInputs = net.nin;
y = 0;
%Preparing details to forecast
while y < pointsAhead
if(x == 1)
propData(1, y + 1) = normDemand(y + 1);
propData(2, y + 1) = normBrisTemp(y + 1);
propData(3, y + 1) = normGoldCstTemp(y + 1);
propData(4, y + 1) = normTownsvilTemp(y + 1);
propData(5, y + 1) = normCairnsTemp(y + 1);
propData(6, y + 1) = normRockyTemp(y + 1);

else
propData(1, y + 1) = normDemandDetail(x - 1, y + 1);

96

propData(2, y + 1) = normBrisTempDetail(x - 1, y + 1);
propData(3, y + 1) = normGoldCstTempDetail(x - 1, y + 1);
propData(4, y + 1) = normTownsvilTempDetail(x - 1, y + 1);
propData(5, y + 1) = normCairnsTempDetail(x - 1, y + 1);
propData(6, y + 1) = normRockyTempDetail(x - 1, y + 1);

end
y = y + 1;
end
if(x == 1)
forecast = mlpfwd(net, propData') * maxDemand;
else
forecast = mlpfwd(net, propData') * maxDemandDetail(x - 1)-4000;
end
forecastResult(x, :) = forecast;
end
actualDemand = tDemandArray(2: 1 + pointsAhead);
predicted = sum(forecastResult, 1)';
%Calculating Mean Absolute Error
AbsError = abs(actualDemand - predicted(1: pointsAhead)) ./
actualDemand;
msg = ['Mean Absolute Percentage Error = ',...
num2str(mean(AbsError(1: pointsAhead))*100), ' !!'];
disp(' ');
disp(msg);
%Plot actual time series against predicted result
resultGraphNum = resultGraphNum + 1;
figure(resultGraphNum)
actualWithPredicted(:, 1) = actualDemand;
actualWithPredicted(:, 2) = predicted(1: pointsAhead);
plot(actualWithPredicted(:, 1), 'b');
hold on;
plot(actualWithPredicted(:, 2), 'r:');
hold off;
graph = ['Actual VS Forecasted ', ' < MAPE = ',
num2str(mean(AbsError)*100), '% >'];
title(graph);
%xaxis = ['No. of Points shown: ' , num2str(pointsAhead)];
xaxis = ['Time (half hour intervals)'];
xlabel(xaxis);
yaxis = ['Total Demand'];
ylabel(yaxis);
legend('Actual', 'Forecasted');

97

Introduction.m file

function varargout = Introduction(varargin)
% INTRODUCTION M-file for Introduction.fig
% INTRODUCTION, by itself, creates a new INTRODUCTION or raises
the existing
% singleton*.
%
% H = INTRODUCTION returns the handle to a new INTRODUCTION or the
handle to
% the existing singleton*.
%
% INTRODUCTION('CALLBACK',hObject,eventData,handles,...) calls the
local
% function named CALLBACK in INTRODUCTION.M with the given input
arguments.
%
% INTRODUCTION('Property','Value',...) creates a new INTRODUCTION
or raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before Introduction_OpeningFcn gets called.
An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to Introduction_OpeningFcn via
varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Introduction

% Last Modified by GUIDE v2.5 10-Oct-2009 20:07:25

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Introduction_OpeningFcn, ...
 'gui_OutputFcn', @Introduction_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

98

% --- Executes just before Introduction is made visible.
function Introduction_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Introduction (see VARARGIN)

% Choose default command line output for Introduction
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);
[x,map]=imread('Transmissionline','jpg');
image(x)
set(gca,'visible','off')

% UIWAIT makes Introduction wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = Introduction_OutputFcn(hObject, eventdata,
handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

Use1.m file

function varargout = Use1(varargin)
% USE1 M-file for Use1.fig
% USE1, by itself, creates a new USE1 or raises the existing
% singleton*.
%
% H = USE1 returns the handle to a new USE1 or the handle to
% the existing singleton*.
%
% USE1('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in USE1.M with the given input
arguments.
%

99

% USE1('Property','Value',...) creates a new USE1 or raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before Use1_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to Use1_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Use1

% Last Modified by GUIDE v2.5 27-Oct-2009 22:24:33

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Use1_OpeningFcn, ...
 'gui_OutputFcn', @Use1_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Use1 is made visible.
function Use1_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Use1 (see VARARGIN)

