Contents lists available at ScienceDirect ## Journal of the Taiwan Institute of Chemical Engineers journal homepage: www.elsevier.com/locate/jtice # Modeling and optimization of carbon dioxide methanation *via in situ* hydrogen generated from aluminum foil and alkaline water by Box-Behnken design A.H. Zamani^{a,*}, Nor Hakimin Abdullah^b - ^a Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia - ^b Advanced Materials Research Centre (AMRC), Faculty of Bioengineering and Tecnology, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan, Malaysia #### ARTICLE INFO Article history: Received 23 June 2017 Revised 8 November 2017 Accepted 10 November 2017 Available online 29 November 2017 Keywords: Optimization Response surface methodology Methanation In situ hydrogen Hydrogen generated Green technology ### ABSTRACT The catalytic activity of carbon dioxide (CO_2) methanation by *in situ* hydrogen generated from aluminum foil (Al) and alkaline water over a novel catalyst (AHZ-CM) was investigated. Response surface methodology involving Box-Behnken design (RSM-BBD) was implemented for optimization where the reaction temperature was found to be the utmost significant effective factor, followed by H_2/CO_2 ratio and weight catalyst loading. The optimum condition for CO_2 conversion was at 3.29 g of weight catalyst loading, H_2/CO_2 ratio of 4.08 and reaction temperature of 276.7 °C which resulted in 97.5% of CO_2 conversion. The result was approximately in agreement with the predicted result found by RSM which achieved 99.9% CO_2 conversion. Interestingly, this study proved that the hydrogen gas production from Al and alkaline water can be used *in situ* reaction and the novel catalyst (AHZ-CM) would be an excellent candidate to be used for CO_2 methanation reaction. © 2017 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.