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1. Introduction 

With the increment of the load amount of electricity gener- 

ation from coal power plants, it also causes the rise of carbon 

dioxide (CO 2 ) emission, thus resulted in greenhouse effect and 

global warming [1] . The utilizing of CO 2 emissions is still a big 

challenge for industries and worldwide in general [2] . Turning 

greenhouse gas CO 2 to wealth is one of the options considered 

by industries, which transforms CO 2 to value-added products 

[3,4] . Several technologies for CO 2 reduction do exist, but nothing 

promising seems to be developed. Among these technologies, the 

CO 2 catalytic methanation that transformation CO 2 into methane 

(CH 4 ) [5–7] and other value-added constituents [3] appeared as a 

promising alternative. Currently, the CO 2 methanation has gained 

renewed interest due to its application in the so-called power-to- 

gas technology [8] . In power-to-gas technology, hydrogen produced 

from excess renewable energy is reacted with CO 2 and chemically 

transformed to methane. However, the industry players are very 

concerned regarding the operating cost and high hydrogen gas 

consumption. Hydrogen gas can be generated through electrolysis 

of water [9,10] , however complexity makes them unsuitable to use 

for CO 2 methanation. Hydrogen storage and transportation still is a 
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dioxide (CO 2 ) methanation by in situ hydrogen generated from aluminum

r a novel catalyst (AHZ–CM) was investigated. Response surface method-

esign (RSM-BBD) was implemented for optimization where the reaction

e utmost significant effective factor, followed by H 2 /CO 2 ratio and weight

 condition for CO 2 conversion was at 3.29 g of weight catalyst loading,

n temperature of 276.7 °C which resulted in 97.5% of CO 2 conversion. The
reement with the predicted result found by RSM which achieved 99.9% 

his study proved that the hydrogen gas production from Al and alkaline 

ion and the novel catalyst (AHZ–CM) would be an excellent candidate to 

action. 

itute of Chemical Engineers. Published by Elsevier B.V. All rights reserved. 

hallenge [11] therefore hydrogen generated in situ by employing 

luminum reaction with alkaline water can be suitable solution 

or CO 2 methanation [11] . Currently, hydrogen generated from 

luminum foil and water in the presence of sodium hydroxide 

NaOH) as catalyst [12–15] has been in the center of attention. 

here are several advantages of using Al for H 2 production such as 

l can be easy obtained from recyclable materials (soft drink cans) 

15] , the byproduct Al(OH) 3 , can be used in wastewater treatment 

16] and pharmaceutical industry [17] and also can be recovery 

ack of aluminum by electrolysis. Based on the completed reac- 

ion, 1.0 g of Al foil can generate 1.2 L volume of H 2 gas at ambient 

emperature [12] . If the reaction uses a flow of rate at 40 mL/min 

ydrogen, this means the reaction could work at approximately 

0 min of time reaction. 

The stoichiometry reaction between aluminum and water is 

hown in Eq. 1 . 

l ( s ) + 3 H 2 O ( l ) −−−−−−−−→ 

Catalyst NaOH 
Al ( OH ) 3 ( l ) + 3 / 2 H 2 ( g ) (1) 

The generated H 2 gas will be used in situ for CO 2 methanation 

n presence our catalyst (AZH 

–CM) would be special interest. CO 2 

ethanation by in situ reaction with hydrogen generated from Al 

nd alkaline water has not been investigated yet. Methanation of 

O 2 is an exothermic reaction in which H 2 and CO 2 react to form 

H 4 and H 2 O. The reaction stoichiometry is shown in Eq. (2) . 

 O 2 ( g ) + 4 H 2 ( g ) → C H 4 ( g ) + 2 H 2 O ( l ) H = −165 kJ / mol (2) 
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