% Choose default command line output for Use1
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);
[x,map]=imread('Use1','jpg');
image(x)
set(gca,'visible','off')

% UIWAIT makes Use1 wait for user response (see UIRESUME)
% uiwait(handles.figure1);

100

% --- Outputs from this function are returned to the command line.
function varargout = Use1_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
figure(Use2)

% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as
a double
 % --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');end

Use2.m file

function varargout = Use2(varargin)
% USE2 M-file for Use2.fig
% USE2, by itself, creates a new USE2 or raises the existing
% singleton*.
%
% H = USE2 returns the handle to a new USE2 or the handle to
% the existing singleton*.
%
% USE2('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in USE2.M with the given input
arguments.

101

%
% USE2('Property','Value',...) creates a new USE2 or raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before Use2_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to Use2_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Use2

% Last Modified by GUIDE v2.5 28-Oct-2009 21:07:05

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Use2_OpeningFcn, ...
 'gui_OutputFcn', @Use2_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Use2 is made visible.
function Use2_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Use2 (see VARARGIN)

% Choose default command line output for Use2
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);
[x,map]=imread('Use2','jpg');
image(x)
set(gca,'visible','off')

% UIWAIT makes Use2 wait for user response (see UIRESUME)

102

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = Use2_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
figure(Use3)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Use3.m file

function varargout = Use3(varargin)
% USE3 M-file for Use3.fig
% USE3, by itself, creates a new USE3 or raises the existing
% singleton*.
%
% H = USE3 returns the handle to a new USE3 or the handle to
% the existing singleton*.
%
% USE3('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in USE3.M with the given input
arguments.
%
% USE3('Property','Value',...) creates a new USE3 or raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before Use3_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to Use3_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Use3

103

% Last Modified by GUIDE v2.5 27-Oct-2009 23:56:49

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Use3_OpeningFcn, ...
 'gui_OutputFcn', @Use3_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Use3 is made visible.
function Use3_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Use3 (see VARARGIN)

% Choose default command line output for Use3
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);
[x,map]=imread('Use3','jpg');
image(x)
set(gca,'visible','off')

% UIWAIT makes Use3 wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = Use3_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)

104

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as
a double

% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
figure(Use4)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Use4.m file

function varargout = Use4(varargin)
% USE4 M-file for Use4.fig
% USE4, by itself, creates a new USE4 or raises the existing
% singleton*.
%
% H = USE4 returns the handle to a new USE4 or the handle to
% the existing singleton*.
%
% USE4('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in USE4.M with the given input
arguments.
%
% USE4('Property','Value',...) creates a new USE4 or raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before Use4_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to Use4_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

105

% Edit the above text to modify the response to help Use4

% Last Modified by GUIDE v2.5 28-Oct-2009 00:31:06

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Use4_OpeningFcn, ...
 'gui_OutputFcn', @Use4_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Use4 is made visible.
function Use4_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Use4 (see VARARGIN)

% Choose default command line output for Use4
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);
[x,map]=imread('Use4','jpg');
image(x)
set(gca,'visible','off')

% UIWAIT makes Use4 wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = Use4_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

106

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
close all
figure (Main)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Credit.m file

function varargout = Credit(varargin)
% CREDIT M-file for Credit.fig
% CREDIT, by itself, creates a new CREDIT or raises the existing
% singleton*.
%
% H = CREDIT returns the handle to a new CREDIT or the handle to
% the existing singleton*.
%
% CREDIT('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in CREDIT.M with the given input
arguments.
%
% CREDIT('Property','Value',...) creates a new CREDIT or raises
the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before Credit_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to Credit_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Credit

% Last Modified by GUIDE v2.5 27-Oct-2009 19:28:14

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Credit_OpeningFcn, ...
 'gui_OutputFcn', @Credit_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout

107

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Credit is made visible.
function Credit_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Credit (see VARARGIN)

% Choose default command line output for Credit
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);
[x,map]=imread('Me','jpg');
image(x)
set(gca,'visible','off')

% UIWAIT makes Credit wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = Credit_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as
a double

% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

108

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

109

Exit.m file

function varargout = Exit(varargin)
% EXIT M-file for Exit.fig
% EXIT by itself, creates a new EXIT or raises the
% existing singleton*.
%
% H = EXIT returns the handle to a new EXIT or the handle to
% the existing singleton*.
%
% EXIT('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in EXIT.M with the given input
arguments.
%
% EXIT('Property','Value',...) creates a new EXIT or raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before Exit_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to Exit_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Exit

