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ABSTRAK 

Pengurangan riak tork dalam motor induksi telah menjadi minat penyelidik sejak 

kebelakangan ini. Pengurangan riak tork mempunyai kesan yang jelas terhadap 

kecekapan motor induksi (IM). Ia meningkatkan kecekapan, memanjangkan jangka 

hayat dan mengurangkan kerugian dari penukaran alat ganti apabila digunakan di dalam 

industry pada sekala besar. Apabila mengambil kira kecekapan induksi motor (IM), 

kesan riak torque harus di ambil kira. Oleh itu, fokus utama tesis ini adalah untuk 

membangunkan  kaedah Nonlinear Inverse Dynamic (NID) untuk mengawal induction 

motor tiga fasa. Tiga jenis (NID) iaitu General Nonlinear Inverse Dynamic (GNID), 

Voltage Control Nonlinear Inverse Dynamic (VCNID) dan Current Control Nonlinear 

Inverse Dynamic (CCNID). Kaedah ini adalah berorientasikan lapangan vektor ruang 

lebar (SVPWM). Pengawal dinamik songsang tak linear membatalkan sambutan tidak 

wajar motor induksi seterusnya meningkatkan prestasi. Pembatalan sambutan tidak 

wajar ini dicapai melalui persamaan matematik. Model matematik bagi motor induksi 

nyahgandingan bagi dua input diperolehi. Kemudian dinamik baru yang berasal 

daripada pelaksanan teknik pengawal dinamik songsang tidak linear(SHBN) yang 

dicadangkan songsang tak linear pengawal dinamik (SHBN) dihasilkan. Ia mempunyai 

kelebihan seperti kawalan tork yang cepat,riak tork yang minimum dan tindak balas 

kelajuan yang cepat. Kaedah yang dicadangkan diuji menggunakan motor aruhan 0.3 

kW (IM) dan juga diuji dengan 100% ketidakpastian bagi pemegun, dan 20% pemutar 

rintangan daripada aruhan saling. Keputusan mengesah dan membuktikan bahawa 

sistem yang dicadangkan (NID) menghasilkan riak tork yang lebih kecil dan tindak 

balas tork yang lebih cepat berbanding kawalan konvensional linear suap balik(FLC) 

dan kaedah tork kawalan langsung (DTC) serta bebas dari tidak ketentuan parameter. 

Manakala, analisis ralat seperti ralat sensitivity, analisis ralat arus, analisis ralat model 

pengawal, analisis ralat pengukuran kelajuan, dan analisis kestabilan. Eksperimen 

dilakukan dengan menggunakan PMDC motor sebagai beban, computer sebagai 

platform sebagai antara muka kepada pengguna, cip DSP TMS320F28335 DSP sebagai 

papan pengawal, inverter, bekalan kuasa DC, pengekod, dan sistem merekod data. 

Kelajuan rujukan adalah 40 Rad / Sec dan beban tork yang digunakan adalah 0.8 N.M. 

Akhir sekali, objektif kerja disahkan dengan membandingkan kaedah yang dicadangkan 

dengan kerja-kerja terdahulu. Selain itu, kaedah yang dicadangkan telah mengurangan 

riak tork yang menjadi kebimbangan utama dalam tork kawalan langsung (DTC) dan 

skim kawalan suap balik linear (FLC) dan mempunyai kesan ke atas arus histerisis 

stator. 
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ABSTRACT 

Decreasing the ripple torque in the induction motor has become a preoccupation 

of many researchers in recent years. It has many impacts on the effective performance 

of the induction motor (IM), increases efficiency, reduces losses and extends the life of 

its spare parts. As a result of the (IM)’s features which are robustness, economical, 

reliable and maintenance free, it is used in large-scale industrial applications. In 

general, when taking the induction motor performance, and the torque ripple into 

consideration, the impact is too significant to be ignored. Thus, this thesis focus on 

developing a new Nonlinear Inverse Dynamic (NID) method to control the three-phase 

induction motor. Three types of NID namely General Nonlinear Inverse Dynamic, 

Voltage Control Nonlinear Inverse Dynamic and Current Control Nonlinear Inverse 

Dynamic. These methods are based on field oriented with space vector pulse width 

modulation. The NID controller canceled a non-desirable response of the induction 

motor and enhanced the performance. This cancellation attempts by careful nonlinear 

algebraic equations. The mathematical model of induction motor and decoupling 

between two inputs were achieved. Then the desired new dynamic is derived from 

implementing the proposed NID technique that reserves some benefits such as fast 

torque control, minimum ripple torque, and fast speed response. The proposed methods 

were tested by 0.3 Kw IM and also tested with 100% uncertainty for stator and rotor 

resistances and 20% of mutual inductance. The high-performance minimum ripple 

torque operation of the closed-loop system was proved through simulation and 

experiment. The results are verified and proved that the proposed NID system achieves 

smaller torque ripple and faster torque response than the conventional feedback 

linearization control (FLC) and direct torque control (DTC) method and robust for 

parameters uncertainty. Whereas, several types of error analysis had been verified such 

as sensitivity error analysis, current errors analyses, controller model parameter error 

analysis, speed measurement error analysis, current measurement error analysis, and 

stability analysis. The experimental results are performed using programming torque 

device set as a load, the computer platform as the only interface to the user, the digital 

signal processor with model TMS320F28335 DSP chip as a controller board, inverter, 

DC power supply, encoder, and data acquisition systems. The reference speed is 40 

Rad/Sec and load torque is 0.8 N.M are used. These, have all been successfully derived, 

analyzed, simulated, and practically implemented. It has been shown that the system 

closed-loop output error is equal to zero at all times and not just at steady state. Finally, 

the comparison of the proposed methods and other works have verified the objectives of 

the work. Also, the proposed method significantly reduced the torque ripple which is 

the major concerns of the classical hysteresis-based in DTC and FLC scheme and have 

an effect on the stator current distortion. 
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