% Last Modified by GUIDE v2.5 10-Oct-2009 21:33:53

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Exit_OpeningFcn, ...
 'gui_OutputFcn', @Exit_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Exit is made visible.
function Exit_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

110

% varargin command line arguments to Exit (see VARARGIN)

% Choose default command line output for Exit
handles.output = 'Yes';

% Update handles structure
guidata(hObject, handles);

% Insert custom Title and Text if specified by the user
% Hint: when choosing keywords, be sure they are not easily confused
% with existing figure properties. See the output of set(figure) for
% a list of figure properties.
if(nargin > 3)
 for index = 1:2:(nargin-3),
 if nargin-3==index, break, end
 switch lower(varargin{index})
 case 'title'
 set(hObject, 'Name', varargin{index+1});
 case 'string'
 set(handles.text1, 'String', varargin{index+1});
 end
 end
end

% Determine the position of the dialog - centered on the callback
figure
% if available, else, centered on the screen
FigPos=get(0,'DefaultFigurePosition');
OldUnits = get(hObject, 'Units');
set(hObject, 'Units', 'pixels');
OldPos = get(hObject,'Position');
FigWidth = OldPos(3);
FigHeight = OldPos(4);
if isempty(gcbf)
 ScreenUnits=get(0,'Units');
 set(0,'Units','pixels');
 ScreenSize=get(0,'ScreenSize');
 set(0,'Units',ScreenUnits);

 FigPos(1)=1/2*(ScreenSize(3)-FigWidth);
 FigPos(2)=2/3*(ScreenSize(4)-FigHeight);
else
 GCBFOldUnits = get(gcbf,'Units');
 set(gcbf,'Units','pixels');
 GCBFPos = get(gcbf,'Position');
 set(gcbf,'Units',GCBFOldUnits);
 FigPos(1:2) = [(GCBFPos(1) + GCBFPos(3) / 2) - FigWidth / 2, ...
 (GCBFPos(2) + GCBFPos(4) / 2) - FigHeight / 2];
end
FigPos(3:4)=[FigWidth FigHeight];
set(hObject, 'Position', FigPos);
set(hObject, 'Units', OldUnits);

% Show a question icon from dialogicons.mat - variables questIconData
% and questIconMap
load dialogicons.mat

111

IconData=questIconData;
questIconMap(256,:) = get(handles.figure1, 'Color');
IconCMap=questIconMap;

Img=image(IconData, 'Parent', handles.axes1);
set(handles.figure1, 'Colormap', IconCMap);

set(handles.axes1, ...
 'Visible', 'off', ...
 'YDir' , 'reverse' , ...
 'XLim' , get(Img,'XData'), ...
 'YLim' , get(Img,'YData') ...
);

% Make the GUI modal
set(handles.figure1,'WindowStyle','modal')

% UIWAIT makes Exit wait for user response (see UIRESUME)
uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = Exit_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% The figure can be deleted now
delete(handles.figure1);

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

handles.output = get(hObject,'String');

% Update handles structure
guidata(hObject, handles);

% Use UIRESUME instead of delete because the OutputFcn needs
% to get the updated handles structure.
uiresume(handles.figure1);

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

handles.output = get(hObject,'String');

% Update handles structure

112

guidata(hObject, handles);

% Use UIRESUME instead of delete because the OutputFcn needs
% to get the updated handles structure.
uiresume(handles.figure1);

% --- Executes when user attempts to close figure1.
function figure1_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

if isequal(get(handles.figure1, 'waitstatus'), 'waiting')
 % The GUI is still in UIWAIT, us UIRESUME
 uiresume(handles.figure1);
else
 % The GUI is no longer waiting, just close it
 delete(handles.figure1);
end

% --- Executes on key press over figure1 with no controls selected.
function figure1_KeyPressFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Check for "enter" or "escape"
if isequal(get(hObject,'CurrentKey'),'escape')
 % User said no by hitting escape
 handles.output = 'No';

 % Update handles structure
 guidata(hObject, handles);

 uiresume(handles.figure1);
end

if isequal(get(hObject,'CurrentKey'),'return')
 uiresume(handles.figure1);
end

